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1 Introduction

Three-dimensional higher-derivative theories of gravity have received considerable attention

over the years. The first example of such a higher-derivative theory is the “Topologically

Massive Gravity” (TMG) model [1]. The TMG Lagrangian consists of the usual Einstein-

Hilbert (EH) term, which by itself does not describe any degrees of freedom in three

dimensions, and a Lorentz Chern-Simons (LCS) term which is parity-odd and third-order

in the derivatives. The two terms together describe a single massive state of helicity +2

or −2, depending on the relative sign between the EH and LCS terms. A more recent

example is the “New Massive Gravity” (NMG) model [2]. NMG is the parity even version

of TMG and its Lagrangian contains besides the EH term a particular combination of two

fourth-order derivative terms, of which one is quadratic in the Ricci tensor and the other

is quadratic in the Ricci scalar. The NMG Lagrangian describes, unitarily, two massive

states of helicity +2 and −2. The signs in front of the kinetic terms corresponding to these

two states are the same as a consequence of the fact that the Lagrangian is parity even.

Recently, it was pointed out that the NMG model can be extended to four dimensions,

at the linearized level, provided one describes the massive spin-2 state by a non-standard

representation corresponding to a mixed-symmetry Young tableau with two columns of

height 2 and 1, respectively [3]. A similar extension does not apply to the TMG model.

This can be understood as follows. One may view TMG as the “square root” of NMG in

the same way that one may view Topologically Massive Electrodynamics (TME) [4–7] as

the “square root” of the Proca theory. The latter property is based on the fact that the

Klein-Gordon operator, when acting on divergence-free vectors, as it does in the 3D Proca

equation, factorises into the product of two first-order operators each of which separately

describes a single state of helicity +1 and −1 [8].1 The equation of motion describing one

of the two helicity states is a massive self-duality equation [9, 10]. This property of the 3D

1Alternatively, one may act on vectors that are not divergence-free. The product of the two first-order

operators then leads to a modified Proca equation. Next, by taking the divergence of this modified equation

one may derive that the vector is divergence-free.
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Proca equation carries over to the 3D Fierz-Pauli (FP) equation, describing masssive spin-

2 particles, where the Klein-Gordon operator acts on a divergence-free symmetric tensor

of rank 2. It also applies to 3D generalised FP equations, describing massive particles of

higher spin, where one considers symmetric tensors of rank p > 2 [11].

The above property of the Klein-Gordon operator, when acting on 3D divergence-free

vectors, can be extended as follows. Consider a generalized Proca equation where the

Klein-Gordon operator acting on a divergence-free form-field of given rank gives zero. One

can show that in D = 4k − 1 dimensions this Klein-Gordon operator factorizes into the

product of two first-order operators provided the form-field is of rank 2k − 1. Each of

the two operators describes half of the helicity states that were described by the original

generalized Proca equation. For k = 1 one obtains 3D 1-forms which we already discussed.

The next case to consider is k = 2 which leads to 3-forms in D = 7 dimensions. The

corresponding massive self-duality equation was encountered first in the context of seven-

dimensional gauged supergravity where the mass m plays the role of the gauge coupling

constant [9]. The 7D Proca equation describes 20 degrees of freedom that transform as

the 10+ + 10− of the little group SO(6). The 10+ and 10− degrees of freedom are each

separately described by the two massive self-duality equations.2

As we will discuss in this letter the above property of the 7D Proca equation carries

over to generalised FP equations [12–14] in D = 4k−1 dimensions where the Klein-Gordon

operator acts on fields whose indices are described by a GL(D,R) Young tableau with an

arbitrary number of columns each of which has height 2k− 1. We are interested in models

describing propagating massive spin-2 particles that generalize, at the linearized level, the

3D TMG model.3 Interpreting “spin” in higher dimensions as the number of columns in the

Young tableau that characterizes the index structure of the field under consideration,4 we

are led to consider 7D fields hµ1µ2µ3,ν1ν2ν3 whose index structure is given by the following

GL(7,R) Young tableau

µ1 ν1
µ2 ν2
µ3 ν3

. (1.1)

In order to keep in line as much as possible with the construction of the 3D TMG model,

and, furthermore, to avoid writing down too many indices, we will use a notation where µ̄

stands for a collection of three antisymmetrized indices µ1, µ2 and µ3, i.e. µ̄ ↔ [µ1 µ2 µ3]

or hµ̄,ν̄ ≡ hµ1µ2µ3,ν1ν2ν3 . If we regard the field h as a field describing the propagation

of a massive particle via a generalised FP equation, the number of propagating degrees

2A similar factorisation of the Klein-Gordon operator, when acting on divergence-free 5D 2-forms, re-

quires that one considers a Klein-Gordon operator with the wrong sign in front of the mass term [9]. Such

a wrong sign can be avoided by considering a symplectic doublet of 2-forms and using the corresponding

epsilon symbol in the massive self-duality equation. This is very similar to extending Majorana spinors to

Symplectic Majorana spinors. We will not consider this possibility further in this letter.
3A different extension, which we will not consider here, is to add higher-derivative topological terms to

the Einstein-Hilbert term. Such an extension in 7D has been considered in [15].
4More precisely, for massless spins we only consider two-column Young tableaux where the first column

has a maximum number of D−3 boxes. For massive spins the maximum number is D−2. The Young

tableaux with more boxes describe either “spin 1” particles or no degrees of freedom at all.
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of freedom equals the dimension of the irreducible, traceless, representation of the little

group SO(6), given by the same Young diagram (1.1). This leads to 70 propagating degrees

of freedom which transform as the 35+ + 35− of SO(6). These two representations are

interchanged by the action of parity.

In the next section we wish to construct a parity violating free 7D “Topologically Mas-

sive Spin-2 Gauge Theory” for the field h, such that 35 degrees of freedom are propagated.

This theory is an analogue of the 3D TMG model at the linearized level. The construction

of this topologically massive gauge theory will proceed in the same fashion as can be done

for the 3D TMG model. We will first consider the massive self-duality equation and, next,

boost up the number of derivatives by solving the differential subsidiary conditions.

2 The model

Our starting point are the generalised FP equations for a field h̃ with the symmetry prop-

erties (1.1). These equations consist of the Klein-Gordon equation

(✷−m2)h̃µ̄,ν̄ = 0 , (2.1)

together with two subsidiary constraints, one algebraic and one differential:

ηµν h̃µ̄,ν̄ = 0 , ∂µh̃µ̄,ν̄ = 0 . (2.2)

We have used here a notation where the contraction of an unbarred index µ with a barred

index µ̄ means that the index µ is contracted with the first index µ1 of the collection µ̄, e.g.

∂µh̃µ̄,ν̄ = ∂µ1 h̃µ1µ2µ3,ν1ν2ν3 . (2.3)

Note that the symmetry properties of h̃ imply that divergence-freeness on the first three

indices of h̃ also implies divergence-freeness on the second three indices. One can show via

an explicit counting that the two subsidiary constraints reduce the number of components

of h̃ to 70 propagating degrees of freedom.

To obtain a massive self-duality equation for h̃ we use the property that the Klein-

Gordon operator (✷ −m2)δν̄µ̄ in the space of divergence-free 1-forms can be factorized as

follows

(✷−m2)δν̄µ̄ =

(

1

3!
εµ̄

αρ̄∂α +mδ
ρ̄
µ̄

)(

1

3!
ερ̄

βν̄∂β −mδν̄ρ̄

)

. (2.4)

This suggests the following massive self-duality equation for h̃:

(

1

3!
εµ̄

αρ̄∂α −mδ
ρ̄
µ̄

)

h̃ρ̄,ν̄ = 0 . (2.5)

A similar massive self-duality equation describing the parity transformed degrees of freedom

is obtained by replacing m by −m. Contracting the massive self-duality equation (2.5) with

∂µ leads to the divergence-freeness condition of h̃. Furthermore, a contraction with ηµν

of the same equation and using the symmetry properties of h̃ proofs the tracelessness

– 3 –
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condition of h̃. The Schouten identity shows that the tensor εµ̄
αρ̄∂αh̃ρ̄,ν̄ has the same

symmetry properties as h̃ provided that h̃ is divergence-free and traceless.

We next proceed by boosting up the derivatives of the above model by solving the

differential subsidiary condition that expresses that h̃ is divergence-free, see eq. (2.2). This

condition is solved in terms of a new field h, with the same index structure and symmetry

properties as h, by applying twice the Poincaré lemma for 3-forms: one time on the µ̄

indices of h̃µ̄,ν̄ and a second time on the ν̄ indices of h̃µ̄,ν̄ . One thus obtains the following

solution

h̃µ̄,ν̄ = Gµ̄,ν̄(h) , (2.6)

where the tensor Gµ̄,ν̄(h) is defined by

Gµ̄,ν̄(h) = εµ̄
αρ̄εν̄

βσ̄∂α∂β hρ̄,σ̄ . (2.7)

Using a Schouten identity, one can show that the tensor G(h) has the same symmetry

properties as h. In terms of h the massive self-duality equation now reads

(

1

3!
εµ̄

αρ̄∂α −mδ
ρ̄
µ̄

)

Gρ̄,ν̄(h) = 0 . (2.8)

We note that the higher-derivative equations of motion in terms of h are invariant

under gauge transformations of h with a gauge parameter ξ that has a symmetry structure

corresponding to a Young tableau with two columns, one of height 3 and one of height

2. Schematically, in terms of Young tableaux, these gauge transformations are given by,

ignoring indices, δh = ∂ξ or, in terms of Young tableaux, by

δ =
∂

. (2.9)

It is understood here that when taking the derivative of the gauge parameter at the right-

hand-side one first takes the curl of the two indices in the second column of the Young

tableau describing the index structure of the gauge parameter, and next applies a Young

symmetrizer5 to obtain the same index structure at both sides of the equation.

The gauge-invariant curvature R(h) of h is obtained by hitting h with two derivatives:

one which takes the curl of the first three indices of h and another which takes the curl of

the second three indices:

Rαρ̄,βσ̄(h) = ∂[α∂
[βhρ̄],

σ̄] . (2.10)

This leads to a curvature tensor with an index structure corresponding to a Young tableau

with two columns of height 4. By construction, this curvature tensor satisfies a generalised

Bianchi identity. The tensor G(h) defined above is obtained from the curvature R(h) by

5A Young symmetrizer is an operator that projects onto the symmetries corresponding to a given Young

tableaux. For the precise definition and its basic properties, see e.g. [16, 17]. Following the notation of [18]

a Young symmetrizer Y[p,q] is a projection operator, Y 2 = Y , that acts on a (p, q) bi-form and projects onto

the part that corresponds to a two-column Young tableau of height p and q, respectively. When the bi-form

is already of the desired symmetry type it acts like the identity operator. For instance, Y[3,3]hµ̄,ν̄ = hµ̄,ν̄ .

– 4 –
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taking the dual on the first 4 indices of R(h) and a second dual on the second 4 indices.

One thus obtains a tensor corresponding to a Young tableau with two columns of height 3

each. Due to the Bianchi identity of R(h), the tensor G(h) is divergence-free in each of its

indices. We therefore call it the “Einstein tensor” of h.

Summarizing we have

h = → R(h) =

∂ ∂

→ G(h) = ⋆⋆R(h) = . (2.11)

The equations of motion (2.8) for h describe the same degrees of freedom as the original

massive self-duality equation (2.5) for h̃. For instance, the trivial solution h̃ = 0 of the

massive self-duality equation (2.5) is mapped under eq. (2.6) to the solutions of the equation

Gµ̄,ν̄(h) = 0. Since the Einstein tensor G(h) is the double dual of the curvature R(h) this

equation implies that the curvature of h is zero. This in its turn implies that h is a pure

gauge degree of freedom [14].

The equations of motion (2.8) define a 7D Topologically Massive Spin-2 Gauge The-

ory. We note that these equations imply that the Einstein tensor of h is traceless, i.e.

ηµνGµ̄,ν̄(h) = 0. To construct an action giving rise to these equations it is useful to intro-

duce the following “generalized Cotton tensor”:

Cµ̄,ν̄(h) = Y[3,3]
[

εµ̄
αρ̄∂αGρ̄,ν̄(h)

]

, (2.12)

where Y[3,3] is a Young symmetrizer, that ensures that Cµ̄,ν̄ has the symmetry properties of

the Young tableau given in eq. (1.1). Note that we have to write this Young symmetrizer

explicitly, as we want to use the Cotton tensor in the action and we cannot assume that

the condition that Gµ̄,ν̄ is traceless is satisfied off-shell. Once one can show that, as a

consequence of the equations of motion, G is traceless, the Young symmetrizer can be

dropped. Independent of whether Gµ̄,ν̄ is traceless or not, one can show that the Cotton

tensor Cµ̄,ν̄ is divergence-free on both sets of indices µ̄ and ν̄, as well as traceless

∂µCµ̄,ν̄ = 0 , ηµνCµ̄,ν̄ = 0 . (2.13)

The equations of motion (2.8) can now be integrated to the following action:6

I[h] =

∫

d7x

{

1

12
hµ̄,ν̄Cµ̄,ν̄(h)−

1

2
mhµ̄,ν̄Gµ̄,ν̄(h)

}

. (2.14)

This action defines the 7D Topologically Massive Spin-2 Gauge Theory. Indeed, varying

this action with respect to h leads to the equations of motion

1

6
Cµ̄,ν̄(h)−mGµ̄,ν̄(h) = 0 . (2.15)

6Note that, due to the second constraint in (2.13), the first term in (2.14) has a generalized scale

invariance. This is similar to the scale invariance of the 3D Cotton tensor.

– 5 –
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Contracting these equations of motion with ηµν , one obtains the tracelessness condition

ηµνGµ̄,ν̄(h) = 0 . (2.16)

With the tracelessness condition in hand, the Young symmetrizer in (2.12) can be dropped,

and the equation of motion (2.15) reproduces the equation of motion given in eq. (2.8).

3 Canonical analysis

As a check we will verify, by canonical analysis, that the action (2.14) indeed describes 35

spin-2 degrees of freedom. We first split the indices into temporal and spatial components

like µ = (0, i), i = 1, · · · , 6, and impose the gauge-fixing conditions

∂ihiµ2µ3,ν1ν2ν3 = 0 . (3.1)

We next parametrize h in terms of the independent components (a, b, c, d, e) as follows:7

h0i2i3,0j2j3 = ai2i3,j2j3 , (3.2a)

h0i2i3,j1j2j3 = εj1j2j3
k1k2k3∂k1bk2k3,i2i3 +

{(

δi3j3 −
∂i3∂j3
∇2

)

cj1j2,i2

+

(

δi2j2δi3j3 −
∂i2∂j2
∇2

δi3j3 − δi2j2
∂i3∂j3
∇2

)

dj1

}

a.s.

, (3.2b)

hi1i2i3,j1j2j3 = εi1i2i3
k1k2k3εj1j2j3

l1l2l3∂k1∂l1ek2k3,l2l3 . (3.2c)

All components a, b, c, d, e are divergence-free. Furthermore, the components b, c are trace-

less in each pair of its indices but the components a and e contain their traces.

It is instructive to count the different degrees of freedom at this point. Our starting

point is the field h of symmetry-type (1.1) which is in the 490 representation of GL(7,R).

This field transforms under the gauge transformations schematically denoted by (2.9). We

should be careful with counting the number of independent gauge parameters because the

gauge transformations (2.9) are double reducible: the 490 gauge parameters ξ have their

own gauge symmetry with 210 gauge parameters ζ which are given by, ignoring indices,

δξ = ∂ζ or in terms of Young tableaux by

δ = ∂ . (3.3)

In its turn the 210 gauge parameters ζ have a gauge symmetry by themselves with 35 gauge

parameters λ which are irreducible. These transformations are given by, ignoring indices,

δζ = ∂λ or in terms of Young tableaux by

δ =

∂

. (3.4)

7The notation { }a.s. stands for antisymmetrizing all indices within the curly bracket that have the same

latin letter. For instance,
{

Si2i3j1j2j3

}

a.s.
= S[i2i3][j1j2j3].

– 6 –
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A correct counting yields that there are 490−210+35 = 315 independent gauge parameters.

The gauge symmetries corresponding to these gauge parameters are fixed by the gauge

conditions (3.1) on the field h. To see this, one first varies (3.1) under the ξ-symmetries (2.9)

and requires this variation to be zero. The resulting condition on the ξ-parameters has

a gauge-symmetry which can be fixed by imposing the following restriction on the ξ-

parameters:

∂i2ξi2µ3,ν1ν2ν3 = 0 . (3.5)

Varying this condition under the ζ-symmetries (3.3) leads to a gauge-invariant condition

on the ζ-parameters. To fix this gauge symmetry we impose the following gauging-fixing

conditions on the ζ-parameters:

∂i3ζi3,ν1ν2ν3 = 0 . (3.6)

After imposing these gauge conditions all parameters ξ can be solved for without any

ambiguity, i.e. there is no gauge symmetry acting on the parameters left. This leaves us

with 490− 315 = 175 degrees of freedom represented by the a, b, c, d, e components defined

in eq. (3.2):

a : 50 , b : 35 , c : 35 , d : 5 , e : 50 . (3.7)

Using the canonical decomposition (3.2) we next calculate the different components of

the Einstein tensor (2.7) and the Cotton tensor (2.12). Substituting these results into the

action (2.14), one obtains, after a lengthy calculation which we shall not repeat here, the

following expression for the action (2.14):

I =

∫

d7x

{

−
1

2
(3!)4bi2i3,j2j3(∇2)2

(

âi2i3,j2j3 + 4✷êi2i3,j2j3
)

− (3!)4mâi2i3,j2j3(∇2)2êi2i3,j2j3 − (3!)4mbi2i3,j2j3(∇2)2bi2i3,j2j3

−
3

4
(3!)4māi3,j3(∇2)2ēi3,j3 − 10(3!)4ma(∇2)2e

−
3

10
(5!)mcj1j2,i2∇2cj1j2,i2 +

9

2
(2!4!)mdj1∇2dj1

}

. (3.8)

Here we have used the following decomposition of a in terms of a traceless part â, single

traces ā and double traces a:

ai2i3,j2j3 = âi2i3,j2j3 +

{(

ηi2j2 −
∂i2∂j2
∇2

)

āi3,j3

+

(

ηi2j2ηi3j3 −
∂i2∂j2
∇2

ηi3j3 − ηi2j2
∂i3∂j3
∇2

)

a

}

a.s.

(3.9)

and we used a similar decomposition for e.

Finally, after making the field redefinitions

âi2i3,j2j3 = ãi2i3,j2j3 −
2

m
✷bi2i3,j2j3 , êi2i3,j2j3 = ẽi2i3,j2j3 −

1

2m
bi2i3,j2j3 , (3.10)

– 7 –
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we obtain the following expression for the action:

I =

∫

d7x

{

1

m
(3!)4bi2i3,j2j3(∇2)2(✷−m2)bi2i3,j2j3

− (3!)4mãi2i3,j2j3(∇2)2ẽi2i3,j2j3

−
3

4
(3!)4māi3,j3(∇2)2ēi3,j3 − 10(3!)4ma(∇2)2e

−
3

10
(5!)mcj1j2,i2∇2cj1j2,i2 +

9

2
(2!4!)mdj1∇2dj1

}

. (3.11)

This form of the action shows that only the b components propagate and, according to

eq. (3.7), they do describe, unitarily, 35 degrees of freedom which transform as the 35+ of

the SO(6) little group. Note that these degrees of freedom are not only described by the

b-components of h but also, due to the redefinitions (3.10), by the â- and ê-components.

Replacing m by −m in the above action, we see that, after changing the overall sign of the

action, we again obtain 35 degrees of freedom. These degrees of freedom transform as the

35− of the SO(6) little group. They are described by a different set of components of h

than the 35+ degrees of freedom due to the fact that one should also replace m by −m in

the redefinitions (3.10).

4 Discussion

We showed how the 3D TMG model, at the linearized level, can be extended beyond three

dimensions to a free parity-odd Topologically Massive Gauge theory for a “spin-2” particle.

We worked out the case of a massive “spin-2” particle in 7D; similar models exist in 4k− 1

dimensions for k = 3, 4, 5, · · · . The construction of the model is based on the factorization

of the Klein-Gordon operator in 4k − 1 dimensions, when acting on forms of rank 2k − 1,

in terms of two first-order operators.

A similar generalization of the parity-even 3D NMG model exists but in that case there

are more extensions possible. For instance, a 4D extension exists without a corresponding

parity-breaking topological version [3]. In 7D there are three different extensions: one is

based on the same Young tableau (1.1) that we used for the topological model constructed

in this letter and one is based on the dual of the spin connection, like in the 4D extension

of [3].8 The third model is based on a description in terms of a 2-column Young tableau

of height 4 and 2, respectively. All these extensions have in common that the number of

boxes #boxes in the two-column Young tableaux described by h is given by

#boxes = D − 1 . (4.1)

One can show that this property guarantees that the index structure of the double dual of

the curvature tensor R(h), which we have called the “Einstein tensor” G(h), is the same

as that of h. This is a crucial property that enables one to integrate the higher-derivative

equations of motion to an action.

8In 7D this corresponds to a description in terms of a two-column Young tableau with height 5 and 1,

respectively.
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It is not difficult to write down the parity-even massive “spin-2” model based on the

Young tableau (1.1). Starting from the corresponding generalized FP equations one ends

up, after boosting up the derivatives, with the following action:

I[h] =

∫

d7x

{

1

72
hµ̄,ν̄εµ̄

αρ̄∂αCρ̄,ν̄(h)−
1

2
m2hµ̄,ν̄Gµ̄,ν̄(h)

}

, (4.2)

where Cµ̄,ν̄(h) is the Cotton tensor, see eq. (2.12), and Gµ̄,ν̄(h) is the Einstein tensor, see

eq. (2.7). This action is the parity-even version of the action (2.14). A canonical analysis,

like the one we performed in section 3, shows that this model describes 70 “spin-2” states.

It is interesting to consider the massless limit of the models (2.14) and (4.2). A

canonical analysis shows that in the case of the parity-odd topological model (2.14) the

massless limit describes zero degrees of freedom while for the parity-even model (4.2) one

ends up with 35 massless “spin-2” states which transform as the 35 of the massless little

group SO(5). The result for the parity-odd model is similar to what happens for the 3D

TMG model while the result for the parity-even model resembles the parity-even cases in

3D [19] and 4D [3].

The crucial question remains whether the extensions we discussed in this letter are

curiosities of the linearized approximation or whether one can go beyond the linearized

approximation and introduce non-trivial interactions. This is a non-trivial issue in view of

the fact that we are using non-standard representations to describe the massive “spin-2”

particle. Perhaps, a slightly easier question to ask is whether one can introduce interac-

tions for only the mass term, i.e. the term with two derivatives. For both the parity-odd

model (2.14) and the parity-even model (4.2) this term is given by

I[h] =

∫

d7x

{

1

2
hµ̄,ν̄Gµ̄,ν̄(h)

}

. (4.3)

This term by itself leads to the equation of motion G(h) = 0 and therefore does not describe

any degree of freedom, as one would expect from a mass term. Given that there are no

propagating degrees of freedom one might hope that it will be an easier task to construct

interactions.

The model (4.3) is the 7D version of the 3D gravity action that neither describes

any degree of freedom. The 3D gravity action has the interesting feature that it can be

reformulated as a Chern-Simons (CS) action [20, 21]. In order to achieve this, one must

use a first-order formalism with the Dreibein eµ
a and spin-connection ωµ

a as independent

fields. Writing eµ
a = δµ

a + hµ
a this 3D CS action is at the linearized level given by

ICS[h, ω] =

∫

d3x εµνρ
{

ωµ
a∂νhρ

bηab −
1

2
ωµ

aδν
bωρ

cεabc

}

. (4.4)

It is invariant under the linearized Lorentz transformation

δhµa = Λµa , δωµ
a = −

1

2
εabc∂µΛbc , (4.5)

for anti-symmetric parameters Λµa = −Λaµ. These linearized gauge transformations can

be fixed by imposing the gauge-fixing condition hµa = haµ. One then obtains a first-

order action in terms of ωµ
a and a symmetric tensor hµν . One of the reasons that this
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action can be extended to include interactions is that the Kronecker delta δα
b, occurring

in the action (4.4), is in the same representation as the Dreibein eµ
a and, therefore, can

become part of this Dreibein at the non-linear level. The interactions are then determined

by introducing the non-Abelian CS structure, dictated by the Lorentz structure of the

different gauge fields.

It turns out that a similar first-order formulation exists of the model defined by the

action (4.3) in terms of two fields hµ̄,ν̄ and ωµ̄,ν̄ which both have the symmetry properties

corresponding to the Young tableau

⊗ . (4.6)

Similar to [22], at the quadratic level such a first-order action can be written in the follow-

ing form

I[h, ω] =

∫

d7x εµ̄αν̄
{

ωµ̄,
ρ̄∂αhν̄,ρ̄ −

1

72
ωµ̄,

σ̄δα
βων̄,

τ̄εσ̄βτ̄

}

. (4.7)

This action has a gauge invariance under a “generalised” linearized Lorentz transformation,

with parameters Λµ1µ2,ν1ν2ν3ν4 , given by

δhµ̄,ν̄ = Λ[µ1µ2,µ3]ν1ν2ν3 ,

δωρ̄,
µ̄ = εµ̄αν̄∂αΛν1ν2,ν3ρ1ρ2ρ3 −

1

4
δ
µ̄
ρ̄ ε

σ̄αν̄∂αΛν1ν2,ν3σ1σ2σ3 (4.8)

+

{

−
9

2
δµ1
ρ1
εσ1µ2µ3αν̄∂αΛν1ν2,ν3σ1ρ2ρ3 + 3δµ1µ2

ρ1ρ2
εσ1σ2µ3αν̄∂αΛν1ν2,ν3σ1σ2ρ3

}

a.s.

.

In effect, the Λ-transformation represents three independent gauge transformations whose

parameters are given by the following Young tableaux:

⊗ = ⊕ ⊕ . (4.9)

The gauge transformations (4.8) are the generalization of the 3D Lorentz transforma-

tions (4.5).

It is easy to see that the action (4.7) is equivalent to (4.3). One first imposes the

condition

hµ̄,ν̄ = Y[3,3] hµ̄,ν̄ (4.10)

to fix the gauge transformations (4.8). Next, one uses the equation of motion for ωµ̄,ν̄ to

solve for ωµ̄,ν̄ in terms of hµ̄,ν̄ :

ωµ̄,ν̄ = ǫν̄
αρ̄∂αhρ̄,µ̄ . (4.11)

Note that this equation implies that ωµ̄,ν̄ is traceless, i.e. ηµνωµ̄,ν̄ = 0. Substituting this

solution back into (4.7) the two terms in (4.7) coincide and become identical to the single

term in (4.3) with the Einstein tensor given in eq. (2.7).

The gauge-invariant first-order formulation we have obtained at this point resembles

the 3D CS structure. There are, however, also important differences. First of all, it is

not clear how to introduce in the 7D case the notion of flat and curved indices, thereby
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anticipating a possible CS-like structure. A related issue is that we are working now with

tensors instead of gauge vectors. It is not obvious how to introduce non-Abelian structures

for these tensors. The structure we have obtained so far suggests an extension of CS terms

for vectors to a “generalised CS” structure for a non-Abelian version of free differential

algebras. An alternative approach to introduce interactions could be to use a bi-metric

formulation. One metric describes the massive spin-2 particle and is used to absorb the hµ̄,ν̄
field, while the other metric is a reference metric that can be used to absorb the Kronecker

delta that occurs in the second term of (4.7). For now, we leave these possibilities as

intriguing open issues.
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