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Abstract

Background: Vectors based on human adenovirus serotype 5 (HAdV-5) continue to show promise as delivery vehicles for
cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector
localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins
and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer
biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm
in HAdV-5-based vector targeting.

Methodology/Principal Findings: As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique
chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of
porcine adenovirus type 4 (PAdV-4). This glycan-targeted vector displays augmented CAR-independent gene transfer in cells
with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation
defects and by inhibitors of glycosylation in normal cells.

Conclusions/Significance: These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based
on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted
gene delivery based on vector recognition of disease-specific glycan biomarkers.
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Introduction

Vectors based on human adenovirus type 5 (HAdV-5) have

shown considerable utility as gene delivery vectors, particularly in

the contexts of vaccination and cancer gene therapy. Innate

biological advantages of replication-defective HAdV-5 vectors

include in vivo stability, highly efficient transfer to both dividing

and non-dividing cells and low pathogenicity in humans. In

addition, parameters for production of clinical grade Ad vectors

are well established. Indeed, as of 2012, roughly one-fourth of

gene therapy clinical trials worldwide (428 of 1,843) have

employed HAdV-5-based vectors, with two-thirds of all gene

therapy trials being for cancer (1,186 of 1,843) [1,2,3]. Nonethe-

less, a limiting feature of HAdV-5-based vectors is that some

clinically relevant tissues are poorly transduced due to paucity of

the primary receptor molecule for HAdV-5, the coxsackie and

adenovirus receptor (CAR) [4,5]. HAdV-5 tropism is determined

by distinct virus-cell interactions: binding of the virus capsid

protein, fiber, to the primary high-affinity HAdV-5 receptor CAR,

followed by internalization of the virion via secondary interactions

with a variety of cell-surface integrins including avb5, avb3 and

others [6,7,8]. This CAR-dependent tropism hinders HAdV-5-

based cancer gene therapy approaches, as decreases in CAR

expression appears to coincide with tumor progression [9]. Indeed,

the down regulation or absence of CAR expression has been noted

in a variety of tumor types such as ovarian, prostate, lung, breast,

glioma, melanoma, head and neck carcinoma, colorectal and

others [10,11,12,13]. Clearly, the engineering of CAR-indepen-

dent HAdV-5-based vectors to recognize tumor-selective cell-

surface biomarkers could be of great utility.

Aberrant glycosylation of cell surface glycoproteins and

glycolipids is a central feature of malignant transformation which

may contribute to cancer progression via alteration of tumor cell

adhesion and migration [14,15,16]. Moreover, determining

discrete differences in glycosylation between normal and cancer

cells has recently become a central element in discovery of

clinically relevant cancer cell biomarkers [17,18].

Based on the foregoing, we have begun initial development of a

gene delivery strategy wherein HAdV-5 vectors are configured to

target cell-surface glycans. As a first step toward this goal, we have

developed a unique HAdV-5 vector that contains the head and
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tandem carbohydrate binding domains from the fiber protein of

porcine adenovirus type 4 (PAdV-4) NADC-1 strain [19].

Recently, in silico structure prediction and high-resolution crystal

structure analyses have shown that the PAdV-4 fiber protein

contains tandem carbohydrate binding domains (CBDs) which

allow the C-terminus of this fiber to bind to carbohydrate chains

containing lactose and N-acetyl-lactosamine units [20,21]. We

reasoned that genetic incorporation of the PAdV-4 CBDs into the

HAdV-5 virion would be potentially useful as a novel means to

direct CAR-independent infection of cells using glycosylated cell

surface molecules as primary attachment sites. Here, we report the

construction and tropism characterization of a novel glycan-

targeted HAdV-5-based vector and confirm the ability of this

vector to achieve glycan-mediated gene transfer.

Materials and Methods

Cell Lines
Human embryonic kidney (HEK) 293, CHO-Pro5 and CHO-

Lec8 cells, human embryonic rabdomyosarcoma RD cells, human

breast carcinoma MCF-7 cells, prostate adenocarcinoma PC-3,

and ovarian OV-3 cells were obtained from the American Type

Culture Collection (ATCC; Manassas, VA). Human pancreatic

carcinoma cell lines BxPC-3 and Hs766-T were purchased from

Boehringer Ingelheim. The OV-4 ovarian adenocarcinoma cell

line (formerly referred to and published as OVCA 433 cells

[22,23] was kindly provided by Dr. Timothy J. Eberlein,

Washington University in St. Louis, St Louis, MO. Human

ovarian adenocarcinoma SKOV3.ip1 cells were obtained from

Janet E. Price (M.D. Anderson Cancer Center, Houston, TX)

[24]. Chinese hamster ovary (CHO) cells and CHO-hCAR cells

stably expressing human CAR were provided by Jeffrey M.

Bergelson [5]. All cell lines were maintained in culture media

recommended by each supplier. All media contained 10% fetal

bovine serum, (FBS; Hyclone; Logan, UT), 2 mM L-glutamine,

100 U/ml penicillin, and 100 mg/ml streptomycin (Mediatech,

Inc., Herndon, VA). All cells were incubated at 37uC in 5% CO2

in humidified conditions.

Plasmid construction
A 1,750-bp region containing the PAdV-4 fiber knob and

carbohydrate binding domains (amino acids 121–703) of the fiber

protein was amplified from cell lysates containing wild type PAdV-

4 virus obtained from the US Department of Agriculture National

Veterinary Services Laboratory (Ames, Iowa) using the following

primers: (PAd4 knob fwd) 59-TGTGGACGGGGCCTGCTC-39

and (PAd4 knob rev) 59-TTTATTACAGTATCTGAGG-39. The

stop codon (TAA) and poly-adenylation signal (TAAA) are

underlined. Plasmid pSHAFT, a cloning vector containing the

Ad5 fiber gene with the knob region deleted and replaced by a

small linker containing SmaI and EcoICRI restriction sites [25],

was linearized by SmaI and EcoICRI digestion, leaving two blunt

ends. Following gel purification, the PAdV-4 knob domain PCR

product was ligated into linearized pSHAFT resulting in

pSHAFT-PK and positive clones were screened for correct

orientation via restriction enzyme digest. This plasmid contains

the chimeric fiber gene encoding the complete Ad5 fiber shaft in-

frame with the PAdV-4 knob domain. A stop codon and poly-

adenylation sequence is present at the 39 end. The chimeric fiber

gene in pSHAFT was digested with NcoI and MunI to liberate the

DNA fragment containing the carboxy terminus of the HAdV-5

shaft and the PAdV-4 knob domain. This fragment was ligated

into the NcoI-MunI-digested fiber shuttle vector pNEB.PK.3.6 [25],

resulting in pNEB.PK.3.6-PK.

Generation of recombinant adenovirus
The recombinant Ad5Luc1-PK genome containing the chime-

ric PAdV-4 fiber gene was derived by homologous recombination

in Escherichia coli (E. coli) strain BJ5183 with SwaI-linearized rescue

plasmid pVK700 [26] and the fiber-containing PacI-KpnI-fragment

of pNEB.PK.3.6-PK, essentially as described [27]. Plasmid

pVK700 is derived from pTG3602 [28], but contains an almost

complete deletion of the fiber gene and contains a firefly luciferase

reporter gene driven by the cytomegalovirus immediate early

promoter in place of the E1 region. The recombinant genome of

Ad5GFP1-PK containing the chimeric PAdV-4 fiber gene was

derived by homologous recombination in BJ5183 cells with fiber

shuttle plasmid pKan3.1-PK which contains the same chimeric

fiber gene as pNEB.PK.3.6-PK described above, and SwaI-

linearized rescue plasmid pVK900 [29]. Plasmid pVK900 is a

fiber-deleted HAdV-5 genome plasmid essentially the same as

pVK700 except that EGFP is encoded in the E1 region (supplied

by Victor Krasnykh, University of Texas MD Anderson Cancer

Center). All genomic clones were sequenced and analyzed by PCR

prior to transfection of HEK 293 cells. Ad5Luc1 is a replication

defective E1-deleted Ad vector containing a firefly luciferase

reporter gene driven by a cytomegalovirus promoter [30]. All

vectors were propagated on HEK 293 cells and purified by

equilibrium centrifugation in CsCl gradients by standard proto-

cols. Viral particle (v.p.) concentration was determined at 260 nm

by the method of Maizel et al. [31] by using a conversion factor of

1.161012 viral particles/absorbance unit.

PCR Analysis of the Fiber Region
Genomic DNA contained in Ad5Luc1, Ad5Luc1-PK and

PAdV-4 viral particles was used as templates for PCR amplifica-

tion of fiber genes using a HAdV-5-specific primer set: (fwd) 59-

CAGCTCCATCTCCTAACTGT-39 and (rev) 59-

TTCTTGGGCAATGTATGAAA-39 and a PAdV-4-specific

primer set: (fwd) 59-TGTGGACGGGGCCTGCTC-39 and (rev)

59-TTTATTACAGTATCTGAGG-39. Wild type PAdV-4 virus

was used as a positive control.

Western Blot Analysis
Purified virus particles (5.06109) were diluted in Laemmli buffer

and incubated at room temperature (unboiled samples) or 95uC
(boiled samples) for 10 minutes and loaded onto a 4–20% gradient

SDS-polyacrylamide gel (Bio-Rad, Hercules, CA). Following

electrophoretic separation, Ad capsid proteins were electroblotted

onto a PVDF membrane and detected with a 4D2 monoclonal

anti-fiber tail primary antibody diluted 1/3,000 (Lab Vision,

Freemont CA). Immunoblots were developed by addition of a

secondary horseradish peroxidase-conjugated anti-mouse immu-

noglobulin antibody at a 1/3,000 dilution (Dako Corporation,

Carpentaria, CA), followed by incubation with 3-39-diaminoben-

zene peroxidase substrate, DAB, (Sigma Chemical Company, St.

Louis, MO).

One-step Growth Analysis of Ad Vectors
HEK 293 cells were grown to 80% confluence in 6 wells with

2 ml of medium containing 2% FBS. They were infected with

HAdV-5 vectors at a multiplicity of infection (MOI) of 10 plaque

forming units (PFU)/cell. The infected cells and growth media

were harvested 12, 24 and 48 hours post-infection. The cells were

then lysed by three freeze/thaw cycles. The supernatants were

collected following centrifugation of the cell lysates at 4,0006g for

10 minutes at 4uC and used for subsequent infection.

Carbohydrate Binding Adenovirus Vector
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Ad-Mediated Gene Transfer Assays
Cells were plated in 24-well plates and were transduced for

1 hour at 37uC with each Ad vector diluted to 100–300 viral

particles/cell in 500 ml of transduction media containing 2% FBS.

Following the incubation, virus-containing media was replaced

with fresh media containing 2% FBS and cells were maintained at

37uC in an atmosphere containing 5% CO2. Cells were harvested

24 hours post-transduction in passive lysis buffer and gene transfer

was determined using a luciferase activity assay system (Promega,

Madison, WI). Fluorescence microscopy was performed with an

inverted IX-70 microscope (Olympus) using a 206objective. Cells

were infected with Ad5GFP1-PK for 24 hours prior to imaging.

For experiments assessing the competitive inhibition containing

of vector binding to cells, recombinant fiber knob protein [32] at

0.5, 5.0 and 50 mg/ml final concentration or recombinant PAdV-4

carbohydrate binding domain (CBD) protein [20] at 0.5, 5.0, 50

and 100 mg/ml was incubated with various cell lines at 37uC in

media containing 2% FBS for 20 minutes prior to the addition of

HAdV-5 vectors. Following transduction with Ad vectors, cells

were rinsed with media to remove unbound virus and blocking

proteins, and were maintained at 37uC in an atmosphere

containing 5% CO2.

To inhibit glycosylation of cellular proteins, chemical inhibitors

of glycosylation were used. CHO-Pro5 cells were incubated with

medium containing 10 mg/ml swainsonine (Sigma, Saint Louis,

MO., S8195) and/or 1 mg/ml benzyl-a-GalNAc (Sigma B4894)

for 24 hr at 37uC, followed by addition of Ad vectors in media

containing 2% FBS.

Biodistribution of Gene Expression
Female C57BL/6 mice (Charles River Laboratories, Wilming-

ton, MA), aged 6–8 weeks were injected intravenously through the

lateral tail vein with 161011 VP of Ad5Luc1 or Ad5Luc1-PK in

100 ml of PBS. After 48 hours mice were sacrificed and livers,

lungs, spleens, hearts and kidneys were harvested and represen-

tative sections were frozen in liquid nitrogen immediately. The

frozen organ samples were homogenized with a Mini Beadbeater

(BioSpec Products, Inc., Bartlesville, OK) in 2 ml micro-tubes

(Research Product International Corp., Mt. Prospect, IL) within

100 ml of 1.0 mm zirconia/silica beads (BioSpec Products, Inc.)

and 1 ml of Cell Culture Lysis Buffer (Promega), then centrifuged

at 14,000 rpm in a tabletop microfuge for 2 min. Luciferase

activity was measured as above. Mean background luciferase

activity was subtracted. All luciferase activities were normalized by

protein concentration in the tissue lysates. Protein concentrations

were determined using a Bio-Rad DC protein assay kit (Bio-Rad,

Hercules, CA). Mice were kept under pathogen-free conditions

according to the American Association for Accreditation of

Laboratory Animal Care guidelines. Animal protocols were

reviewed and approved by the UAB Institutional Animal Care

and Use Committee.

Results

Generation of a fiber-modified HAdV-5 vector containing
the PAdV-4 knob and carbohydrate binding domains

The fiber protein of PAdV-4 NADC-1 is comprised of a

homotrimer of 703 amino acids (Fig. 1A). Predicted functional

domains include a tail domain (residues 1–37) containing a penton

interaction sequence, a short shaft domain (residues 38–120) with

six predicted triple beta-spiral repeats [33] and a fiber head

domain homologous to other Ad fiber knob domains (residues

121–287) [20]. This fiber also contains a unique C-terminal

domain composed of two tandem CBDs (residues 393–681) that

bind carbohydrates containing lactose and N-acetyl-lactosamine

units [21]. Almost all mastadenoviruses contain a conserved

threonine-leucine-tryptophan-threonine (TLWT) motif at the N-

terminus of the fiber knob domain, and in human Ad2 and Ad5 a

flexible region separating the shaft and the knob domains precedes

this motif [34]. We exploited this modular fiber structure to

substitute the coding region of the PAdV-4 knob and CBD

domains for the HAdV-5 fiber knob sequence while retaining the

TLWT motif common to both fibers [35]. We constructed a

recombinant E1-deleted HAdV-5 genome (Ad5Luc1-PK) con-

taining the chimeric HAdV-5 shaft/PAdV-4 fiber gene and a

firefly luciferase reporter gene controlled by the CMV immediate

early promoter/enhancer. The Ad5Luc1-PK vector was rescued

following transfection of HEK 293 cells and large-scale prepara-

tions of Ad5Luc1-PK and the Ad5Luc1 control vector were

produced and purified by double CsCl gradient centrifugation.

Ad5Luc1-PK viral particle concentration in full preparations

ranged from 1.261011 to 1.2561012 v.p./ml, similar to that of the

Ad5Luc1 control vector containing the HAdV-5 wild type fiber.

The Ad5Luc1 vector is isogenic to Ad5Luc1-PK except for the

fiber locus.

We confirmed the fiber genotypes of Ad5Luc1 and Ad5Luc1-

PK vectors via diagnostic PCR using primer pairs specific for the

fiber knob domain and genomes from purified virus particles as

PCR templates. Genomic DNA from wild type PAdV-4 was used

as a positive control. We observed the expected PCR products for

the wild type HAdV-5 fiber knob domain (530 bp) and the PAdV-

4 fiber knob and CBD domains (1,750 bp) (Fig. 1B).

We performed SDS-PAGE followed by western blot analysis on

purified viral particles to verify that Ad5Luc1-PK contains

correctly trimerized chimeric fiber proteins (Fig. 1C). Blots were

probed with a monoclonal primary antibody (4D2) directed

against the fiber tail domain common to both HAdV-5 and

chimeric fiber molecules. In samples that were not heat denatured

(Fig. 1C, unboiled) we observed bands at 183 kDa and an

estimated 250 kDa, corresponding to trimers of the HAdV-5 fiber

and chimeric fibers, respectively. Further, bands in boiled samples

resolved at apparent molecular masses of 60 kDa for the wild type

HAdV-5 fiber and 90 kDa for the chimeric fiber in Ad5Luc1-PK,

representing fiber monomers.

Ad5Luc1-PK viral replication and thermostability
We next characterized the viral replication of Ad5-Luc1-PK by

one-step growth curve analysis in order to identify any growth

defect arising from the incorporation of the chimeric fiber protein

[36,37]. As shown in Figure 2, the kinetics of Ad5Luc1-PK

replication in HEK 293 cells observed at 12–48 hours post-

infection were virtually identical to that of Ad5Luc1, indicating

that no significant growth defect is present. To confirm the

thermostability of Ad5Luc1-PK virus particles, we performed viral

capsid thermostability assays [37]. Equal quantities of Ad5Luc1 or

Ad5Luc1-PK (1010 v.p.) were incubated at 280u, 4u and 37uC for

3 or 6 days followed by titration of vectors in triplicate by TCID50

assay on HEK 293 cells to quantify remaining vector infectivity.

Both vectors displayed similar infectious titers at all temperatures

and time points, confirming that the presence of the chimeric fiber

in Ad5Luc1-PK virions does not alter vector thermostability (data

not shown).

AdLuc1-PK provides enhanced gene delivery
We reasoned that Ad5Luc1-PK would provide augmented

transduction through expanded cellular tropism that does not

require CAR. We therefore compared Ad5Luc1-PK and Ad5Luc1

transduction in a panel of cancer cell lines from several tissue types

Carbohydrate Binding Adenovirus Vector
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which express low levels of CAR [38,39]. Ad5Luc1-PK provided

increased reporter gene delivery to all cell lines compared to

Ad5Luc1 (Fig. 3), with augmentation ranging from 8-fold to 23-

fold in three ovarian cancer cells lines (OV-3, OV-4 and

SKOV3.ip1) and 5-fold to 37-fold in pancreatic carcinoma cell

lines HS766T and BxPC-3. Gene transfer in all other cell lines was

increased by at least 10-fold compared to Ad5Luc1.

Ad5-PK vector infectivity is independent of CAR
High resolution crystal structure analysis has shown that the A-

B loop in the N-terminal region of the PAdV-4 knob domain is

structurally similar to the A-B loop in the CAR-binding domain in

adenoviruses that use CAR as a primary receptor, but that only

one CAR-binding residue is conserved [21]. To investigate

whether Ad5-PK vectors exhibit CAR-dependent tropism, we

performed gene transfer assays in two cell lines with markedly

different levels of CAR expression: CAR-deficient Chinese

hamster ovary (CHO) cells and a CHO-derived cell line, CHO-

hCAR, which stably expresses human CAR (hCAR) [5]. We

infected these CHO and CHO-hCAR cells with the Ad5GFP1

control vector and Ad5GFP1-PK, a vector isogenic to Ad5Luc1-

PK except that the firefly luciferase reporter gene was replaced

with green fluorescent protein, GFP. Fluorescence microscopy

showed GFP expression in infected CHO-hCAR cells but not in

CAR-deficient CHO cells (Fig. 4A), consistent with native HAdV-

Figure 1. Diagram depicting the design of the Ad5Luc1-PK chimeric fiber and molecular validation of Ad5Luc1-PK virus particles.
(A) Schematic diagram of the wild type HAdV-5 and PAdV-4 fiber proteins and the construction of the chimeric fiber of Ad5Luc1-PK and Ad5GFP1-PK.
The HAdV-5 fiber knob domain (residues 400 to 582) was replaced with residues 120 to 703 of the fiber protein of PAdV-4, NADC-1 strain. The PAdV-4
fiber head and flexible domains (residues 120–392) are shown in green and the two tandem CBDs (shown in yellow) are located between residues
393–681 of the PAdV-4 fiber sequence [20]. The T-L-W-T peptide sequence joining the shaft and knob domains of both fibers is shown in bold. (B)
PCR analysis of fiber genes in the Ad genomes using viral particles as PCR templates. Purified Ad5Luc1 virus particles (lanes 1 and 2), cell lysate
containing wild type PAdV-4 virus particles (lanes 3 and 4) and purified Ad5Luc1-PK virus particles (Lanes 5 and 6) were used as DNA templates to
amplify the knob domain of each fiber gene with a HAdV-5-specific primer set (lanes 1, 3, 5 and 7) or with PAdV-4-specific primers (lanes 2, 4, 6 and 7)
resulting in 530 bp or 1750 bp products, respectively. See Methods for PCR primer sequences. PAdV-4 is the wild type virus and was used as a
control. Lanes containing DNA size standards (kbp) and no PCR template (nt) are designated. (C) Western blot analysis of fiber proteins from purified
virus particles. 56109 v.p. of Ad5Luc1 with wild type Ad5 fiber (lanes 1 and 2) or Ad5Luc1-PK with chimeric fiber (lanes 3 and 4) were suspended in
Laemmli buffer prior to SDS-PAGE and western blotting analysis with a mAb directed against the HAdV-5 fiber tail domain. Samples marked ‘‘Boiled’’
in lanes 2 and 4 were heat denatured at 95uC prior to electrophoresis. Fiber monomers and trimers are indicated. Molecular mass markers indicate
kiloDaltons (kDa).
doi:10.1371/journal.pone.0055533.g001

Carbohydrate Binding Adenovirus Vector
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5 tropism. In contrast, Ad5Luc1-PK-mediated GFP gene delivery

does not depend on CAR expression, as similar number of GFP-

positive cells were observed in both the CHO and CHO-hCAR

cell lines. We next performed similar gene transfer assays using

luciferase-expressing Ad5Luc1 and Ad5Luc1-PK vectors to

quantify differences in gene delivery based on CAR expression.

Ad5Luc1 exhibited the expected CAR-dependent tropism as

demonstrated by an 80-fold increase in luciferase activity in CHO-

hCAR cells versus CHO cells (Fig. 4B). In contrast, Ad5Luc1-PK

provided robust gene delivery to both cell lines. Further,

competitive inhibition of CAR binding with recombinant

HAdV-5 knob protein (50 mg/ml) blocked over 96% of Ad5Luc1

gene transfer to CHO-hCAR cells, but not gene transfer of

Ad5Luc1-PK (Fig. 4C). Taken together, we conclude that

Ad5Luc1-PK tropism is CAR-independent, consistent with the

aforementioned structural analysis showing the lack of canonical

CAR-binding residues in the PAdV-4 knob domain.

Glycan dependent infection of Ad5Luc1-PK
To determine whether the CBDs in the chimeric fiber of

Ad5Luc1-PK participate in cellular attachment, we performed

competitive inhibition assays using a recombinant protein

consisting of the tandem PAdV-4 CBDs (residues 393–703 of

the PAdV-4 fiber protein) or recombinant HAdV-5 fiber knob

protein as a negative control. Addition of PAdV-4 CBD protein

during infection caused a dose-dependent inhibition of Ad5Luc1-

PK-mediated gene transfer with a maximum inhibition of 35% at

100 mg/ml (Fig. 5), indicating that the CBDs in the chimeric fiber

are responsible for cellular attachment during infection.

The CBDs within the PAdV-4 fiber protein bind to lactose, N-

actyl-lactosamine and poly-N-acetyl-lactosamine in order of

increasing affinity [21]. However, whether the CBDs in the

PAdV-4 chimeric fiber recognize these glycans and use them as a

means for viral transduction is not known. We therefore

performed gene transfer assays in CHO-Lec8 cells which contain

mutations in the UDP-galactose transporter/translocase (UGT)

gene [40,41,42]. These cells lack the ability to galactosylate

glycoproteins and produce glycoproteins with truncated carbohy-

drate chains that lack lactose, N-acetyl-lactosamine and poly-N-

acetyl-lactosamine. The level of Ad5Luc1 gene delivery was

unchanged between CHO-Lec8 cells and the control CHO-Pro5

cells that exhibit normal glycosylation (Fig. 6A). In contrast,

Ad5Luc1-PK gene delivery to CHO-Lec8 cells was reduced by

64% compared to the control CHO-Pro5 cells, confirming that

lactose-containing glycans at the cell surface is critical for

Ad5Luc1-PK infectivity.

There are two major types of carbohydrate chains on

glycoproteins; N-linked glycans linked to asparagine residues and

O-linked glycans linked to serine or threonine [43,44,45]. To

further investigate the nature of the glycans recognized during

Ad5Luc1-PK infection, we performed gene transfer assays

following incubation of CHO-Pro5 cells with inhibitors of N-

linked glycan synthesis (swainsonine, 10 mg/ml) [46,47], or O-

linked glycan synthesis (benzyl-a-GalNAc, 1 mg/ml) [46,47]. The

addition of these inhibitors singly or in combination to CHO-Pro5

cells did not alter levels of Ad5Luc1 gene transfer (Fig. 6B). In

contrast, Ad5Luc1-PK gene transfer was blocked 35% by benzyl-

a-GalNAc pre-treatment, with a minimal (,10%) reduction by

swainsonine. We also observed similar results in A549 cells pre-

treated with these inhibitors (data not shown), suggesting that O-

linked cell-surface glycans may be preferred by Ad5Luc1-PK for

Figure 2. Comparison of viral replication kinetics. HEK 293 cells
were infected with Ad5Luc1 (open squares) or Ad5Luc1-PK (filled
squares) at an MOI of 10 PFU/cell for various times. Infectious titers
were determined by the TCID50 method. Each data point represents an
average of triplicates.
doi:10.1371/journal.pone.0055533.g002

Figure 3. Ad5Luc1-PK vector provides augmented gene transfer. Luciferase activities following infection of cancer cell lines with Ad5Luc1-PK
(filled columns) and Ad5Luc1 (open columns). Luciferase activity was determined 24 hours post-infection and reported in relative light units, RLU.
Each column is the average of 4 independent replicates using 100 v.p./cell. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0055533.g003
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infection. Collectively, these data show that the CBDs in the

chimeric fiber protein of Ad5Luc1-PK directly participate in

cellular attachment and that infection is highly dependent on the

presence of lactose and/or N-acetyl-lactosamine-containing gly-

cans, consistent with a novel, glycan-mediated cell entry pathway.

Biodistribution of AdLuc1-PK gene expression
It has been shown that structural changes to the fiber protein

can alter the biodistribution of systemically administered HAdV

vectors [48]. To determine whether the substitution of the PAdV-4

knob domain alters the biodistribution of Ad5Luc1-PK compared

to the unmodified control Ad5Luc1 vector, we determined the

biodistribution of transgene expression in C57BL/6 mice follow-

ing intravenous administration. Mice were injected via the tail vein

with 161011 viral particles. Forty-eight hours post-injection the

liver, lung, spleen, kidney, heart and brain were harvested and

homogenized, and luciferase activity and protein concentrations of

cleared tissue homogenates were measured. Ad5Luc1-PK gene

expression in the liver, lung heart, spleen, heart and brain was not

statistically different from that of Ad5Luc1 (Fig. 7). However,

Ad5Luc1-PK gene expression in the kidney was increased

approximately 40-fold (p,0.001) compared to the Ad5Luc1

control vector.

Discussion

Altered glycosylation appears to be a universal hallmark of

cancer, and unlike many other cellular dysfunctions that occur

throughout tumorogenesis, aberrant glycoconjugates are present

on the cell surface and available for direct analysis. On this basis,

glycosylation changes represent a major source of cancer-specific

biomarkers. Indeed, the serological detection and monitoring of

cancer-related carbohydrate antigens is widely used in clinical

medicine [18,49,50]. To date, however, there has been little

progress towards developing therapeutic strategies that target

disease-associated carbohydrate species. The objective of this study

was to provide initial proof-of-concept of a gene delivery strategy

based on vector recognition of specific carbohydrate forms on

target cells.

Figure 4. Gene transfer of Ad5-PK vectors is CAR-independent.
(A) Fluorescence micrographs of CAR-negative CHO and human CAR
(hCAR)-positive CHO-hCAR cell lines imaged 24 hours post-infection
with Ad5GFP1-PK (300 v.p./cell), a vector that is isogenic to Ad5Luc1-PK
except for the EGFP reporter gene. (B) Luciferase activities in CAR-
negative CHO and CAR-positive CHO-hCAR cells following infection
with Ad5Luc1 (open columns) or Ad5Luc1-PK (filled columns).
Luciferase activities were determined 24 hours post-infection and
reported in relative light units, RLU. Each column is the average of 3
independent replicates using 300 v.p./cell. Error bars indicate standard
deviation. (C) Luciferase activities in CHO-hCAR cells following infection
with Ad5Luc1 (open columns) or Ad5Luc1-PK (filled columns) in the
presence of increasing concentrations of recombinant HAdV-5 fiber
knob protein to competitively inhibit CAR-mediated cell binding of Ad
vectors. Luciferase activities were determined 24 hours post-infection
and reported in relative light units, RLU. Each column is the average of 4
independent replicates using 100 v.p./cell. Error bars indicate standard
deviation. # indicates that p,0.0002 versus unblocked Ad5Luc1
control using the Student’s t-test.
doi:10.1371/journal.pone.0055533.g004

Figure 5. Ad5Luc1-PK uses carbohydrate binding domains for
gene transfer. Luciferase activities are expressed as percent of
unblocked control groups following infection of BxPC-3 cells with
Ad5Luc1-PK in the presence of increasing concentrations of recombi-
nant protein consisting of the PAdV-4 CBD (residues 393–703 of the
PAdV-4 fiber protein) (filled columns) or recombinant HAdV-5 fiber
knob protein (open columns). Each column is the average of 4
independent replicates using 100 VP/cell. Error bars indicate standard
deviation. * indicates p,0.025 versus unblocked control; + indicates
p,0.001 versus unblocked control. # indicates that p,0.0002 versus
unblocked control using the Student’s t-test.
doi:10.1371/journal.pone.0055533.g005
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To accomplish this, we generated a novel HAdV-5-based

vector, Ad5Luc1-PK, which encodes a chimeric fiber protein

containing the tandem carbohydrate binding domains found

naturally in the C-terminus of the fiber of PAdV-4, NADC-1

isolate [19]. While the family Adenoviridae contains over 100 known

serotypes, the presence of carbohydrate binding domains is unique

to PAdV-4 and is presumed to have evolved from insertion of a

vertebrate gene [51]. In this regard, analysis of the PAdV-4 CBDs

has revealed remarkable sequence and structural similarities to the

CBDs found in galectins, a family of galactose-binding lectins [21].

There are at least 15 distinct galectins in mammals, each

containing one or two conserved CBDs of about 130 amino

acids. Members of the galectin family are involved in diverse

functions including apoptosis, cellular proliferation, immune

responses and cell adhesion and migration [52,53,54]. It is

therefore not surprising that various galectins have been recently

associated with cancer in a variety of tumor types [55,56,57].

Galectins are grouped into 3 subtypes (prototype, chimera and

tandem repeat) based on the number and intramolecular

positioning of the CBDs [58]. Sequence alignment of tandem

repeat galectin CBDs has shown that the tandem PAdV-4 CBDs

contained in the Ad5-PK vectors are structurally most similar to

those of human galectin-9, an observation consistent with the fact

that both galectin-9 and Ad5Luc1-PK bind N-acetyl-lactosamine

and poly-N-acetyllactosamine structures [21,59].

As mentioned above, clinically relevant tissues are often

refractory to HAdV-5 vector infection, including many cancer

cell types, due to negligible CAR levels. Given that the fiber

protein is the primary structural determinant of Ad tropism, we

and others have used a genetic fiber pseudotyping approach to

replace the HAdV-5 fiber knob domain with the corresponding

domain from another Ad serotype that uses a primary receptor

other than CAR [2,25,35]. This approach allowed the simulta-

neous elimination of CAR-dependent tropism and addition of the

carbohydrate specificity provided by the PAdV-4 CBDs. Despite

the 3-fold increase in size (583 amino acids compared to 182 for

the HAdV-5 knob) and structural complexity of the PAdV-4 knob

domain, western blot analysis confirmed that the fusion of the

PAdV-4 knob domain and the HAdV-5 fiber shaft domain results

in a fully trimerized, capsid-incorporated chimeric fiber protein.

This was a critical outcome, as defects in fiber trimerizarion and/

or stability lead to poor capsid incorporation and adversely

influence vector rescue, propagation and gene transfer [60].

We characterized the tropism of Ad5Luc1-PK using compet-

itive inhibition assays and well-characterized cell lines with

differential expression of CAR or lactose-containing glycoconju-

gates. We first addressed the question of whether Ad5Luc1-PK

maintains the ability to bind CAR, as the AB-loops in the PAdV-4

knob domain are structurally similar to the AB-loops in CAR-

binding Ads [21]. Our data clearly show that Ad5-PK vectors do

not use CAR for infection, as demonstrated by equivalent gene

delivery to cell lines differing in CAR expression as well as a lack of

inhibition by recombinant HAdV-5 knob protein at concentra-

tions that block a CAR-dependent vector. These findings are

consistent with our previous studies showing Ad5Luc1-PK

provides increased gene transfer to CAR-deficient gliomablastoma

cell lines [61] as well as to a panel of cancer cell lines of various

lineages with low CAR expression (Fig. 3).

Figure 6. Ad5Luc1-PK-mediated gene delivery is mediated by
glycans containing lactose. (A) Luciferase activities expressed as
percent of infection of control CHO-Pro5 cells and lactose glycan-
deficient CHO-Lec8 cells with Ad5Luc1 (open columns) or Ad5Luc1-PK
(filled columns). (B) Luciferase activities expressed as percent of
untreated control following infection of CHO-Pro5 cells with Ad5Luc1
or Ad5Luc1-PK with no treatment (open columns), or with 24 hour pre-
treatment with the N-linked glycosylation inhibitor Swainsonine at a
final concentration of 10 mg/ml (light gray columns), with the O-linked
glycosylation inhibitor benzyl-a-GalNAc at a final concentration of 1 mg/
ml (dark gray columns) or with both Swainsonine and benzyl-a-GalNAc
(black columns). Each column is the average of 3 independent
replicates using 300 v.p./cell. Error bars indicate standard deviation. *
indicates p,0.025 versus unblocked control; # indicates that p,0.0002
versus unblocked control using the Student’s t-test.
doi:10.1371/journal.pone.0055533.g006

Figure 7. Biodistribution of Ad vector gene expression
following intravenous administration. A single dose of 161011

v.p. of Ad5Luc-1 (open columns) or Ad5Luc1-PK (filled columns) was
administered intravenously into the tail vein of C57BL/6 mice. Luciferase
activity in tissue lysates was measured 48 hours post-injection and is
presented as relative light units (RLU) per milligram of total protein in
the lysate. This experiment was performed independently two times
with six animals per vector group each time. The results of a single
experiment are presented. Error bars indicate standard deviation. *
indicates p,0.001 versus Ad5Luc1 using the Student’s t-test.
doi:10.1371/journal.pone.0055533.g007
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While we had previously shown that the PAdV-4 CBDs in

recombinant form bind lactose-containing glycans, the function of

these CBDs within the structural context of a chimeric fiber and in

cell infection was unknown. We first addressed the role of the

PAdV-4 knob domain in cell binding via competitive inhibition

using purified recombinant PAdV-4 CBD protein. Of note, this

protein is identical to that used to generate a high-resolution

crystal structure of the CBDs [20]. Our data show that the

presence of free excess PAdV-4 CBD protein inhibits Ad5Luc1-

PK infection, consistent with the expected role of the chimeric

fiber in cell attachment via glycan binding. While the block was

significant, it did not reach the levels of inhibition of CAR-

dependent vectors commonly observed with HAdV-5 knob at 50–

100 mg/mL final concentration (Fig. 4C). We suspect this modest

level of blocking is a result of the greatly increased number of

glycan binding sites present compared to CAR, and that increased

concentrations of PAdV-4 CBD protein would provide more

robust block of cell attachment and subsequent gene transfer.

We next confirmed that Ad5Luc1-PK infection depends heavily

on the presence of lactose-containing glycans by comparing gene

transfer between CHO-Pro5 cells and CHO-Lec8 cells that

specifically lack N-acetyl-lactosamine and poly-N-acetyllactosa-

mine glycans at the cell surface [40,62]. In addition to the lack of

lactose-containing glycans, CHO-Lec8 glycoforms also lack sialic

acid (since addition of sialic acid requires a terminal galactose)

allowing for the possibility that sialic acid may also be a receptor

for Ad5Luc1-PK. HAdV-37 binds sialic acid via interaction with a

patch of positively charged residues at the surface of the knob

domain [63]. While binding of sialic acid by Ad5Luc1-PK cannot

be ruled out without further investigation, the lack of a similar

positively charged surface region in the PAdV-4 knob domain

makes this possibility unlikely [21].

Systemic administration of HAdV-5 vectors results in significant

liver uptake and hepatocyte transduction that can result in liver

toxicity and has been a significant impediment to efficient

transduction of non-liver target tissues [64,65,66]. While this

effect is mediated primarily by the interaction of various blood

factors with the HAdV-5 hexon protein and hepatocytes [67,68], it

has been shown that structural changes to the HAdV-5 fiber can

alter both vector and gene expression biodistribution [39,48,69].

In this regard, our data show that biodistribution of Ad5Luc1-PK

gene expression following systemic administration is similar to that

of Ad5Luc1, save for a trend toward decreased liver expression

(p = 0.15) and increased gene expression in the kidney. That

Ad5Luc1-PK liver transduction was not significantly different

from Ad5Luc1 is not surprising. Both vectors contain two capsid

locales implicated in liver transduction in vivo, native hexon

proteins and the putative heparan sulfate proteoglycan (HSPG)-

binding motif, KKTK, in the third repeat of the native HAdV-5

fiber shaft [70]. Our observation of increased kidney gene

expression was unexpected, given the relative difficulty of

achieving appreciable HAdV-5 gene delivery to the kidney

following systemic administration in rodents [71,72,73]. Indeed,

prolonged exposure to the vector combined with catheter infusion

into renal arteries [73,74], retrograde perfusion systems [75] and

direct interstitial injection [76] have been used to increase gene

delivery to the rodent kidney using HAdV-5 vectors.

The kidney contains numerous substructures including complex

vasculature, glomeruli, tubules and interstitium. While the

mechanism of enhanced kidney gene expression remains under

investigation, we posit this result to be a consequence of unique

interaction(s) of Ad5Luc1-PK with the fenestrated glomerular

capillary endothelium and/or the underlying filtration membrane

and the epithelium of the renal tubule system.

In conclusion, we have engineered a HAdV-5 vector with a

unique carbohydrate binding capacity which provides CAR-

independent gene transfer via recognition of cell surface glycans.

The ability to target glycoconjugates may offer a promising

adjunctive approach to achieve enhanced infectivity for HAdV-5-

resistant cellular targets. Further development of this new targeting

paradigm may allow vector targeting to specific disease-associated

glycan biomarkers or to cell populations that are otherwise

refractory to gene delivery.
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