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Fig. S1. Expression of the heterochronic gene lin-42 through development in our temperature entrainment protocol. Experiments represented in all other
figures in this article were performed within the time window of 120–168 h after inoculation of the eggs, when lin-42 is expressed at low levels despite an
ongoing temperature cycle. Blue panels represent 13 °C, and pink panels represent 16 °C.
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Fig. S2. Multiple sequence alignment showing PRX amino acid sequences. The highly conserved active site is underlined. The sequences analyzed correspond
to At (Arabidopsis thaliana; NP_187769.1), Se (Synechococcus elongatus PCC 7942; YP_401326.1), Hm (Homo sapiens; NP_005800.3), Mm (Mus musculus;
NP_035693.3), Ce2 (C. elegans; NP_001122604.1; prdx-2), Dm (Drosophila melanogaster; NP_477510.1), Ce3 (C. elegans; NP_497892.1; prdx-3), and Nc (Neu-
rospora crassa; XP_959621.1).
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Fig. S3. Antiserum against PRX-SO2/3 recognizes the oxidized form of PRDX-2. Wild-type (N2) and mutant prdx-2 (VC289) and prdx-3 (VC1151) worms were
treated with 1 mM H2O2 for 30 min (to induce expression of the PRX proteins) and then lysed for immnoblotting. The immunoblot was probed for PRX-SO2/3.
The antiserum raised against the oxidized peptide DFTFVCPTEI detects both PRDX-2 and PRDX-3 in wild-type C. elegans (N2), indicated by a doublet with H2O2

treatment. The lower band detected by the antiserum is absent in the mutant prdx-2 and present in the prdx-3 mutant, indicating that PRDX-2 is the dominant
C. elegans ortholog of PRX that is detected in the time-course assays.
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Fig. S4. (A) An in situ assay for chemotaxis: population assay in olfaction using 1-octanol. Approximately 100 nematodes were inoculated onto a drop of E. coli
as eggs. They were then subjected to the development protocol with temperature cycles (Fig. 1A). On day 6, olfaction assays were started by placing a 1 μL drop
of 1-octanol (shown as a black drop) to one side of the E. coli. After a given amount of time, a picture was taken and the CI was determined by counting the
animals on the proximal (p) and distal (d) sides of the drop of bacteria. The difference (d – p) was divided by the total number of animals. (B) Optimization of
the chemotaxis assay. The assay was optimized by comparing different time points after addition of 1-octanol (between 5 and 60 min) and dilutions of the
chemorepellant (none to 1/243 in ethanol).
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Fig. S5. CI from the three experiments in Fig. 3B are plotted independently. A sinewave was fitted to each time series using Circwave.
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Fig. S6. Response to 1-octanol in constant conditions after entrainment to either a 24 h cycle (Upper) or a 23 h cycle (Lower). One complete cycle is in both
cases represented as 360°. A sinewave was fitted to each series using Circwave. The acrophase of the sinewave adjusted to the T = 24 series (with a P < 0.001) is
225.45°, and the acrophase of the sinewave adjusted to the T = 23 series (with a P = 0.0019) is 283.35°.

Table S1. Period estimates and statistical parameters calculated
by Circwave and JTK_Cycle

Molecular marker

Circwave JTK_Cycle

Tau F statistic P Tau Phase ADJ p

B0507.8 22.6 7.7037 0.0016 24 18 0.0589
PRX-SO2/3 24.5 6.008 0.0056 28 26 0.0361
GRK-2 31.3 18.9573 <0.0001 32 30 0.000016

Circwave is an analysis tool for determining circadian profiles and their
significance using harmonic regression in combination with the F-test statis-
tic. A fundamental sinusoidal wave is fitted through the data, and its signif-
icance is tested against a fitted horizontal line through the overall average
(www.euclock.org). JTK_CYCLE is a nonparametric statistical algorithm de-
signed to identify and characterize cycling variables. JTK_CYCLE provides
optimal phase, amplitude, and period estimates for each variable, and per-
mutation-based P values (1).

1. Hughes ME, Hogenesch JB, Kornacker K (2010) JTK_CYCLE: An efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms 25(5):
372–380.

Olmedo et al. www.pnas.org/cgi/content/short/1211705109 3 of 4

http://www.euclock.org
www.pnas.org/cgi/content/short/1211705109


Table S2. List of volatile odorants tested in the in situ chemotaxis
assay

Chemical* Type of response (ref. 1) Type of chemical

1-Butanol Attraction Alcohol
2-Butanol Attraction Alcohol
Isoamyl alcohol Attraction Alcohol
Acetone Attraction Ketone
Diacetyl Attraction Ketone
Ethyl acetate Attraction Ester
Propyl acetate Attraction Ester
n-Butil acetate Attraction Ester
Isoamyl acetate Attraction Ester
Aniline Attraction Aromatic compound
2-Phenylethanol Weak attraction Alcohol
Benzylalcohol Weak attraction Alcohol
1-Propanol Weak attraction Alcohol
1-Octanol Repulsion Alcohol

*All of the chemicals were diluted with ethanol at a ratio of 1:1 except for 1-
butanol and the three weak attractants, which were used undiluted.

Table S3. List of primers for quantitative RT-PCR

Gene Forward primer Reverse primer

F47F6.1 (lin-42) 5′-CCACTGACCCGAGAAGCAC-3′ 5′-GAGTTGGTGCCACTTGTCGG-3′
F01D5.5 5′-AACCTGTAACATGTGCCCAGGA-3′ 5′-GCCGTTTTTCACCCAGTTGAC-3′
Y110A2AL.9 5′-ACCAAGGATGTTTTTGACCCC-3′ 5′-TTGGTGACACTGTAGCCGGTT-3′
T16D1.2 (pho-4) 5′-GAAATTGATGATGGTTCAGGCG-3′ 5′-ACCACCTCCTCCAAACATCCA-3′
M199.4 (clec-190) 5′-ATGATTGTGAACCTGAACGCG-3′ 5′-CCAGAAAAATCCGGTTCCGT-3′
F15A4.6 5′-CAATGCAATCGGTCTTCTTGGT-3′ 5′-CCATTGGCATTGGTCTTGTCA-3′
C30G12.2 5′-CTGCAGAAGGAGATGAAGCAAG-3′ 5′-ACTCATTCGGTATGCGGTCA-3′
F15E6.8 (dtc-7) 5′-TCTCCTCGGCCTTATTGCTATG-3′ 5′-CGTAGGCTCCTTGGTTTCCAT-3′
B0507.8 5′-AAAGAGAAGCAGCGTCGAGTGA-3′ 5′-TCCCATTGACTGCACGTCAAC-3′
ZC308.1 (gld-2) 5′-TCACTTCTTGCAATGCGGC-3′ 5′-CCATCGTAACATTCAATGTGCG-3′
F09E5.15 (prdx-2) 5′-GAGGACGAAGGAATTGCTTTCC-3′ 5′-GGAAGGCCTGAACAAGACGAA-3′
W02B3.2 (grk-2) 5′-AGGTAGTGAATCAGGATGCGGA-3′ 5′-CCCGTGGACTATAACATCGGAA-3′
M03F4.2 (act-4) 5′-GGCATCACACCTTCTACAACGA-3′ 5′-TGGATTGAGTGGAGCCTCAGT-3′

1. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515–527.
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