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Efficient Algorithms for Langevin and DPD Dynamics
N. Goga, A. J. Rzepiela, A. H. de Vries, S. J. Marrink, and H. J. C. Berendsen*

Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands

ABSTRACT: In this article, we present several algorithms for stochastic dynamics, including Langevin dynamics and different
variants of Dissipative Particle Dynamics (DPD), applicable to systems with or without constraints. The algorithms are based on
the impulsive application of friction and noise, thus avoiding the computational complexity of algorithms that apply continuous
friction and noise. Simulation results on thermostat strength and diffusion properties for ideal gas, coarse-grained (MARTINI)
water, and constrained atomic (SPC/E) water systems are discussed. We show that the measured thermal relaxation rates agree
well with theoretical predictions. The influence of various parameters on the diffusion coefficient is discussed.

1. INTRODUCTION
The purpose of this article is to present simple and efficient
algorithms for stochastic dynamics, in particular for simple
Langevin dynamics and for various variants of the pairwise
DPD (Dissipative Particle Dynamics) thermostat. The latter are
Galilean invariant; i.e., the motion is the same in a coordinate
system that moves with constant velocity, which is equivalent to
the conservation of total linear momentum. In contrast, the
simple Langevin dynamics will damp all velocities, including a
bulk flow component. Galilean invariance is essential for
simulations that are required to follow Navier−Stokes behavior
in the macroscopic limit but is irrelevant for systems at rest. We
require of such algorithms that they have the same order of
accuracy as the Verlet (or leap-frog or velocity-Verlet)
algorithms that are used in the frictionless case; in the limit
of small friction, they should be equivalent to these algorithms.
They should be valid for any value of the friction constant, not
only in the limit of small friction. They should maintain the
canonical distribution and act as a proper thermostat: i.e., the
temperature derived from the average kinetic energy should
converge to the reference temperature used in the algorithm.
The design of stochastic algorithms for molecular simulation

was an important subject of research in the 1980s for van
Gunsteren et al.1−4 Van Gunsteren and Berendsen's 1988
paper4 describes a sophisticated algorithm that fully maintains
the accuracy of the Verlet algorithm by integrating the
stochastic term over the time step. This algorithm is still
standard in both the GROMOS and Gromacs simulation
packages.
Stochastic thermostats have an advantage over the usual

global thermostats that they maintain the correct canonical
distribution and show a robust first-order decay of temperature
deviations toward the reference temperature. Global thermo-
stats of the weak-coupling type5 show a convenient first-order
decay of temperature deviations but do not maintain a
canonical distribution; in fact, the resulting distribution is in
between a canonical and a microcanonical distribution,
depending on the coupling constant used.6 Moreover, it is
known that such thermostats may cause an uneven distribution
of kinetic energy among different collective degrees of freedom,
resulting in overheating of collective degrees of freedom that

are only weakly coupled to the other degrees of freedom at
the expense of cooling of these other degrees of freedom (the
f lying ice-cube ef fect7). The velocity rescaling thermostat of Bussi
et al.8 is a global weak-coupling thermostat in which the velocities
are scaled such that the temperature follows a stochastic first-order
process that ensures a canonical distribution for the global
temperature. This solves the problem of an unknown ensemble,
but it is not known if it also solves the flying ice-cube effect. Global
thermostats of the extended-system type, such as the Nose-́Hoover
thermostat,9 will maintain a canonical distribution in configura-
tional space but show strong oscillatory behavior of the
temperature deviation as a result of the order of the differential
equation related to the system’s extension. The Nose-́Hoover
chain thermostat,10 using a cascade of thermostats, alleviates but
does not solve this problem. See Berendsen,11 pp 194−204, for a
comparative discussion of thermostats.
The simple Langevin equations of motion11 (i.e., Markovian

and no frictional coupling between degrees of freedom) are for
the ith degree of freedom in a Cartesian system of coordinates:

̇ =x t v t( ) ( )i i (1)

γ η̇ = − +v t a t v t t( ) ( ) ( ) ( )i i i i i (2)

where ai(t) is the acceleration of the ith degree of freedom:

=a t
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m
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i
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and ηi(t) is a random process with zero mean, no correlation
with any past or present x or v, and with an autocorrelation
function
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k T

m
( ) ( ) 2 ( )i j

i
i ij

B ref
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Here, γi is the f riction rate applied to the ith degree of freedom.
[We reserve the name “friction constant” for the proportionality
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constant between friction force and velocity, which equals the
mass of the particle times the friction rate.]
This equationand its DPD equivalent,12−14 which applies

friction and noise to velocity dif ferences between particle pairs
is a stochastic differential equation. We note that eq 2 is a
formal equation that is mathematically incorrect because v(t) is
not differentiable; it should be implemented as a difference
equation over a small time step h:

γ γ ξΔ = − +v a t h v t h k T h m( ) ( ) 2 /i i i i i iB ref (5)

for small h, where ξ is a normally distributed random number
with unit variance. The last term is obtained by integrating the
noise term in eq 2 over the time step h.
It can be shown that the velocity distribution will converge to

a Maxwellian distribution at the reference temperature Tref. The
correct behavior as a thermostat is implicit in the equations and
will be guaranteed only if the equations are solved exactly.
Algorithms to solve such equations in finite time steps are

only exact in the limit of small h because of the position-
dependent force; however, the stochastic terms can be
integrated exactly over any time step. Algorithms2,4,15 that
integrate the stochastic equations of motion over a time step
become very complex, requiring the sampling of two random
variables from a bivariate distribution.
The same applies to most algorithms used for DPD. While

for Langevin dynamics integration over the frictional and
stochastic terms can be carried out over a time step, for the
pairwise DPD friction and noise, this is not possible. Thus, for
DPD, an additional complicating factor arises: friction and
noise that are needed to update the velocity depend on the
velocity itself. Accurate algorithms require iterative solutions for
the velocity update. Various algorithms based on the velocity-
Verlet scheme have been compared by Nikunen et al.16

A different approach, pioneered by Peters17 for the case of
DPD, leads to simpler and still correct algorithms. The
principle is to consider the physical process as a sequence of
a Hamiltonian evolution over one time step, followed by an
impulsive action of friction and noise. The latter modifies the
velocities without advancing the time. Thus, the evolution in
phase space is the approximate application of the Liouville
operator over a time step, followed by a transformation defined
by the impulsive friction and noise. If it can be proven that this
impulsive action also leads to convergence to a canonical (i.e.,
Maxwellian) distribution at the reference temperature, this
physical process is equally valid to achieve our goal of
introducing an effective thermostat. The energy and
momentum transfer implicit in the impulsive friction will
influence transport properties in a controllable way. The
behavior as a thermostat will be robust, while the algorithm
remains very straightforward and simple to implement. The
principal difference with the usual stochastic differential
equation is that the time evolution of the system is not
described by a single stochastic differential equation but by a
sequential application of a Hamiltonian evolution over a time
step and an impulsive stochastic action on the velocities. Both
steps should conserve the canonical distribution in phase space.
This approach is reminiscent of the principle of the Andersen

thermostat,18 which applies impulsive redistributions to particle
velocities with a probability Γh from a Maxwellian distribution.
The same thermostatting method was introduced for DPD by
Lowe.19 The Andersen and Lowe thermostats do not reduce
velocities with an adjustable friction but reduce the velocity

completely to zero, followed by a noise term equal to a sampling
from the full Maxwellian distribution. The impulsive change
introduced this way is locally (in time and space) quite large and
disrupts the smooth evolution of the trajectory. The impulsive
friction and noise as applied by Peters spreads the changes much
more smoothly over time and space by applying small impulsive
changes to every particle at every step.
In the following, we extend Peters’ DPD-type impulsive

friction and noise (which applies relative velocity changes in the
interparticle direction only) to more general types. These
include the traditional Langevin dynamics, which does not
conserve linear momentum, and pairwise Galilean-invariant
friction and noise acting on velocity differences. The latter can
be applied to all three velocity components, or restricted to
components either parallel or perpendicular to the interparticle
direction. For each case, we investigate the effective thermostat
strength implied by the impulsive application of friction and
noise. We also investigate whether the pairwise application can
be made more efficient by restricting friction and noise to one
or a few neighbors, rather than all neighbors within a given
range. For the ideal gas, we derive the diffusion coefficient,
imposed by friction and noise. While Peters implements friction
and noise in the velocity-Verlet integration scheme, we employ
the popular leap-frog integration scheme. In all cases, we
consider the implementation when the system contains
holonomic constraints, and we consider the consequences for
the computation of pressure.
This article is organized in the following way. In the

following two sections, the impulsive scheme is discussed for
Langevin dynamics using the leap-frog algorithm, for systems
without constraints (section 2) and with constraints (section 3).
Section 4 presents its application to pairwise interactions. In
section 5, an ef fective average friction rate is defined that serves
as a comparable friction rate measure, with a comparable
influence on diffusion, for any type of impulsive friction
imposed on the system. Section 6 describes the simulation
details and reports the computational efficiency of the different
methods; section 7 gives the results of various tests of the
algorithms on different molecular systems (ideal gas, coarse-
grained water without constraints, and atomic water with
constraints). Both thermostat and diffusion behavior are
considered. Section 8 discusses the results and summarizes
the conclusions.

2. THE IMPULSIVE LANGEVIN LEAP-FROG
ALGORITHM FOR SYSTEMS WITHOUT
CONSTRAINTS

Consider a system of n particles with 3n degrees of freedom,
and consider every degree of freedom separately. Assume v(t −
(1/2)h), x(t), and F(t) = ma are the known velocity,
coordinate, and force components, and a is the acceleration
at time t of that degree of freedom. The impulsive Langevin
extension of the leap-frog algorithm then reads as follows:
For all degrees of freedom, do:

= − +⎜ ⎟
⎛
⎝

⎞
⎠v v t h ah1.

1
2

ξΔ = − + −v fv f f k T m2. (2 )( / )B ref

+ = + + Δ⎜ ⎟
⎛
⎝

⎞
⎠x t h x t v v h3. ( ) ( )

1
2
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+ = + Δ⎜ ⎟
⎛
⎝

⎞
⎠v t h v v4.

1
2

Here, step 1 is the usual MD velocity-update of the leap-frog
scheme; step 2 is the impulsive application of friction (reducing
the velocity by a fraction f: 0 ≤ f ≤ 1) and noise (ξ is a random
sample from a normal distribution). Step 3 updates the
coordinates, taking into account that Δv is applied only
between t + (1/2)h and t + h: in fact, step 3 can be considered
as two half steps (see Figure 1):

+ = +⎜ ⎟
⎛
⎝

⎞
⎠x t h x t v h3a.

1
2

( )
1
2

+ = + + + Δ⎜ ⎟
⎛
⎝

⎞
⎠x t h x t h v v h3b. ( )

1
2

( )
1
2

Step 4 assigns the modified velocity to the velocity at the end of
the time step. It is irrelevant whether these steps are carried out
sequentially per degree of freedom, sequentially per 3-D vector
per particle, or each performed on a 3n-D vector over all
degrees of freedom.
The variance of the noise term is chosen such that the

variance of the velocity

⟨ + Δ ⟩ = − ⟨ ⟩ + −v v f v f f
k T

m
( ) (1 ) (2 )2 2 2 B ref

(6)

tends to the stationary value of kBTref/m. This is easily seen
from eq 6 by substituting kBTref/m for each of the mean
squared velocities.
In this algorithm, it is assumed that all degrees of freedom are

subjected to the same friction and noise at every time step; this
is just a convenient scheme that could be replaced by other
variants, e.g., different f ’s for different particles, or application of
friction and noise to a (randomly) selected subset at every step.
Note that the limiting case f = 1 completely removes the
velocity and replaces it by a sample from a Maxwellian
distribution. Thus, if the impulsive friction and noise is applied
with f = 1 and with a probability Γh per particle per step, the
Andersen thermostat is recovered. A smoothed Andersen
thermostat with the same average velocity reduction factor will
be obtained by applying the impulsive friction and noise with
f = Γh every step to every degree of freedom.
The algorithm is expected to be robust, in the sense that the

impulsive term is exact, independent of the time step used.
There is a lot of freedom of choice in the way the impulsive

term is applied: the damping factor f may be applied to a
random selection of particles and may differ for different
particles. The application to velocity differences as in DPD is
straightforward (see section 4).
It is obvious that the new velocity of any particle does not

have the same direction and magnitude as its old velocity. As
the random changes are uncorrelated, the total momentum is
not conserved and neither is the total energy conserved.
However, the average kinetic energy and hence the temperature
will be stable: they tend toward the values determined by the
reference temperature.

2.1. Is the Velocity Distribution Canonical? In order to
judge the acceptability of the proposed procedure, we ask the
following questions: Assume the velocity distribution before the
impulse is ρ0(v): (a) What will be the distribution ρ1(v + Δv)
af ter the impulse? (b) What is the stationary distribution?
After the impulse, the distribution ρ1(v + Δv) is the

convolution of the original distribution ρ0(v) and the Gaussian
distribution of the random term Δv + f v, which has a variance
of f(2 − f)kBTref:

∫ρ π ρ= −

× −
− −

−

−

−∞

∞

⎡
⎣⎢

⎤
⎦⎥

w f f k T v v

w f v
f f k T

( ) [2 (2 ) ] d ( )

exp
{ (1 ) }
2 (2 )

1 B ref
1/2

0

2

B ref (7)

where w = v + Δv. This is the answer to question a. The answer
to question b is found by inserting the canonical distribution
for v:

ρ π= −−
⎡
⎣⎢

⎤
⎦⎥v k T

v
k T

( ) [2 ] exp
20 B ref

1/2
2

B ref (8)

into eq 7. Carrying out the integration over v, we find that
ρ1(w) is exactly equal to the same canonical distribution ρ0. So,
ρ0(v) is the stationary distribution. Thus, the impulsive
application of friction and noise not only preserves the variance
(as designed) but preserves the complete canonical distribution
as well.

2.2. How Does the Temperature Behave with Time? A
good thermostat should force a deviation from the reference
temperature back to zero. How does the impulsive Langevin
thermostat behave in this respect?
Consider one dimension. The temperature is given by

= ⟨ ⟩T
m
k

v
B

2

(9)

The energy change ΔE1 resulting from a single application of
friction and noise to one degree of freedom is

Δ = + Δ −E m v v mv
1
2

( )
1
21

2 2
(10)

Using eqs 6 and 9, this rewrites to

Δ = − −E f f k T T
1
2

(2 ) ( )1 B ref (11)

the total energy change per time step h is the sum over all one-
dimensional frictional events that occur per time step:

∑Δ = − −E k f f T T
1
2

(2 )( )tot B ref (12)

The energy change is initially supplied to the kinetic energy of
the system, thus changing the temperature. However, when the

Figure 1. (Top) Traditional leap-frog scheme. (Bottom) Leap-frog
scheme with impulsive phase.
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rate of change is small, the energy change will be distributed
over kinetic and potential energy. The temperature change is
then determined by the total heat capacity CV of the system:

Δ =
Δ

T
E

CV

tot

(13)

yielding a differential equation for the time dependence of the
temperature:

=
∑ −

−dT
dt

k
f f
C h

T T
1
2

(2 )
( )

V
B ref

(14)

In the case of a three-dimensional application to N particles, eq
14 has the form

=
−

−dT
dt

k
c

f f
h

T T
3
2

(2 )
( )

V

B
ref

(15)

where

=c
C
NV

V
(16)

is the specific heat per particle.
Equation 15 shows that any deviation from the reference

temperature will decay to zero according to a first-order kinetic
process

= −dT
dt

k T T( )th ref (17)

with rate constant

=
−

k
k
c

f f
h

3
2

(2 )

V
th

B

(18)

Alternatively, the decay can be characterized by a time constant
τT = 1/kth. Note that for an ideal gas, cV = (3/2)kB, reducing the
left fraction in eq 18 to 1; for atomic fluids, this fraction is
usually 2 to 3 times smaller.
The thermal rate constant can be expressed in an ef fective

f riction rate γeff , defined by the continuous friction rate that
would reduce the velocity per time step h by a fraction f:

γ = − −
h

f
1

ln(1 )eff
def

(19)

yielding

γ
γ=

− −
≈k

k
c

h

h
k
c

3
2

[1 exp( 2 )] 3
2

2
V V

th
B eff B

eff
(20)

the latter value being a good approximation for small γh.
Thus, the thermostat is robust: the system temperature

automatically decays to the reference temperature, and the
velocity distribution evolves into the proper canonical
(Maxwellian) distribution.
Slow and Fast Thermostats.We note that this rate equation

is valid when the rate constant of the thermostat is smaller than
the rate of exchange between the kinetic and potential energy
of the system, which gives the system time to equilibrate
between kinetic and potential degrees of fzreedom. Usually,
this condition is fulfilled. If, on the other hand, kth is much
larger (“fast” thermostats), CV in eq 13 should be replaced by
Ekin/T = (1/2)kBndof, where ndof is the number of degrees of

freedom in the system. The equivalent of eq 14 for fast
thermostats is

=
∑ −

−dT
dt

f f
n h

T T
(2 )

( )
dof

ref
(21)

where the sum is taken over all one-dimensional frictional
events that occur per time step. This means that for a fast
thermostat, cV in eq 20 should be replaced by its ideal-gas value
3kB/2.

3. IMPULSIVE LANGEVIN ALGORITHMS FOR
SYSTEMS WITH CONSTRAINTS

Here, we give the algorithm for simple Langevin dynamics with
constraints (section 3.3). For clarity, we first give the leap-frog
algorithms for frictionless systems without constraints (section
3.1)already mentioned in section 2and with constraints
(section 3.2).

3.1. No Constraints, No Friction. Consider a conservative
system with n particles (3n degrees of freedom). Assume v(t −
(1/2)h) and x(t) are the known velocity and coordinate vectors
(length 3n) at the beginning of the time step. The leap-frog
algorithm then advances one time step as follows (i = 1, ..., 3n):

1. Compute forces F = −∇V(x(t)) and compute virial using
x(t).

2. Advance velocities ∀i: vi(t + (1/2)h) = vi(t − (1/2)h) +
(Fi/mi)h (optional: adjust ∀i, vi(t + (1/2)h) according to
global thermostat).

3. Advance positions ∀i: xi(t + h) = xi(t) + vi(t + (1/2)h)h

3.2. Constraints, No Friction. Constraints are satisfied by
calling a routine constr (SHAKE,20 LINCS,21 SETTLE22) that
makes corrections to an unconstrained configuration xu to yield
a configuration xc that satisfies the set of m holonomic
constraints σk(x) = 0, k = 1, ..., m. The displacements are in the
direction of a reference configuration xref:

=x x xconstr( ; )c u ref
(22)

The routine constr also computes the constraint forces and
evaluates the contribution to the virial (using the reference
positions) due to the constraint forces. The algorithm of
section 3.1 is now modified to:

1. Compute unconstrained forces Fu = −▽V(x(t)) and
compute virial using x(t).

2. Advance velocities ∀i: vi = vi(t − (1/2)h) + (Fi
u/mi)h

(optional: adjust ∀i, vi according to global thermostat).
3. Advance positions ∀i: xi = xi(t) + vih.
4. Apply constraints to new positions: x(t + h) = constr

(x; x(t)) and add constraint contribution to virial.
5. Reconstruct velocities ∀i: vi(t + 1/2) = [xi(t + h) −

xi(t)]/h.

Steps 4 and 5 ensure that the motion takes place on the
hypersurface in configurational space, defined by the con-
straints. Any deviation from this hypersurface due to force
components in the constraint directions (steps 2 and 3) is
removed by the projection onto the constraint hypersurface in
steps 4 and 5. We note that the reconstruction of velocities
from coordinate differences introduces a noticeable, but
avoidable, error when single-precision arithmetic is employed.23

3.3. Constraints Plus Impulsive Friction and Noise. We
now modify the algorithm of section 2 to include an impulsive
friction and noise:
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1. Compute unconstrained forces Fu = −▽V(x(t)) and
compute virial using x(t).

2. Advance velocities ∀i: vi = vi(t − (1/2)h) + (Fi
u/mi)h.

3. Advance positions ∀i: xi = xi(t) + vih.
4. Apply constraints to new positions: xc = constr(x; x(t))

and add constraint contribution to virial.
5. Reconstruct velocities ∀i: vic = [xi

c − xi(t)]/h.
6. Apply friction and noise ∀i: v′i = (1 − f)vi

c + ( f(2 −
f)(kBTref/mi))

1/2ξi.
7. Correct positions for velocity change ∀i: x′i = xi

c +
(1/2)(v′i − vi

c)h.
8. Apply constraints to corrected positions: x (t + h) =

constr(x′; x(t)). Do not add constraint contribution to
virial.

9. Reconstruct velocities ∀i: vi(t + (1/2)h) = vi
c + 2[xi(t +

h) − x′i]/h.

Note that the constraint algorithm is applied twice: the first
time in step 4 to correct the effect of the unconstrained forces
(this application also provides the conservative constraint force
and computes the constraint contribution to the virial) and the
second time in step 8 to annihilate the effects of friction and
noise in the constraint directions. The latter concerns
nonconservative forces acting on the velocities, which do not
contribute to the virial. See Hess et al.21 for details on how to
compute the virial from constraint forces.
The impulsive friction and noise in step 6 is similar to step 2

in the unconstrained Langevin dynamics of section 2. The
correctness of this procedure is not immediately clear because
⟨vi

2⟩ ≠ kBT/mi when the particle is involved in constraints.
However, the “excess” noise generated by step 6 is eliminated
by the subsequent application of constraint corrections. This is
strictly valid only in the limit of small friction (small f); for
finite f, an error remains due to the fact that the application of
friction and noise does not commute with the application of the
constraint solver. In fact, for f = 1 (Andersen thermostat), a
substantial error in the temperature may occur when the
velocities of selected degrees of freedom are randomized in a
system with constraints. Only when all degrees of freedom in a
molecule with internal constraints are randomized will a
canonical distribution at the reference temperature be obtained,
as has been rigorously proven by Ryckaert and Ciccotti.24 That
an f-dependent error remains for a system with constraints is
shown in Figure 3b (section 7.1).

4. PAIRWISE APPLICATIONS
The essence of DPD-like friction and noise is that it is applied
to velocity dif ferences (or relative velocities) between pairs of
particles. If done properly, the pairwise application ensures
conservation of linear momentum, both globally and locally
over distances in the order of the particle interaction range. The
friction and noise can be applied isotropically to the velocity
difference vector, irrespective of its direction, but the velocity
difference can also be split into a component parallel to the
interparticle vector and a component perpendicular to it. The
full vector is three-dimensional. The parallel component is one-
dimensional, and the perpendicular component is defined in a
plane and is therefore two-dimensional. In pure DPD,14 only
the parallel component is used. The perpendicular form has
been introduced by Junghans et al.25 The isotropic three-
dimensional form is in fact a combination of both. Only the
parallel component conserves angular momentum; however,
the perpendicular component resembles more closely the

viscous forces that cause shear viscosity. Which option is best
depends on the purpose of the introduction of stochastic terms:
for thermostatting, the parallel component is preferred; for
mimicking viscous behavior, one may choose the isotropic or
perpendicular case.
We shall consider all three possibilities. In each case, there is

a damping rate γ and velocity reduction factor f = 1 − exp(−γh)
as in eq 19. These factors are dependent on the interparticle
distance: a cutoff distance should be chosen beyond which the
impulsive friction and noise is not applied ( f = 0). In practice,
one uses the short-range pair list that is constructed already for
the determination of forces. The distance dependence can be
chosen arbitrarily; the original DPD12,13 chooses a linear
dependence between 1 (r = 0) and 0 (r = rc). By combining the
various methods and adjusting their damping and distance
dependencies, the viscosity, diffusion, and thermostat behavior
can be separately influenced.25

After determining the change in the relative velocity due to
the impulsive friction and noise, this change is distributed over
the two particles such that the c.o.m. is conserved.
The algorithm is equal to the constrained Langevin algorithm

of section 3.3, except that step 6 is replaced by the sequential
application of all pairwise impulsive events. The resulting
velocities are vi′, which enter step 7 of the algorithm. Step 6
now reads as follows.
Select pairs i,j that will be subjected to impulsive friction and

noise. This pair selection can be done in several ways. In
principle, all neighbors from the list can be selected (this would
correspond to the original DPD procedure), but it is sufficient
and much more efficient to select only one (or a few)
neighbor(s) per particle. The selection can be made at random,
but it can also be based on a distance-weighted probability, e.g.,
proportional to 1 − rij/rc. A selected pair can be subjected to
friction and corresponding noise, with the friction either
isotropically in the direction of the velocity itself (iso), parallel
to rij (par), or in a direction perpendicular to rij (perp). In the
following, it is assumed that a particular choice has been made,
but it is also possible to combine more than one choice.
Different choices can be applied to the same particle pair, but
each choice can also be applied to a different pair.
For each selected pair i,j with velocities vi and vj, do the

following:

1. Choose the velocity reduction factor f (either f iso or f par or
f perp) based on the interparticle distance rij. Note that
distance dependence can be achieved in two ways: either
by making f distance dependent or by using a distance-
dependent weight in the pair selection procedure. Do not
use both at the same time! If the pair selection has been
based on a distance-dependent probability, the factors f
can be taken as equal for all pairs. Note that the
coordinates to be used for the determination of f
shouldstrictly speakingbe taken at the half-step t +
(1/2)h, i.e., after step 3a in Figure 1. Using r(t) instead
will have a negligible effect.

2. Determine the velocity noise factor g, defined as

μ= −g f f k T(2 ) /B ref (23)

where

μ =
+

m m

m m
i j

i j (24)
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is the reduced mass of the two particles. If f has been made
distance dependent, this distance dependency should be
contained in f in eq 23. If the pair selection has been based
on a distance-dependent probability, eq 23 can be used as is.

3. Construct the relative velocity vector v of the selected
pair:

= −v v vi j (25)

4. If iso:
a. Choose three random numbers ξ = (ξ1,ξ2,ξ3) from

a standard normal distribution (mean = 1, sd = 1).
b. Construct the vector:

ξΔ = − +f gv v (26)

Proceed to step 5.
If par:
a. Construct a unit vector e1 in the inter-

particle direction:

=
| |r

e
rij

ij
1

(27)

where rij = ri − rj.
b. Determine the component of v in the

interparticle direction:

= ·v v epar 1 (28)
c. Choose one random number ξ from a

standard normal distribution (mean = 1, sd = 1).
(d) Construct the vector

ξΔ = − +fv gv e( )par 1 (29)

Proceed to step 5.
If perp:
a. Construct a unit vector e1 in the inter-

particle direction:

=
| |r

e
rij

ij
1

(30)

where rij = ri − rj.
b. Construct the velocity component perpen-

dicular to e1:

= − ·v v v e e( )perp 1 1 (31)
c. Construct a unit vector in the direction of

vperp:

=
| |v

e
v

2
perp

perp (32)
d. Construct a unit vector e3 perpendicular to

e1 and e2:

= ×e e e3 1 2 (33)
e. Choose two random numbers ξ2 and ξ3

from a standard normal distribution (mean =
1, sd = 1).

f. Construct the vector

ξ ξΔ = − + +f gv v e e( )perp 2 2 3 3 (34)

Proceed to step 5.

5. Distribute the relative velocity change over the two
particles:

μ← + Δ
m

v v vi i
i (35)

μ← − Δ
m

v v vj j
j (36)

In this way, the velocities of the particles are updated while the
total momentum mivi + mjvj is conserved.

Note that the particle velocities are updated after each
impulsive event, not at the end of each step. This is necessary,
as a single particle may be involved in more than one pair
event; first adding the velocity changes and updating the
velocities with the sum of the velocity changes gives erroneous
results.
The equations for pairwise friction and noise are the same as

for a system without constraints, despite the fact that ⟨v2⟩ ≠
kBT/μ per degree of freedom, when one or both of the particles
in a pair is involved in constraints. Similar to the simple
Langevin thermostat applied to systems with constraints, for
small frictions the excess velocities in the constraint directions
are removed by the application of constraints after the
impulsive step; this also removes the excess kinetic energy.

4.1. Thermostat Behavior. We ask how the total energy
changes by the application of friction and noise as described
above. The total energy change distributes itself over kinetic
and potential energy and leads to a temperature change
determined by the specific heat of the system. Thus, we obtain
a differential equation for the time-dependent behavior of the
temperature, similar to the case of Langevin dynamics treated in
section 2.2. As we shall see below, also in the case of pairwise
friction and noise, the temperature appears to relax with a first-
order process toward the reference temperature. The derivation
that follows is valid for the nonconstraint case.
The energy change concerns one, two, or three degrees of

freedom, related to the relative velocity of two particles, with
reduced mass μ = mimj/(mi + mj). The dimensionality d = 1
when a component in one direction is considered as in the par
case; d = 2 when a component in a plane is considered as in the
perp case, while d = 3 in the iso case.
The derivation follows exactly the Langevin case (section 2.2).

The energy change due to the application of one impulsive friction
and noise event in d dimensions of the relative velocity vector of a
selected pair is given by

μ μΔ = + Δ −E v v v
1
2

( )
1
2

2 2
(37)

= − −df f k T T
1
2

(2 ) ( )B ref (38)

where T is given by

μ= ⟨ ⟩T
k

v
B

2

(39)

Using

Δ = Δ
T

E
CV (40)

valid for the usual case where the rate constant of the
thermostat is smaller than the intrinsic exchange rate between
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kinetic and potential energy, we arrive at the rate equation for
the temperature:

=
∑ −

−dT
dt

k d
C

f f
h

T T
2

(2 )
( )

V

B
ref

(41)

where the sum is to be taken over all d-dimensional events per
time step. This is a first-order decay toward the reference
temperature with the rate constant

=
∑ −

k
dk
C

f f
h2

(2 )

V
th

B

(42)

We note that in the case of very strong thermostats, 2CV/kB
should be replaced by the total number of degrees of freedom
(see remark at the end of section 2.2).
In the particular case that for all particles in the system one

pair is selected in every time step and the velocity reduction
factor f is weighted by a distance-dependent factor, i.e. 1 − r/rc,
where rc is a cutoff range used in the neighbor selection, the
resulting equation for the time constant of the thermostat is

=
⟨ − ⟩ − ⟨ − ⟩⎛

⎝⎜
⎞
⎠⎟k

k d
c

f r r f r r
h2

2 (1 / ) (1 / )

V
th

B c
2

c
2

(43)

where cV is the specific heat per particle and d is the
dimensionality of the applied friction and noise:

for iso d = 3
for par d = 1
for perp d = 2

The averages are to be taken over the randomly selected
pairs. Given a radial distribution function g(r) and a cutoff
radius rc, such averages are determined from

∫
∫

⟨ ⟩ =h r
h r g r r r

g r r r
( )

( ) ( ) d

( ) d

r

r
0

2

0
2

c

c

(44)

5. EFFECTIVE FRICTION RATE AND DIFFUSION
The effective friction rate imposed by impulsive velocity
reductions is not only a function of the velocity reduction factor
f but also of the time step, the dimensionality of the event, the
number of events per time step, and the distance-dependent
weight factor. In order to compare different applications, we
define for each case an ef fective f riction rate γeff.
For the Langevin application, where a velocity reduction to

(1 − f)v is applied to every degree of freedom at every time
step, we defined an effective friction rate in eq 19:

γ = −
− f

h
ln(1 )

eff (45)

The effective gamma is related to the diffusion coefficient D0
in the absence of systematic forces. The diffusion coefficient of
particles in a fluid is given by11

−∫ ∫= ⟨ ⟩ =
∞ ∞

D v v t t
k T

m
C t t(0) ( ) d ( ) d

0

B

0
vv (46)

where Cvv(t) is the normalized velocity autocorrelation function−=
⟨ ⟩

⟨ ⟩C t
v

v v t( )
1

(0) ( )vv 2
(47)

Here, averaging is both over the ensemble and over the time
origin. In the case of continuous friction with rate γ and in the

absence of systematic forces (ideal gas), the normalized velocity
correlation function equals exp(−γt), with integral 1/γ. The
inverse diffusion coefficient is proportional to γ and given by

γ=−D
m

k T0
1

B (48)

In the case of impulsive damping, the normalized velocity
correlation function equals the dotted line in Figure 2 rather

than the drawn exponential function valid for continuous
damping. Its integral equals (1 − (1/2)f)h/f, rather than 1/γ.
The deviation is of second order and very small, which means
that eq 45 can be used to predict diffusion coefficients in the
ideal gas case. Note that the factor (1 − (1/2)f) arises from
averaging over time origins within a time step.
For the pairwise application to unconstrained systems, we

expect the same equation to be valid when the total number of
degrees of freedom affected per time step equals the total
number of degrees of freedom in the system, i.e., equal to three
times the number of particles. When friction and noise are
applied to one pair per particle, this implies for DPD
thermostats that the effective friction rate γeff is given by

γ = −
− ⟨ − ⟩( )r r fd

h

ln 1 1 /
eff

1
3 c

(49)

where d is the dimensionality of the DPD friction, and the
distance-dependent factor by which f has been multiplied has
been taken into account. We note that for homogeneous
distributions ⟨1 − r/rc⟩ = 1/4, irrespective of the value of rc.
For the application of impulsive friction and noise to systems

with constraints, the situation is more complex, but the same
eqs 45 and 49 for the effective gamma apply. Suppose there are
n particles with nc holonomic constraints, so there are 3n − nc
degrees of freedom. If impulsive friction and noise are applied
to a particle or to a pair that is involved in constraints, part of
the velocity change (and hence energy change) is removed by
the constraints. On average, the remaining fraction of the
energy change equals (3n − nc)/(3n). If applied (per time step)
to three dimensions of n pairs, effectively only 3n − nc degrees
of freedom are modified. Thus, the damping is as effective
as in the unconstrained case. In summary, eqs 45 and 49
describe the effective friction rate for Langevin and DPD
dynamics, respectively, both for unconstrained and constrained
systems.

Figure 2. Normalized velocity autocorrelation functions for con-
tinuous friction (red line: exponential decay) and for impulsive friction
(dotted line: polylinear decay), in the absence of systematic forces.
The drawn step function indicates the velocity reduction at the end of
each time step. For this example, f = 0.4.
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6. COMPUTATIONAL DETAILS

6.1. Simulation Details. The algorithms presented in the
previous sections were implemented in the GROMACS
program package,26 version 4.0.7, using parallelization based
on domain decomposition.
Three types of systems were used to test performance of the

investigated coupling schemes: ideal gas, MARTINI27 water,
and SPC/E28 water. All simulations were performed in a
periodic cubic box with dimensions longer than twice the cutoff
distance. A cutoff distance for both nonbonded interactions and
DPD thermostat was set at 1.2 nm for ideal gas and MARTINI
water systems and 0.9 nm for the SPC/E water system. For
MARTINI, a potential shift function was applied,29 with a
switch value of 0.9 to remove cutoff effects. In SPC/E water
simulations, we used the particle-mesh-Ewald (PME) method
to calculate long-range coulomb interactions above 0.9 nm. The
neighbor list was updated every step in order to remove any
deviations due to computational errors. In all simulations, a
time step of 2 fs was used. Bond distances in the SPC/E water
model were constrained using the SETTLE algorithm.22 For
equilibration, weak pressure coupling5 was applied with a time
constant of 2.0 ps and a reference pressure of 1 bar; production
runs were performed under constant volume conditions. The
reference temperature was set to 320 K for ideal gas and
MARTINI water systems and to 300 K for the SPC/E water
system.
The ideal gas and MARTINI water systems consisted of

3200 particles with a mass of 72 u in a cubic box of (7.28856
nm)3; the SPC/E system consisted of 1728 molecules in a cubic
box of (3.7252 nm)3. The initial velocities of the particles were
obtained from a Maxwell−Boltzmann distribution correspond-
ing to the chosen initial reference temperature. Simulations
were either 10 ns or 50 ps long, for diffusion and thermal rate
calculations, respectively.
For the computation of the diffusion coefficient, we used the

mean square displacement (MSD) and applied the Einstein
relation D = ⟨r2(t)⟩/(6t). The diffusion coefficient was
calculated by least-squares fitting a straight line through the
MSD from 500 ps to 2 ns. Thermal rate constants were
determined from least-squares fits to a single exponential of the
temperature after switching the reference temperature at time
t = 0 from 350 to 320 K (ideal gas and MARTINI water) or from
330 to 300 K (SPC/E water). Each case was repeated eight times,
yielding eight independent determinations ki of the rate constant;
we report the averages k ̅ with standard uncertainty σ computed
from σ2 = ∑i=1

8 (ki − k)̅2/56.
6.2. Performance. We ran efficiency measurements on a

workstation with a Dual Core AMD Opteron 865 (1800 MHz)
processor. The comparison was done on a Martini water system
with 3200 CG particles and with a time step of 10 fs, using
Gromacs version 4.0.7. For the DPD case, we choose isothe
other DPD algorithms have the same order of computational
complexity. For Langevin dynamics, we compared the “new”
impulsive algorithm with the “old” algorithm available in
Gromacs, which is based on the integration of continuous
friction,4 and with pure MD without and with a global
thermostat. For iso, we compared the random selection of one
pair per particle with the selection of all pairs from the whole
neighbor list of each particle. In Table 1, the “speed” is reported
as the number of nanoseconds simulated per day (24 h).
From these efficiency experiments, we can conclude that all

our new algorithms perform better than the existing algorithms

from the literature or those implemented in Gromacs. For
pairwise applications, it is especially rewarding, with a 7-fold
efficiency gain, to apply friction and noise to only one random
pair per particle.

7. RESULTS
7.1. Ideal Gas. First, we checked the influence of the

Langevin and the different DPD thermostats on the radial
distribution function and the temperature for the chosen
ideal gas system. By applying Langevin dynamics and all
three variants of DPD in a scheme in which the friction
coefficient f/h was kept constant to 1 ps−1 and the time step
was varied between 2 and 100 fs, we found the temperature
and the radial distribution functions to be independent of the
time step used. This is similar to that observed by Peters.17

In Figure 3a, equivalent results, where the time step is kept
constant at 2 fs and the friction rate is varied, are shown for
the “iso” case of a DPD coupling. The radial distribution
remained homogeneous within statistical accuracy for various
values of the friction rate γ. The temperature was monitored
not only for the ideal gas but also for MARTINI water and
SPC/E water for a gamma ranging up to 60 ps−1. The
temperature did not deviate from the reference temperature
within statistical error (results not shown), except for SPC/E
water (which involves constraints) for DPD friction rates
above 10 ps−1. The latter could be due to the constraint
correction to the velocity change. Further investigation of
this effect showed that the deviation was reduced by using a
smaller time step and also by applying friction and noise to
more than one pair per step. Figure 3b shows the
temperature deviation for the “iso” DPD case for SPC/E
water, using up to 12 pairs per step and plotted against γeff
using eq 49. For γeff < 10 ps−1 (a practical upper limit), the
effect is small in all cases, but it is very much smaller if several
pairs are used.
For the ideal gas, we studied the influence of friction strength

on diffusion. For the ideal gas, the only damping of the velocity
is due to the imposed friction, implying that the diffusion
coefficient should follow from the effective damping according
to eq 48 when the appropriate γeff from either eq 45 or 49 is
used. The inverse of the diffusion coefficient should be
proportional to the (effective) friction rate γeff:

γ= = =− −D C C
m

k T
; 27.1 ps nm1

eff
B

2 2

(50)

In Figure 4a, D−1 is plotted versus the friction rate, eq 45, for
the Langevin case; the agreement with theoretical predictions is
perfect. For the DPD case shown in Figure 4b, eq 49 is used for
the friction rate; the theoretical prediction corresponds fairly
closely to the measured values with slight deviations at higher
friction rates, notably for the “par” case.

Table 1

method ns/day

MD, no thermostat 69.90
MD, Berendsen thermostat 69.81
SD, Langevin, “old” 59.79
SD, Langevin, “new” 67.44
SD pairwise iso, one pair per particle 55.21
SD pairwise iso, na pairs per particle 7.47

an is length of neighbor list; complexity comparable to traditional
DPD.
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Finally, we determined the thermal relaxation rate constant
for all variants of the impulsive friction. The equation for the
thermal rate constant kth (see section 2.2) is for an ideal gas
with Langevin friction:

γ
=

−
=

− −
k

f f
h

h

h
(2 ) 1 exp( 2 )

th
eff

(51)

where γeff = −[ln(1 − f)]/h as in eq 45. Figure 5a compares the
theoretical prediction with the simulated thermal rate constants.
The agreement is reasonable, with slight deviations at high
friction rates.
For the pairwise DPD-type application, using one pair inter-

action of dimensionality d (par: d = 1; perp: d = 2; iso: d = 3)

per particle per step, the equation for the thermal rate constant
is (see section 4.1):

=
⟨ − ⟩ − ⟨ − ⟩⎛

⎝⎜
⎞
⎠⎟k

d f r r f r r
h3

2 1 / (1 / )
th

c
2

c
2

(52)

This equation can be simplified by expressing the friction again
as an effective friction rate, eq 49, yielding the same relation as
in the Langevin case:

γ
≈

− −
k

h

h

1 exp( 2 )
th

eff
(53)

Figure 3. Overall behavior of algorithms. (a) Radial distribution functions for ideal gas simulated with the “iso” coupling scheme with three friction
rates (black line γ = 52 ps−1, red line γ = 12 ps−1, and gray line γ = 0.25 ps−1; time step 2 fs.). (b) Deviation from the reference temperature for
equilibrium DPD simulations with the “iso” coupling scheme on SPC/E water, as a function of γeff (see text) for 1, 2, 4, 8, and 12 pairs per step.

Figure 4. (a) Inverse diffusion coefficient versus friction rate for ideal gas simulated with impulsive Langevin algorithm. Black dots, simulations; red
line, theory. Errors are smaller than the line width of the graph. (b) Inverse diffusion coefficient versus effective friction rate for “iso”, “perp”, and “par”
DPD coupling schemes utilized in an ideal gas system. Red line, theory; black inverted triangles, “iso”; blue squares, “perp”; and yellow dots, “par”.

Figure 5. (a) Thermal relaxation rate versus friction rate for ideal gas simulated with impulsive Langevin algorithm. Black dots simulations, red line
theory. (b) The same for “iso”, “par”, and “perp” DPD coupling schemes used with the ideal gas system. Red line, theory; black inverted triangles,
“iso”; blue squares, “perp”; yellow dots, “par”; and purple triangles, combinations of the last two couplings.
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Equation 53 is accurate for small γ, or for any γ if the difference
between ⟨(1 − r/rc)

2⟩ and ⟨(1 − r/rc)⟩
2 can be neglected.

Figure 5b shows the results. For all cases, the results agree
within experimental error with the theory.
7.2. MARTINI Coarse-Grained Water. In the presence of

an intrinsic diffusion coefficient, there is no reliable theory for
the behavior of the diffusion coefficient as a function of applied
friction. One might naively suppose that internal and external
friction would be additive, i.e., that the inverse diffusion
coefficient would be the sum of the inverse intrinsic diffusion
coefficient and the inverse diffusion coefficient of the ideal gas.
However, this assumption leads to a much higher diffusion
coefficient than is actually observed. It turns out that the
observed inverse diffusion coefficient obeys the following
empirical linear relation to γ:

γ= +
D D

C
1 1

intr
eff

(54)

where C is a proportionality constant with dimension ps2 nm−2,
which depends on the nature of the intrinsic interaction
between the particles. The inverse diffusion coefficients are
given in Figure 6a for the Langevin case and in Figure 6b for
the DPD case. In both cases, the proportionality constant C =
250 ps2 nm−2. We also computed the diffusion coefficients
when the potential energy function was decreased by a constant
factor between 0 and 1; the factor C appeared to be
proportional to the strength of the interparticle forces.
For prediction of the thermal rate, the following properties of

MARTINI water at 320 K are needed: cV = 0.0234(3) kJ mol−1 K−1,
⟨1 − r/rc⟩ = 0.24336, and ⟨(1 − r/rc)

2⟩ = 0.089437. For the
Langevin case, the equation for the thermal rate constant kth
(see section 2.2) is for a fluid:

γ
=

−
=

− −
k

k
c

f f
h

k
c

h
h

3
2

(2 ) 3
2

[1 exp( 2 )]

V V
th

B B

(55)

where γ = −[ln(1 − f)]/h. As MARTINI water is governed by
an intrinsic potential, cV is larger than its ideal-gas value of 3kB/
2; in fact, 3kB/(2cV) = 0.533. Thus, we expect a “slow”
thermostat at low friction rates and an almost twice as
large “fast” thermostat at high friction rates (see section 2.2).
The crossover point is expected near the time when the
autocorrelation function of the kinetic energy (or the
temperature) has decayed, i.e., roughly between 0.1 and 0.2
ps, as shown in Figure 7.
Figure 8a compares the theoretical prediction with the

simulated thermal rate constants. The agreement with theory is

very good. The full-drawn line gives the “slow” behavior, and
the broken red line indicates the “fast” behavior. The crossover
time between the two regimes occurs around γ = 10, or 0.1 ps,
which is in the expected range.
For DPD, with one pair selected per particle per time step,

the thermal rate is similarly modified; eq 53 now becomes

γ
=

− −
k

k
c

h

h
3
2

[1 exp( 2 )]

V
th

B eff

(56)

Figure 8b shows that also in the DPD cases the experimental
values agree with eq 56 for “slow” friction rates (γ < 10 ps−1)
and with eq 53 for “fast” friction rates.

7.3. SPC/E Water. This test case differs from MARTINI
water in that we now consider a system with constraints. The
impulsive friction and noise is applied once per time step to
every atom in the Langevin case, or to one pair involving every
atom in the DPD cases. The individual velocity changes are
much larger in the DPD cases than in the Langevin case for the
same effective friction rate.
Figure 9 plots the inverse diffusion coefficients versus γ. Also

here, the inverse D is proportional to the effective friction rate γ.
The intrinsic inverse diffusion coefficient equals 420 ps nm−2,
and the proportionality constant C equals 46 ps2 nm−2 for the
Langevin case and 24 ps2 nm−2 for the DPD cases, much larger
than the ideal gas value of 7.2 ps2 nm−2 (m = 18 u, T = 300 K).
Contrary to the MARTINI system, here the influence of the
friction rate on the diffusion coefficient is less for the DPD case
than for the Langevin case.

Figure 6. (a) Inverse diffusion coefficient versus friction rate for MARTINI coarse grained water, simulated with impulsive Langevin algorithm. Black
dots, simulations; red line, fit to (Dintr

−1 + Cγ; C = 250 ps2 nm−2). (b) Same for “iso”, “par”, and “perp” DPD coupling schemes used with the MARTINI
coarse grained water system. Black inverted triangles, “iso”; blue squares, “perp”; yellow dots, “par”; red line, fit to (Dintr

−1 + Cγ; C = 250 ps2 nm−2).

Figure 7. Autocorrelation function of the temperature for MARTINI
coarse-grained water at 320 K, showing the time course of the
exchange between kinetic and potential energy.
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For prediction of the thermal rate, the following properties
of SPC/E water at 300 K are needed: cV = 0.0623 kJ mol−1 K−1,
⟨1 − r/rc⟩ = 0.2429, ⟨(1 − r/rc)

2⟩ = 0.094038. The thermal
relaxation rates (Figure 10) closely follow the theory. The
transition to the “fast” rate sets in above 20 ps−1 (below 50 fs)
and reaches its full rate (three times the “slow” rate) beyond
the scale of the graph.

8. DISCUSSION AND CONCLUSIONS
In this article, we have shown that the application of impulsive
friction and noise, as introduced by Peters,17 provides a valid

implementation for Markovian stochastic dynamics with
predictable thermostat behavior. This is true both for the
traditional particle-based simple Langevin dynamics and for the
Galilean-invariant pairwise application of friction and noise as
are typical for Dissipative Particle Dynamics (DPD). We
presented the leap-frog algorithm and allowed the pairwise
friction and noise to be chosen either in the direction of the
interpair vector (“par”), perpendicular to it (“perp”), or
independent of it (“iso”). The algorithms apply both to
unconstrained systems and to systems with holonomic
constraints. In the latter case, friction and noise are applied

Figure 8. (a) Thermal relaxation rate versus friction rate for MARTINI coarse grained water, simulated with impulsive Langevin algorithm. Black
dots simulations; red lines theory, full-drawn for ″slow″ and dotted for ″fast″ thermostats. (b) The same for “iso”, “par”, and “perp” DPD coupling
schemes. Black inverted triangles, “iso”; blue squares, “perp”; yellow dots, “par”; and purple triangles, combinations of the last two couplings. Red
lines, theory, full-drawn for “slow” and dotted for “fast” thermostats.

Figure 9. (a) Inverse diffusion coefficients versus the friction rate for the atomistic SPC/E water system, simulated with impulsive Langevin
algorithm. Black dots, simulation results; red line, fit to (Dintr

−1 + Cγ; C = 46 ps2 nm−2). (b) Same for “iso”, “par”, and “perp” DPD coupling schemes.
Inverted triangles, “iso”; blue squares, “perp”; and yellow dots, “par”. Red line fit to (Dintr

−1 + Cγ; C = 24 ps2 nm−2).

Figure 10. (a) Thermal relaxation rate versus friction rate for the atomistic SPC/E water system, simulated with impulsive Langevin algorithm. Black
dots, simulations; red lines, theory, full-drawn for “slow” and dotted for “fast” thermostats. (b) Same for “iso”, “par”, and “perp” DPD coupling
schemes. Black inverted triangles, “iso”; blue squares, “perp”; yellow dots, “par”; and purple triangles, combinations of last two couplings. Red lines,
theory, full-drawn for “slow” and dotted for “fast” thermostats.
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as if the constraints did not exist; the constraint algorithm
automatically corrects for velocity changes along the con-
straints. We have indicated how pressure evaluations can be
implemented.
In the pairwise application, there is a wide choice of particle

pairs to which friction and noise may be applied. Using a single
pair per particle per time step is computationally very efficient,
but couldfor very high friction ratesintroduce errors in the
presence of constraints. These errors are substantially reduced
by allowing more than one pair per particle, be it at the expense
of computational efficiency.
In eqs 45 and 49, we have defined an effective friction rate γeff

for all cases, which provides a comparable measure for the
strength of the friction. The “thermal rate” kth, which is a
measure for the strength of the thermostat, as it equals the rate
constant for the first-order decay of the difference between
system temperature and reference temperature, is directly
related to γeff. The relation is given in eq 53 or 56:

γ
=

− −
k A

h

h

[1 exp( 2 )]
th

eff
(57)

where A = 1 for “fast” thermostats and A = 3kB/(2cV) for “slow”
thermostats. Here, “fast” means that the rate of exchange
between kinetic energy and the thermal bath is faster than the
intrinsic exchange between kinetic and potential energy in the
system, so that the system has no time to redistribute kinetic
energy changes over kinetic and potential energy pools. “Slow”
means that the system does have the time to equilibrate
between the two pools. For an ideal gas, there is no potential
energy, and hence A = 1. In practice, a thermostat will be
employed to correct for long-term drift due to algorithmic
errors, and its strength will be chosen in the “slow” regime (as
γeff < 5 ps−1 in our examples). Note that in this limit, γeffh ≪ 1,
and eq 57 reduces to kth = 2Aγeff.
What are the advantages and disadvantages of the application

of impulsive friction and noise? First, the phase space
distribution remains canonical, which cannot be guaranteed
for weak-coupling global thermostats.5 Second, the temperature
response is a smooth first-order decay, which avoids many
problems of extended-system global thermostats.9,11 Third, as
in DPD, pairwise application assures the conservation of linear
momentum on a fairly local scale, allowing application in cases
where adherence to the Navier−Stokes relations in the
macroscopic limit is essential. Fourth, the local character of
the pairwise application allows one to impose and maintain
spatial temperature gradients, or different temperatures for
different subsystems. Fifth, the choice in parameters allows a
kind of “fine-tuning” of dynamic properties.
Knowledge of the behavior as a thermostat is but the first

step in a full control of the dynamic effects of applied friction
and noise. Ideally, if the influence on transport properties as
shear viscosity, diffusion, and thermal conductivity were
predictable, the user could fine-tune the system to achieve
desired properties. For example, one can choose the pairwise
application in three flavors (iso, perp, par); with equal
thermostat strength, the “perp” form increases shear viscosity
the most and the “par” form increases it the least. In a
preliminary evaluation, we found the viscosity increase for equal
γeff to be in the ratio iso/perp/par = 5:6:3. If a viscosity increase
is desired without any thermostatting action, a pairwise form of
Stochastic Rotational Dynamics (SRD)30,31 could be imple-
mented.

Unfortunately, the prediction of the influence of friction and
noise on dynamic properties of systems with internal
interactions is not straightforward at all. As we saw, the
diffusion coefficient could be predicted precisely for the ideal
gas, but for both coarse-grained and atomic water theoretical
predictions are not (yet) possible. Even the linear relation
between the inverse diffusion coefficient and the additional
friction rate is a purely empirical observation. These issues are
the subject of further study.
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