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Abstract

Recent studies have revealed that BRCA1 and BRCA2 germline mutation-related breast cancers show frequent
overexpression of hypoxia inducible factor-1a (HIF-1a), the key regulator of the hypoxia response. However, the question
remained whether hypoxia is a late stage bystander or a true carcinogenetic event in patients with hereditary
predisposition. We therefore studied HIF-1a overexpression in ductal carcinoma in situ (DCIS), an established precursor of
invasive breast cancer. We used immunohistochemistry to examine the expression of the hypoxia markers HIF-1a, CAIX
and Glut-1 in DCIS and available invasive carcinoma lesions of 32 BRCA1, 16 BRCA2 and 77 non-BRCA mutation-related cases.
HIF-1a expression was detected in 63% of BRCA1 and 62% of BRCA2 as compared to 34% of non-BRCA mutation-related
DCIS cases (p = 0.005). CAIX overexpression was present in 56% of BRCA1 and 44% of BRCA2 as compared to 6% of non-BRCA
mutation-related DCIS cases (p = 0.000). Glut-1 overexpression was observed in 59% of BRCA1, 75% of BRCA2 and 67% of
non-BRCA mutation-related DCIS cases (p = 0.527). Overall, HIF-1a, CAIX and Glut-1 expression in BRCA mutation-related
DCIS matched the expression in the accompanying invasive cancers in 60% or more of cases. In non-BRCA mutation-related
cases the expression of the hypoxia markers in DCIS matched the expression in the invasive part in 46% or more of the
cases. Although BRCA1 and BRCA2 germline mutation-related invasive breast cancers are different in many ways, the
hypoxia-related proteins HIF-1a, CAIX and Glut-1 are expressed in both DCIS and invasive lesions of BRCA1 and BRCA2
mutation carriers. This suggests that hypoxia may already play a role in the DCIS stage of BRCA1 and BRCA2 germline
mutation related breast carcinogenesis, and may also drive cancer progression. Hypoxia-related proteins are therefore
putative targets for therapy and molecular imaging for early detection and monitoring therapy response in BRCA mutation
patients.
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Introduction

Hereditary breast cancer accounts for about 5% of all breast

cancers in women and is primarily caused by a germline mutation

in one of the BRCA genes. Several studies have indicated that the

genetic makeup of BRCA1 and BRCA2 mutation-related breast

cancer is different from that of non-BRCA mutation-related breast

cancer. These differences comprise gains and losses of specific

parts of chromosomes, as well as differences in protein expression

[1–7]. Consistent with this, the morphological and immunohisto-

chemical phenotype of BRCA1 mutation-related breast cancer is

also different from that of non-BRCA mutation-related breast [8–

13]. However, the phenotype of BRCA2 mutation-related breast

cancer is still difficult to distinguish from non-BRCA mutation-

related breast cancers [14,15].

Hypoxia is a hallmark of many non-BRCA mutation-related

breast cancer types [16]. Hypoxia inducible factor-1 (HIF-1) is the

key regulator of the hypoxia response. HIF-1 consists of 2 subunits,

HIF-1a and HIF-1b. While HIF-1b is constitutively expressed, the

HIF-1a protein is continuously degraded under normoxia by the

ubiquitin-proteasome pathway [17,18]. Under hypoxia, HIF-1a
protein degradation is inhibited resulting in its overexpression,

subsequent binding to HIF-1b [19] and downstream signalling

[20]. In non-BRCA mutation-related breast cancer, HIF-1a
overexpression plays a role in carcinogenesis [21–26] and

correlates with poor prognosis [27,28]. When HIF-1a is overex-

pressed, established downstream targets like Carbonic anhydrase

IX (CAIX) and Glucose transporter-1 (Glut-1) are also up

regulated [29,30]. BRCA1 seems to play a role in the hypoxic

response by regulating HIF-1a stability and by modulating

expression of vascular endothelial growth factor, a major

downstream target of HIF-1a [31]. Furthermore, functional

HIF-1a overexpression (mostly hypoxia induced) is seen at a

much higher frequency in BRCA1 mutation-related invasive breast

cancer than in sporadic breast cancer [32,33]. In contrast, BRCA2
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mutation-related invasive cancers express HIF-1a less frequently

[33].

However, studies in pre-invasive lesions are required to address

the question whether hypoxia is a late stage bystander or a true

carcinogenetic event.

There is both clinical and experimental evidence to suggest that

ductal carcinoma in situ (DCIS) is a precursor lesion to most, if not

all, non-BRCA mutation-related invasive breast cancers [34–38].

DCIS and other premalignant lesions such as lobular neoplasia,

fibroadenoma, and ductal hyperplasia seems to be more common

in prophylactic mastectomy (PM) specimens of BRCA1 and BRCA2

mutation carriers than in control mammoplasty specimens [10,39–

42]. Furthermore, DCIS lesions adjacent to invasive cancers in

BRCA mutation carriers have been described [43,44]. DCIS in

BRCA mutation carriers is often high grade [43] and shows a

similar morphology and immunophenotype as the accompanying

invasive cancer [45]. High grade DCIS of non-BRCA-related cases

often shows central necrosis [46] indicative of hypoxia. Indeed,

overexpression of hypoxia-related proteins HIF-1a, CAIX and

Glut-1 DCIS of non-BRCA mutation carriers has been described

[22]. To find clues whether changes in hypoxia related proteins

also is an early event in BRCA mutation-related carcinogenesis, we

evaluated HIF-1a expression in BRCA1 and BRCA2 mutation-

related DCIS in relation with the accompanying invasive cancers.

Materials and Methods

Patients
The study group comprised DCIS lesions of 32 patients with

pathogenic germline BRCA1 mutations, 16 patients with patho-

genic germline BRCA2 mutations and 77 patients unselected for

family history (further denoted ‘‘non-BRCA mutation-related’’). A

synchronous invasive tumor was also present in 28 BRCA1, 17

BRCA2 and 50 non-BRCA mutation-related cases. Tissue from

these patients was available from our own archives, and from

different pathology laboratories in The Netherlands (St Antonius

Hospital Nieuwegein, Diakonessenhuis Utrecht, Gelre Ziekenhui-

zen Apeldoorn, Rijnstate Arnhem, Stichting Pathologisch en

Cytologisch laboratorium West Brabant Bergen op Zoom,

Ziekenhuis Gelderse Vallei Ede, Deventer Ziekenhuis Deventer,

Meander medisch centrum Amersfoort, Onze Lieve Vrouwe

Gasthuis Amsterdam, the VU University Medical Center,

Amsterdam and the University Medical Center Groningen). Since

we used archival pathology material which does not interfere with

patient care and does not involve the physical involvement of the

patient, no ethical approval is required according to Dutch

legislation [the Medical Research Involving Human Subjects Act

(Wet medisch-wetenschappelijk onderzoek met mensen, WMO

[47])]. Use of anonymous or coded left over material for scientific

purposes is part of the standard treatment contract with patients

and therefore informed consent procedure was not required

according to our institutional medical ethical review board. This

has also been described by van Diest et al. [48].

Histopathology
Tumor size was measured in the fresh resection specimens, and

tumor samples were subsequently fixed in neutral buffered

formaldehyde, and processed to paraffin blocks according to

standard procedures. Four mm thick sections were cut and stained

with H&E for histopathology. Tumor type was assessed according

to the WHO 2003, and tumors were graded according to the

Nottingham grading system. Mitoses counting was performed as

previously described [49]. Scoring was performed by one observer

(PJvD) who was blinded to the origin of the tumors.

Immunohistochemistry
After deparaffinization and rehydration, antigen retrieval was

performed using EDTA buffer at boiling temperature for

20 minutes for ER, HER2 and HIF-1a. A cooling period of

30 minutes preceded the incubation of the slides for HIF-1a with

protein block (Novolink Max Polymer detection system, ready to

use, Novocastra Laboratories Ltd, Newcastle Upon Tyne, UK) for

5 minutes at room temperature. Incubation of the slides with the

HIF-1a mouse monoclonal (BD Biosciences, Pharmingen, Lex-

ington, MA, USA), was done at a dilution of 1:50 overnight at

4uC. For detection, a polymer (Novolink Max Polymer detection

system, ready to use) was used. For ER and HER2, the slides were

incubated with primary antibodies for ER (1:100, Dako) and

HER2 (1:100, Neomarkers) 60 minutes at room temperature.

For PR, Glut-1 and CAIX, antigen retrieval was performed in

citrate buffer, pH = 6.0, for 20 minutes at 100uC. A cooling period

of 30 minutes preceded the incubation (60 minutes at room

temperature) with the primary antibodies. Polyclonal primary

antibodies used were: PR (1:100, Dako), Glut-1 (1:200, DAKO)

and CAIX (1:1000, Abcam, Cambridge Science Park, Cambridge,

UK). For detection of the primary antibodies against ER, PR,

HER2, CAIX and Glut-1, a poly HRP anti- Mouse/Rabbit/Rat

IgG (ready to use, ImmunoLogic, Duiven, Netherlands) was used.

All slides were developed with diaminobenzidine (10 minutes)

followed by hematoxylin counterstaining. Before the slides were

mounted all sections were dehydrated in alcohol and xylene.

Positive controls were used throughout, negative controls were

obtained by omission of the primary antibodies from the staining

procedure. Representative pictures of positive and negative

controls for HIF-1a, CAIX and Glut-1 have been provided as

Figure S1.

Scoring of immunohistochemistry was performed by one

observer (PJvD). HIF-1a was regarded overexpressed when

.1% of nuclei were positive as described before [26]. ER and

PR expression was regarded positive when 10% or more of the

tumor nuclei stained positive. HER2 was scored positive when a

3+ membrane staining was observed according to the Dako

system. CAIX and Glut-1 stainings were scored positive when a

clear membrane staining pattern was seen. Associations between

stainings were tested by Chi-square analysis. P-values,0.05 were

considered to be statistically significant.

Results

The clinicopathological characteristics and expression of ER,

PR, HER2, HIF-1a, CAIX and Glut-1 of BRCA1, BRCA2 and non-

BRCA mutation-related DCIS cases are described in Table 1. The

age of onset is lower in BRCA compared to non-BRCA mutation

carriers (p = 0.000). BRCA1 mutation-related DCIS cases often are

ER, PR and HER2-negative as compared to the BRCA2 and non-

BRCA mutation-related DCIS (see Table 1 for correlations).

Expression of hypoxia-induced proteins in BRCA1, BRCA2
and non-BRCA mutation-related DCIS

HIF-1a overexpression was observed in 63% (20/32) of the

BRCA1, in 62% (10/16) of the BRCA2 and in 34% (26/77) of the

non-BRCA mutation-related DCIS cases (p = 0.005;Table 1).

CAIX overexpression was observed in 56% (18/32) of BRCA1

mutation-related DCIS cases, with accompanying HIF-1a over-

expression in 31% (10/32) of the cases (p = 0.358;Table 2). Glut-1

was overexpressed in 59% (19/32) of the BRCA1 mutation-related

DCIS cases and HIF-1a was co-overexpression in 41% (13/32) of

these cases (p = 0.403).

HIF-1a Expression in BRCA Mutation Related DCIS
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CAIX was expressed in 44% (7/16) of BRCA2 mutation-related

DCIS cases with accompanying HIF-1a overexpression in 38%

(6/16) of the cases (p = 0.091). Glut-1 overexpression was observed

in 75% (12/16) of BRCA2 mutation-related DCIS cases, with HIF-

1a co-overexpression in 56% (9/16) of the cases (p = 0.074).

In the non-BRCA mutation-related DCIS cases, CAIX expres-

sion was seen in 6% (5/77) of the cases which were negative for

HIF-1a. Glut-1 was overexpressed in 67% (52/77) of non-BRCA

mutation-related DCIS cases, with concomitant HIF-1a overex-

pression in 29% (22/77) of the cases (p = 0.022).

Furthermore, in the BRCA1 and BRCA2 mutation-related DCIS

no correlations between HIF-1a expression and grade, ER, PR

and HER2 expression were found. For the non-BRCA mutation-

related DCIS cases, a positive trend was observed with grade, and

a negative trend with ER (Table 2).

Expression of hypoxia-induced proteins in BRCA1, BRCA2
and non-BRCA mutation-related DCIS and invasive
cancer

In the BRCA1 mutation-related cases with DCIS and concom-

itant invasive cancer (N = 29), the frequency of HIF-1a overex-

pression was high in both lesions: 62% (18/29) and 83% (24/29),

respectively (p = 0.264;Table 3.). The frequency of CAIX expres-

sion was 52% (15/29) and 79% (23/29), respectively, in DCIS and

invasive carcinoma (p = 0.311). Further, 59% (17/29) of the DCIS

and 83% (24/29) (p = 0.945) of the invasive lesions were positive

for Glut-1 expression. Examples of these IHC results are shown in

Figure 1.

In the BRCA2 mutation-related cases with invasive counterparts

(N = 16), 63% (10/16) of DCIS lesions were HIF-1a positive as

compared to 38% (6/16) if invasive lesions (p = 0.016). The same

expression of CAIX was observed in BRCA2 mutation-related

DCIS lesions and the invasive counterpart lesions, 44% (7/16)

Table 1. Clinicopathological characteristics and expression of
ER, PR, HER2, HIF-1a, CAIX and Glut-1 in DCIS lesions of BRCA1,
BRCA2 and non-BRCA mutation carriers.

BRCA1 BRCA2 non-BRCA p-value

N 32 16 77

Age ,45 25(78%) 9(56%) 14(18%)

.45 7(22%) 7(44%) 63(82%) 0.000

Grade 1 0(0%) 1(6%) 11(14%)

2 9(28%) 8(50%) 30(39%)

3 23(72%) 7(44%) 36(47%) 0.035

ER neg 22(69%) 4(25%) 19(25%)

pos 10(31%) 12(75%) 58(75%) 0.000

PR neg 27(84%) 9(56%) 36(47%)

pos 5(16%) 7(44%) 41(53%) 0.002

HER2 neg 31(97%) 11(69%) 55(71%)

pos 1(3%) 5(31%) 22(29%) 0.014

HIF-1a neg 12(38%) 6(38%) 51(66%)

pos 20(63%) 10(62%) 26(34%) 0.005

CAIX neg 14(44%) 9(56%) 72(94%)

pos 18(56%) 7(44%) 5(6%) 0.000

Glut-1 neg 13(41%) 4(25%) 25(33%)

pos 19(59%) 12(75%) 52(67%) 0.527

doi:10.1371/journal.pone.0056055.t001

Table 2. Correlation of HIF-1a expression in DCIS lesions of BRCA1, BRCA2 and non-BRCA mutation carriers with age, grade, ER, PR,
HER2, CAIX and Glut-1 expression in these lesions.

BRCA1 BRCA2 non-BRCA

N 32 16 77

HIF-1a p-value HIF-1a p-value HIF-1a p-value

neg pos neg pos neg pos

Age ,45 9 16 3 6 8 6

.45 3 4 0.740 3 4 0.696 43 20 0.427

Grade 1 0 0 1 0 10 1

2 2 7 4 4 21 9

3 10 13 0.264 1 6 0.149 20 16 0.081

ER neg 8 14 1 3 9 10

pos 4 6 0.844 5 7 0.551 42 16 0.045

PR neg 10 17 4 5 22 14

pos 2 3 0.900 2 5 0.515 29 12 0.373

HER2 neg 12 19 5 6 39 16

pos 0 1 0.431 1 4 0.330 12 10 0.170

CAIX neg 4 10 5 4 46 26

pos 8 10 0.358 1 6 0.091 5 0 0.099

Glut-1 neg 6 7 3 1 21 4

pos 6 13 0.403 3 9 0.074 30 22 0.022

doi:10.1371/journal.pone.0056055.t002

HIF-1a Expression in BRCA Mutation Related DCIS
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(p = 0.049). Glut-1 was overexpressed in 75% (12/16) of DCIS

cases in and in 56% (9/16) (p = 0.146) of the invasive BRCA2

mutation-related lesions (Table 3).

The frequency of HIF-1a expression in non-BRCA mutation-

related DCIS and concomitant invasive cancer (N = 50) was 38%

(19/50) and 34% (17/50), respectively (p = 0.029). Similar CAIX

expression was observed in both lesions, 8% (4/50) and 12% (6/

50), respectively (p = 0.015). Glut-1 overexpression was seen in

70% (35/50) of DCIS cases and in 36% (18/50) (p = 0.797) of the

invasive non-BRCA mutation-related lesions.

In summary, these non-significant differences indicate that HIF-

1a positivity was similar in DCIS and the accompanying invasive

lesions. Differences in HIF-1a expression between BRCA1 and

BRCA2 and non-BRCA mutation related DCIS were borderline

significant (p = 0.062). A significant difference in HIF-1a expres-

sion was seen between BRCA1 and BRCA2 as compared to non-

BRCA mutation-related invasive cancer (p = 0.000).

Expression of hypoxia-induced proteins in BRCA non-
BRCA mutation-related DCIS vs invasive cancer

Table 4 shows the expression of HIF-1a, CAIX and Glut-1 in

paired, DCIS and concomitant invasive cancer, for BRCA

mutation and non-BRCA mutation carriers.

HIF-1a expression was expressed in both lesions in 55% (16/29)

of the BRCA1 mutation-related cases, whereas both lesions were

negative for HIF-1a expression in 10% (3/29) of cases. Overall, in

66% (19/29) of the BRCA1 mutation carrier cases both lesions

showed similar expression levels of HIF-1a. In 28% (8/29) of the

BRCA1 mutation-related cases only the invasive part, and in 7%

(2/29) only the DCIS lesion showed HIF-1a expression. CAIX

and Glut1 were expressed in both lesions in 45% (13/29) and 48%

(14/29) of the BRCA1 mutation carrier cases, respectively, and

both lesions lacked expression of these markers in 14% (4/29) and

7%(2/29) of the cases. Thereby, CAIX was concomitantly

expressed in both lesions 59% (17/29) of the cases, and the

Glut-1 in 55% (16/29). Only the invasive lesion of BRCA1

mutation carriers expressed both CAIX and Glut-1 in 34% (10/

29) of cases. Expression of CAIX and Glut-1 exclusively in BRCA1

mutation-related DCIS lesions was observed in 7% (2/29) and

10% (3/29) of cases, respectively.

In the BRCA2 mutation-related cases with DCIS and concom-

itant invasive cancer, 38% (6/16) of the cases HIF-1a expression

was observed and was absent in 38% (6/16) of the cases (Table 4).

Thus, in 75% (12/16) of the BRCA2 mutation-related cases, the

DCIS and invasive lesions of the same patient showed similar

expression levels of HIF-1a. Expression of HIF-1a in only the

DCIS lesion was seen in 25% (4/16) of the BRCA2 mutation-

related cases. CAIX was expressed in both lesions in 31% (5/16) of

BRCA2 mutation-related cases and in 44% (7/16) of the cases both

lesions lacked expression (total match 75%). CAIX was expressed

in the invasive, but not in the DCIS part in 13% (2/16) of the

cases, and CAIX was expressed in the DCIS, but not in the

invasive part of 13% (2/16) of the cases. Glut-1 was expressed or

absent in both lesions in 50% (8/16) and 19% (3/16) of cases,

respectively (total match 69%). Further, Glut-1 expression was

confined to the invasive part in 6% (1/16) of cases and the DCIS

part in 25% (4/16) of the cases.

HIF-1a was expressed in both lesions in 20% (10/50) of the

non-BRCA mutation-related cases and both lesions lacked HIF-1a
expression in 48% (24/50) of cases. Thus, in total, 68% (34/50) of

the non-BRCA mutation carrier cases showed similar expression

levels of HIF-1a in both lesions. In 14% (7/50) of the non-BRCA

mutation-related cases only the invasive part, and in 18% (9/50)

only the DCIS lesion showed HIF-1a expression. CAIX and Glut-

1 were expressed in both lesions in 4% (2/50) and 26% (13/50),

respectively, of the non-BRCA mutation carrier cases. Conversely,

both lesions lacked CAIX expression in 84% (42/50) and Glut-1

Figure 1. Immunohistochemical staining of HIF-1a, CAIX and Glut-1 in normal breast tissue (A, D and G), DCIS (B, E and H) and
concomitant invasive cancer (C, F and I) of a BRCA1 mutation carrier.
doi:10.1371/journal.pone.0056055.g001

HIF-1a Expression in BRCA Mutation Related DCIS
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expresssion in 20%(10/50) of these cases. Thereby, CAIX

expression in both lesions matched in 88% (44/50) and Glut-1

expression in 46% (23/50) of cases. Expression of CAIX and Glut-

1 in only the invasive lesion of non-BRCA mutation carriers

occurred in 8% (4/50) and 10% (5/50) of cases, respectively,

whereas these markers were expressed only in DCIS lesions in 4%

(2/50) and 44% (22/50) of cases.

When BRCA1 and BRCA2 mutation-related cases were exam-

ined together, HIF-1a expression in DCIS matched the expression

in the accompanying invasive cancers in 68% (31/45) of cases, as

compared to in 68% (34/50) of the non-BRCA mutation carrier

cases. The expression of CAIX matched in 64% (29/45) of BRCA1

and BRCA2 mutation-related cases, as compared to in 88% (44/

50) of non-BRCA mutation carrier cases. For Glut-1, the

expression in DCIS matched the expression in the accompanying

invasive cancers in 60% (27/45) of BRCA1 and BRCA2 mutation-

related cases as compared to 46% (23/50) for non-BRCA mutation

carrier cases.

Discussion

Non-BRCA mutation-related DCIS lesions, especially high

grade ones, are known to become centrally deprived of oxygen

resulting in activation of the hypoxia pathway, as shown in several

studies by the presence of HIF-1a and its downstream targets. The

aim of the present study was to examine the expression of HIF-1a
in DCIS lesions of BRCA1 and BRCA2 mutation carriers in

comparison with their invasive counterparts. Activation of HIF-1a
in the DCIS stage of BRCA1 or BRCA2 germline mutated patients

would indicate that hypoxia is an early driver of BRCA mutation-

related carcinogenesis. HIF-1a overexpression was indeed fre-

quently observed in BRCA1 and BRCA2 mutation-related DCIS

cases, in association with expression of its downstream genes,

indicating that HIF-1a is active.

Overall, 63% (30/48) of BRCA mutation-related DCIS lesions

were HIF-1a-positive, which was significantly different compared

to non-BRCA mutation carriers (34%, 26/77). The latter figure is

Table 3. Clinicopathological characteristics and expression of
ER, PR, HER2, HIF-1a, CAIX and Glut-1 in DCIS and
accompanying invasive lesions of BRCA1, BRCA2 and non-
BRCA mutation carriers.

Invasive DCIS

BRCA1 BRCA2
non-
BRCA BRCA1 BRCA2 non-BRCA

N 29 16 50 29 16 50

Age ,45 21 8 8

.45 8 8 42

Type ductal 27 15 45

lobular 1 0 3

other 1 1 2

Grade 1 0 1 8 0 1 7

2 4 7 20 8 8 19

3 25 8 22 21 7 24

ER neg 22 4 13 21 4 13

pos 7 12 37 8 12 37

PR neg 25 5 19 25 9 26

pos 4 11 31 4 7 24

HER2 neg 26 13 39 28 11 33

pos 3 3 11 1 5 17

HIF-1a neg 5 10 33 11 6 31

pos 24 6 17 18 10 19

CAIX neg 6 9 44 14 9 46

pos 23 7 6 15 7 4

Glut-1 neg 5 7 32 12 4 15

pos 24 9 18 17 12 35

doi:10.1371/journal.pone.0056055.t003

Table 4. Correlation of HIF-1a, CAIX and Glut-1 between invasive and DCIS lesions of BRCA1, BRCA2 and non-BRCA mutation
carriers.

BRCA1 Invasive

HIF-1alpha CAIX Glut-1

neg pos p-value neg pos p-value neg pos p-value

DCIS neg 3 8 4 10 2 10

pos 2 16 0.264 2 13 0.311 3 14 0.945

BRCA2 Invasive

HIF-1alpha CAIX Glut-1

neg pos p-value neg pos p-value neg pos p-value

DCIS neg 6 0 7 2 3 1

pos 4 6 0.016 2 5 0.049 4 8 0.146

non-BRCA Invasive

HIF-1alpha CAIX Glut-1

neg pos p-value neg pos p-value neg pos p-value

DCIS neg 24 7 42 4 10 5

pos 9 10 0.029 2 2 0.015 22 13 0.797

doi:10.1371/journal.pone.0056055.t004

HIF-1a Expression in BRCA Mutation Related DCIS
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lower compared to our earlier observations where 67% of sporadic

DCIS lesions were HIF-1a positive [22]. Nevertheless, the current

study suggests that hypoxia and HIF-1a already play a similar role

in the DCIS stage of BRCA mutation-related carcinogenesis as in

non-BRCA mutation-related DCIS.

BRCA mutation-related invasive cancers (especially BRCA1

mutation-related ones) more frequently show HIF-1a overexpres-

sion than non-BRCA mutation-related ones [33,34]. This suggests

that hypoxia plays a more important role in cancer progression in

BRCA mutation carriers than in non-BRCA mutation carriers.

HIF-1a, CAIX and Glut-1 expression in BRCA mutation-related

DCIS was usually similar in the accompanying invasive lesions.

This implies that next to being involved in early BRCA mutation-

related carcinogenesis, hypoxia and HIF-1a overexpression may

also be a driver of cancer progression, especially in BRCA1

mutation carriers. Although the number of BRCA2 mutation-

related cases with DCIS and invasive lesions was small, there was a

trend towards higher expression of the hypoxia-related markers in

BRCA2 mutation-related DCIS as compared to the invasive

lesions. We can speculate that progression to the invasive state in

these BRCA2 mutation carriers might be due to the switch of the

HIF-1a to HIF-2a expression under prolonged hypoxia [50]. HIF-

2a expression has been observed in sporadic breast cancer [51]

and should be analysed in BRCA mutation-related breast cancer

and pre-invasive lesions. As HIF-1a already plays a role in the pre-

invasive lesions of BRCA mutation carriers, hypoxia proteins would

therefore be putative therapeutic targets for prevention of invasive

disease. HIF-1a signalling inhibitors like PX-478 [52], farnesyl-

transferase inhibitor R115777 or trans-farnesylthiosalicyclic acid

[53,54], Cetuximab [55] and other antibodies with the same

structural motif [56], 2-methoxyestradiol (2ME2) [57,58], and

inhibitors of the RNA binding protein Hur [59,60] are some of the

therapeutics currently available.

We conclude that BRCA1 and BRCA2 germline mutation-

related DCIS show a high frequency of overexpression of HIF-1a
and its downstream proteins CAIX and Glut-1, as compared to

non-BRCA mutation-related DCIS. This suggests that hypoxia

may already play a role at the DCIS stage of BRCA1 and BRCA2

germline mutation-related breast carcinogenesis, and may also

drive cancer progression. The current findings could be clinically

relevant for BRCA mutation- related breast cancer treatment in

several ways. First, HIF-1a and its downstream effectors may be

used as molecular imaging targets for early detection and

monitoring of therapy response. Second, HIF-1a is an interesting

therapeutic target at the pre-invasive stage of BRCA mutation-

related breast disease to prevent invasive disease.

Supporting Information

Figure S1 Positive controls: Immunohistochemical staining of

HIF-1a and CAIX in renal clear cell carcinoma (B and D) and for

Glut-1 in placental tissue (F). In A, C and E the primary antibody

was omitted to provide negative controls.

(TIF)
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