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ABSTRACT

Aims. We assess the benefits and limitations of using the redundant visibility information in regular phased-array systems to improve
the quality of the calibration.
Methods. Regular arrays offer the possibility of using redundant visibility information to constrain the calibration of the array inde-
pendently of a sky model and a beam model of the station elements. This requires a regular arrangement of the configuration of array
elements and identical beam patterns.
Results. We revised a previously developed calibration method for phased-array stations using the redundant visibility information
in the system and applied it successfully to a LOFAR station. The performance and limitations of the method were demonstrated by
comparing its application to real and simulated data. The main limitation is the mutual coupling between the station elements, which
leads to non-identical beams and stronger baseline-dependent noise. Comparing the variance in the estimated complex gains with the
Cramer-Rao Bound indicates that redundancy is a stable and optimum method for calibrating the complex gains of the system.
Conclusions. Our study shows that the use of the redundant visibility does improve the quality of the calibration in phased-array
systems. In addition, it provides a powerful tool obtaining system diagnostics. Our results demonstrate that designing redundancy
in both the station layout and the array configuration of future aperture arrays is strongly recommended. This is particularly true in
the case of the Square Kilometre Array (SKA) with its dynamic range requirement that surpasses any existing array by an order of
magnitude.
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1. Introduction

An important conceptual difference between the next generation
of radio telescopes and conventional ones is their hierarchical
system architecture. An excellent example is the Low Frequency
ARray (LOFAR), de Vos et al. (2009). In LOFAR, a station
consists of phased arrays that are either sparse or dense. In the
sparse phased-array stations, the station elements are dipoles that
are digitally beam-formed to synthesize a station as a dish such
as the low band antennas (LBAs) in a LOFAR station. Phased
arrays operating above ∼100 MHz are often implemented as
compound elements or tiles, such as the high band antennas
(HBAs) at the LOFAR stations or in Electronic Multi-Beam
Radio Astronomy ConcEpt (EMBRACE), Ardenne et al. (2004);
Kant et al. (2011), the latter being is an example of a very dense
phased-array station. In these stations, the station elements are
phased-array tiles (e.g. Fig. 1). A tile is a regular arrangement
of many dipoles whose signals are added in phase to form an
instantaneous beam (the first level of beam-forming). The tile
output signals are digitally phased up to synthesize a station as a
dish. At the next level in the beam-forming hierarchy, the beam-
formed output of each station is transported to the central cor-
relator to synthesize the whole telescope. Calibration has to be
performed at different levels of this hierarchy to provide a fi-
nal, high dynamic range image of part of sky, as explained by
Wijnholds et al. (2010).

In this paper, we concentrate on the calibration at station
level to ensure that the station beam is stable over time and

Fig. 1. Twenty-four-tile HBA station. Each tile is one station element.
This is the station configuration for most of LOFAR’s HBA stations,
including the LOFAR core (CS302). It is clear that a station like this is
highly redundant.

frequency. A robust calibration as part of the beam-forming pro-
cess should guarantee a stable beam pattern of the station for
data going to the central correlator. This is crucial for the dy-
namic range of the final images made using data from the entire
array.

In a phased-array station, the output of all station elements
can be correlated. These correlations are called station visibili-
ties, which are used for engineering purposes e.g. station calibra-
tion and radio frequency interference (RFI) detection/mitigation.
These correlations include many short baselines on which ex-
tended structures such as the Galactic plane are captured.
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Fig. 2. The sky imaged by HBA tiles at 14:10:20 UTC on 29 June 2009.
The Galactic plane appears in the north-west, the Sun appears in the
south-west. One can also see their corresponding grating response
in the image. The image is presented in the (l,m)-coordinates l =
cos(el) sin(az) and m = cos(el) cos(az), where el and az denote elevation
and azimuth, respectively.

The most commonly used calibration methods for phased-array
stations are model-based, such as a multi-source calibration
method introduced by Wijnholds & van der Veen (2009a). A
model-based calibration method requires the presence of one
or more relatively unresolved point sources such as CasA and
a model of the extended structures (see Fig. 2). Modeling an
extended structure is computationally difficult and expensive.
Wijnholds & van der Veen (2009b) phenomenologically model
it as correlated noise and estimate the parameters of inter-
est for calibration using a weighted alternative least squares
(WALS) approach. However, the model-based methods are in
general iterative methods, which usually converge after several
iterations.

A regular arrangement of station elements has the advan-
tage that it provides redundant baselines, i.e. baselines of the
same physical length and orientation. The use of redundant base-
line information for calibration was introduced by Noordam &
de Bruyn (1982). Its linearity, independence of a sky model, low
computational cost, and proven efficiency for precision calibra-
tion of Westerbork Synthesis Radio Telescope (WSRT) observa-
tions motivated us to apply the redundancy calibration to phased-
array stations. The redundancy calibration algorithm uses the
data of all redundant baselines to obtain a convergent calibration
solution in a single step.

However, redundancy calibration in phased-array systems
requires additional considerations. This is essentially because
of their different design concepts e.g. the closely located ele-
ments of a phased-array station experience mutual coupling be-
tween elements that leads to non-identical beams of the station
elements and to correlated receiver noise.

In this paper, we refine the standard data model presented
in the phased-array signal processing literature to account for
baseline-dependent corruptions in terms of the coupling ef-
fects. Using this refined data model, we briefly introduce
the two calibration methods i.e. model-based and redun-
dancy. This helps us to achieve a clearer understanding of
the potential and limitations of both calibration methods. We
also revise the redundancy method formalism presented by

(Wieringa 1991; Liu et al. 2010) to capture the nature of base-
line dependent errors that affect the calibration accuracy. Some
implementation issues are raised and investigated using ob-
served and simulated data of LOFAR HBA stations. We eval-
uate the redundancy calibration performance by comparing the
variance in its results with the Cramer-Rao Bound (CRB) and
the plots of residuals for the corrected data after redundancy
calibration. We also discuss limiting factors for its applicability.

Although we used HBA data to demonstrate the applicability
and efficiency of the redundancy method, the analysis in this pa-
per is relevant to any phased array that is to be calibrated using
redundant visibility information.

We denote vectors in bold lowercase letters and ma-
trices in bold uppercase letters. The matrix transpose and
Hermitian transpose are denoted by (.)T and (.)H, respectively.
Operator diag(.) creates a diagonal matrix of a given vector.
Operator vec(.) creates a vector. Operator � denotes element-
wise matrix multiplication. Operator ∠(.) returns the angle or
phase of a complex number. Operator κ(.) returns the condition
number of a matrix.

2. Methods

2.1. Data model for phased arrays

The standard data model for phased-array stations presented
in the literature assumes that in the absence of RFI and any
coupling effects, a phased array of p elements has a signal
vector, x(t) = [x1(t), x2(t), ..., xp(t)]T that can be expressed as

x(t) = ΓΦ

⎛⎜⎜⎜⎜⎜⎝
q∑

k=1

ak sk(t)

⎞⎟⎟⎟⎟⎟⎠ + n(t) = ΓΦAs(t) + n(t), (1)

where s(t) is a q × 1 vector containing q mutually independent
i.i.d.1. The Gaussian signals impinge on the array with the co-
variance of Σs = diag(σs) (size q × q), where σs is a vector of
the source fluxes. They are also assumed to be narrow band, so
we can define the q spatial signature vectors ak, which include
both the phase delays due to the geometry and the directional
response of the receiving elements (assumed to be identical).
The vectors ak are called the array response vectors which, are
usually normalized. The receiver noise signals ni(t) are assumed
to be mutually independent i.i.d. Gaussian signals in a p × 1
vector n(t) and uncorrelated. Thus, the noise covariance matrix,
Σn = diag(σn) (size p × p). The amplitudes and the phases of
direction-independent complex gains (gi’s), that have to be cal-
ibrated are γ = [γ1, γ2, ..., γp]T and φ = [e jφ1 , e jφ2 , ..., e jφp]T.
Correspondingly, Γ = diag(γ) and Φ = diag(φ). In addition,
A = [a1, a2, ..., aq] (size p × q) is a stack of the array response
vectors. Before computing the coherency, x(t) is sampled with
period T . The nth sample of the array signal vector x[n] is
given by

x[n] =
∞∑
−∞

x(t)δ(t − nT ) = x(nT ), (2)

N samples can be stacked in a matrix X = [x[1], x[2], ..., x[N]]
(size p × N), which denotes the short-term integration data set
or snapshot. The array covariance matrix or the visibility matrix
describing the correlation between all sampled voltages can be
estimated by R̂ = XXT/N, whose expected value becomes either

R = ΓΦAΣsAHΦHΓH + Σn (3)

1 Temporally independent and identically distributed.
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or

R = GAΣsAHGH + Σn. (4)

Correlator errors can be represented as an additive term in the
covariance matrix, i.e. as a non-diagonal matrix. However, in
Eq. (3) and throughout this paper, they are disregarded assuming
that the correlator is designed perfectly.

We note that γi could accommodate the overall amplitude
gain of both the receiver system and the atmospheric distur-
bances, and φi the corresponding phase shift. In the case of sta-
tion calibration, we do not calibrate for direction-dependent ef-
fects because we use snapshot data. In model-based methods,
these are absorbed in the known sky. In the case of redundancy
calibration, these are absorbed in its fundamental assumption.
We elaborate on this assumption in Sect. 2.3.

In phased-arrays such as the HBA stations of LOFAR,
or EMBRACE, the antenna elements are closely packed. This
may cause mutual coupling between them, i.e. not all the power
received by the elements is absorbed but some of the power is
reradiated to the other elements. The reradiated power induces
new currents in the other elements. Consequently, the radiation
pattern of the elements changes. This leads to a lack of similarity
between the element beam patterns or different array response
vectors despite their physical identicalness (as considered in A).
This effect can be modeled as a direction-dependent gain, G0
(size p× q) being element-wise multiplied by the array response
vectors

R = G (G0 � A)Σs (G0 � A)H MHGH + Σn. (5)

As studied by Svantesson (1998), mutual coupling can be
directly represented by M (size p × p) in the data model

R = GMAΣsAHMHGH + Σn. (6)

One may note that a direct association of M and G0 cannot be
expressed analytically. It requires a numerical evaluation that we
present in Sect. 3.1. For simplicity and to continue our argument,
we use the data model in Eq. (6).

Mutual coupling may not only act on the signal, but also on
the system noise. The low noise amplifiers (LNAs) connected
to the antennas in such an array, generate electromagnetic (EM)
noise waves towards their outputs, but also send EM noise waves
back into the antenna array. These waves are coupled into other
receiver channels, giving rise to a correlated noise contribu-
tion. This effect is known as noise coupling, which contributes
as Rrec in a general and non-diagonal noise correlation matrix
represented as:

Σ′n = Rsp + Rsky + Rrec (7)

where Rsp is the spillover noise correlation matrix that is usually
negligible as compared with Rsky which is the sky noise contri-
bution. Crosstalk in the back-end adds another baseline-specific
correlated noise term, which we disregard here. The general data
model for the visibility matrix becomes:

R = GMAΣsAHMHGH + Σ′n. (8)

We note that Σ′n is not a diagonal matrix, unlike Σn. It can be
shown that noise from each station element still has a normal
distribution in view of the large number of samples and accord-
ing to the central limit theorem. Therefore, the off-diagonal ele-
ments of Σ′n that appear in Eq. (10), have a Wishart distribution.

Although the noise model in Eq. (7) has only been presented
only in the literature for phased array feeds (PAFs), for example

by Jeffs et al. (2008) and Ivashina et al. (2011), it can be used as
a generic noise model for any antenna system (Maaskant 2010).
It is clear, however, that depending on the antenna and LNA de-
signs, the electrical characteristics of the array, and both the spar-
sity and density of the station element layout, the strength of
mutual coupling varies. Thus, the term Rrec may be replaced by
uncorrelated receiver noise in this definition.

2.2. Model-based calibration method

The model-based calibration problem was formulated as a least
squares minimization problem by Wijnholds & van der Veen
(2009a). Here, we rewrite it using the refined data model given
in Eq. (8)

{ĝ, σ̂n} = argming,σn

∥∥∥GMAΣsAHMHGH + Σ′n − R̂
∥∥∥2

F
. (9)

This estimates the noise and complex gain of each receiver el-
ement using the measured visibility, R̂ and the modeled visibil-
ity GMAΣsAHMHGH + Σ′n, where Σs and A are assumed to be
known. We can calculate them, if we specify the time of obser-
vation, the telescope geometry and the known source parame-
ters. In the presence of the coupling effects (M and Σ′n), estima-
tion results are biased, unless either an accurate beam model of
each individual element is provided or the matrix M is known.
In this case, one can handle the effect of the correlated noise
using a WALS approach (Wijnholds & van der Veen 2009b).

Figure 2 shows a sky map scanned by HBA tiles. One can
see the Galactic plane owing to the many short baselines and the
Sun as the dominant radio source. Given the beam models of the
station elements, the WALS method treats the extended struc-
ture as correlated noise and estimates the parameters of inter-
est. However, the model-based methods are in general iterative
methods that usually converge after several iterations.

2.3. Redundancy calibration method

The basic assumption of redundancy calibration is that the re-
dundant baselines sample the same Fourier component of the
sky (AΣsAH). This assumption holds if the array response vec-
tors of the redundant baselines are the same i.e. the element
beams are identical. We therefore begin with the most general
data model given in Eq. (8) to understand the limitations of this
method for a phased-array station.

To build up the system of equations for the redundancy cali-
bration algorithm, we represent an off-diagonal element of R in
Eq. (8) as

Ri j = gig
∗
j

[
MAΣsAHMH

]
i j
+ Σ′ni j

. (10)

We note that correlator offsets could contribute as additive cor-
rupting factors in Σ′ni j

. Since Σs in Sect. 2.1 is a diagonal matrix,
one can expand Eq. (10) to

Ri j = gig
∗
j MiiM

∗
j j

true visibility︷���������︸︸���������︷
q∑

q=1

AiqσqA∗jq (11)

+ gig
∗
j

q∑
q=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p∑

p1=1
p1�i

p∑
p2=1
p2� j

Mip1 M∗jp2
Ap1qA∗p2qσq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸����������������������������������������������︷︷����������������������������������������������︸

additive term due to mutual coupling

+Σ′ni j
.
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This shows that the mutual coupling produces baseline-
dependent multiplicative and additive terms by influencing sig-
nals directly and noise indirectly (Rrec in Eq. (7)). This violates
the fundamental assumption of redundancy i.e. we do not ob-
serve redundant visibilities on physically redundant baselines
(see Fig. 4, top).

Without loss of generality, Mii M∗j j = 1 (or they can be ab-
sorbed in the gains). To establish an analogy between Eq. (11)
and the redundancy method formalism in Wieringa (1991), we
define the term

ei j = gig
∗
j

q∑
q=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p∑

p1=1
p1�i

p∑
p2=1
p2� j

Mip1 M∗jp2
Ap1qA∗p2qσq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + Σ
′
n,i j (12)

and rewrite Eq. (11) as:

Robs
i j = Rtrue

i j gig
∗
j + ei j (13)

or

Robs
i j = Rtrue

i j gig
∗
j

⎛⎜⎜⎜⎜⎜⎝1 + ei j

Rtrue
i j gig

∗
j

⎞⎟⎟⎟⎟⎟⎠
︸������������︷︷������������︸

wi j

(14)

where Robs
i j and Rtrue

i j are the observed and the theoretical redun-
dant visibilities, respectively, gi and g j are the element complex
gains and wi j can be defined as a baseline-dependent error that
affects the accuracy of the calibration results.

We take the natural logarithm of both sides of Eq. (14) to
obtain

ln Robs
i j = ln |γi| + ln |γ j| + i

(
φ j − φi

)
+ ln Rtrue

i j + ln
(
wi j

)
. (15)

In the absence of mutual coupling, the first term of ei j drops and
the second term reduces the contribution of Rrec. The only cor-
related contributing terms come from Rsky and Rsp, which are
negligible depending on the signal-to-noise ratio (S/N) of the
observation. We assume that we have such a case where we can
ignore ei j. We equate the amplitude and the phase values to de-
couple the system of equations for the phases and the amplitudes

ln |Robs
i j | = γ′i + γ′j + ln |Rtrue

i j | (16)

ψobs
i j = φ j − φi + ψ

true
i j , (17)

where |Ri j| and ψi j are the amplitude and the phase of a complex
visibility. Since we have to specify the absolute flux level, we set

Σγ′i = 0. (18)

We also have to constrain the element phase. We can enforce this
constraint by specifying that the average phase for all elements
is zero

Σφi = 0. (19)

Furthermore, there may also be an arbitrary linear phase slope
over the array. This phase slope corresponds to a position shift
of the field. This arises because a redundancy solution does not
provide an absolute position. This can be absorbed into either
the true visibilities or the element phases. For a two-dimensional
array, we constrain x and y in the same manner as

Σ
p
i=1φixi = 0 (20)

Σ
p
i=1φiyi = 0, (21)

where xi and yi are the (x, y) coordinates of the array ele-
ments. Equations (16)−(21) formulate the redundancy calibra-
tion method as two overdetermined systems of linear equations
for phases and amplitudes that can be solved in a single-step
least squares solution. For instance, the phase estimator can be
symbolized as Ephθ = Ψobs and solved using the pseudo-inverse

θ̂ =
[
ET

phEph

]−1
ET

phΨ
obs, (22)

where θ = [φ1, φ2, ..., φp, ψ
true
1 , ψtrue

2 , ..., ψtrue
m ] is the vector of pa-

rameters to be estimated, m is the number of distinct redundant
baselines, Eph is the coefficient matrix, and Ψobs is the vector of
the observed redundant phases and right sides of Eqs. (19)−(21).
Setting a phase reference for element phases, is done after the
phase estimation.

We note that we came to the solution in Eq. (22), because we
ignored the baseline-dependent noise. In its presence, our prob-
lem takes the form of Ephθ + β = Ψ

obs (expanded in Eq. (24)).
The estimated parameters will deviate as

ε ≡ θ − θ̂ =
[
ET

phEph

]−1
ET

phβ, (23)

where β = vec(∠(ln(wi j))). If the array mutual coupling is sig-
nificant, the redundancy method is not be a reliable estimator. In
the case of a weakly coupled array, the vector β still carries the
correlated noise produced by Rsp and Rsky. Assuming that each
has a Wishart distribution in Eq. (12), their statistical distribution
changes in vector β. This was taken into account in deriving the
results in Sect. 3.2.

Since the created systems of equations are highly sparse,
they are computationally fast. Most importantly, they are inde-
pendent of a sky model but their accuracy is affected by the S/N
of the observed sky as discussed by Liu et al. (2010). They re-
quire identical beams of station elements and a regular arrange-
ment of antennas to provide a sufficient number of redundant
baselines. One can then, estimate the element complex gains in
a single step.

3. Implementation of the redundancy calibration
using real and simulated HBA data

3.1. Verification of the fundamental assumption
of redundancy

As mentioned earlier, redundancy translates into verifying the
similarities among the element beams in a station. We checked
this for a 24-tile HBA station similar to the one shown in Fig. 1
using Computationally Advanced and Efficient Simulator for
ARrays (CAESAR; Maaskant et al. 2008; Maaskant & Yang
2006). The numerical computation of the EM simulation was
done using the Characteristic Basis Function Method (CBFM),
which is the most numerically efficient and accurate method
available for large scattering problems (Prakash & Mittra 2003;
Yeo et al. 2003). Figure 3 presents the simulation results when
the beams are formed toward the local zenith. Each subplot
presents the beam patterns of 24 tiles for a particular frequency
in the φ = 0 plane. One can see that owing to the different mu-
tual coupling environment, each tile has a slightly different beam
pattern. The mutual coupling effect is sufficiently small not to
disturb the main beam but only the far sidelobes which are at
least 12 dB weaker than the main lobe. However, it is not a fa-
vorable condition in general for redundancy calibration. On the
basis of this simulation, we expect to observe non-redundant vis-
ibilities on redundant baselines when a strong source falls in the
sidelobes. This was confirmed by the real observation presented
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Fig. 3. Simulated beam pattern of the tiles in a 24-tile HBA station using CAESAR. Each subplot presents the beam patterns of 24 tiles in a
particular frequency in φ = 0 plane. The beams are formed toward the local zenith. The dissimilarity between the sidelobes is caused by the
different mutual coupling environments of each tile.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0 0 0 0 ... 0 0 1 0 0 ... 0
0 0 1 −1 0 0 0 0 0 0 0 ... 0 0 1 0 0 ... 0
0 0 0 1 −1 0 0 0 0 0 0 ... 0 0 1 0 0 ... 0
0 0 0 0 1 −1 0 0 0 0 0 ... 0 0 1 0 0 ... 0
. . . 0
. . . 0
. . . 0
0 0 0 0 0 0 0 0 0 0 0 ... 1 −1 1 0 0 ... 0
. . . 0
. . . 0
. . . 0
1 0 0 0 0 0 0 0 0 0 0 ... −1 0 0 0 0 ... 1
0 1 0 0 0 0 0 0 0 0 0 ... 0 −1 0 0 0 ... 1
1 1 1 1 1 1 1 1 1 1 1 ... 1 1 0 0 0 ... 0
x1 x2 x3 x4 . . . . . . . ... . x24 0 0 0 ... 0
y1 y2 y3 y4 . . . . . . . ... . y24 0 0 0 ... 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸�����������������������������������������������������������������������︷︷�����������������������������������������������������������������������︸

Eph

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(24)

in Fig. 4, top panel. In this observation, owing to the absence
of a strong source in the main beam, the non-identical sidelobes
have the chance to play a significant role in disturbing the redun-
dancy while in the observation shown in Fig. 4, bottom panel,
one strong source in the main beam seems to be sufficient to
dominate the influence of other possible strong sources observed
in the direction of the non-identical sidelobes. There is of course
a different contribution from the correlated background noise or
sky noise (Rsky) in Fig. 4, top and bottom panels.

Figure 4 presents two data sets obtained to verify the use
of redundancy in a HBA station. The observations were made
on 5 September 2009. The tile beams in a HBA station (in
the LOFAR core, known as CS302) were formed toward the lo-
cal zenith. We let the sky drift over the field of view (FoV) of the
station. We captured the station visibilities approximately every

10 min (integration time of one second per frequency channel
for 512 frequency channels). The bandwidth of the frequency
channels is 195 kHz and the frequency range is 100−200 MHz.
On the right panel, the local sky viewed from CS302 is presented
to show the sources that have contributed to the visibilities
shown in the left panel.

Since the mutual coupling environment changes at lower
elevations, dissimilarities between the main beams are
consequently found up to 1−2 dB. Real observations have
shown less disturbance in the main beam at lower elevations
(see Sect. 3.2 and Appendix A).

On the basis of the EM simulation by CAESAR (Fig. 3)
and real observations (Fig. 4), we conclude that the best case
scenario for redundancy calibration of an HBA station is to
have a strong source in the main lobe when the beams are
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Fig. 4. An observation performed with a HBA station on September 5, 2009 at 13:13:48 UTC in which redundancy calibration fails (top), as well
as an observation with the same station at 23:02:01 UTC in which the redundancy calibration is successful (bottom). The left panels show the
measured visibilities for three distinct types of redundant baselines. The right panels show the local sky model at the time of observation, where
the strongest sources on the sky are superimposed on a contour plot of the element beam pattern at 170 MHz.

identical. However, the dissimilarities of the sidelobes introduce
non-redundancy or systematic errors that cannot be eliminated
by any statistical method or a longer integration time. Therefore,
we must investigate whether the contribution of other strong
sources, which may fall in the non-identical sidelobes, is sig-
nificant. To quantify this systematic error in the visibility mea-
sured on a given baseline, we present the following example.
At 21:29:04 UTC on 24 November 2009, at an HBA station
called RS208 located at (lon = 6.9196◦, lat = 52.6699◦), four
strong sources were in the FoV, as shown in Fig. 5. In Fig. 5,
the tile beams were formed toward 3C 461 (CasA), which was
thus at the phase center. The sources 3C 405 (CygA), 3C 400,
and 3C 144 (Tau A) have fallen in the sidelobes. The tile beams
and their standard deviation at 120 MHz, at these sources are
also depicted in Fig. 5. The total complex visibility observed on
a certain baseline, Dλ is computed as

Robs =
⏐⏐⏐⏐⏐Robs

⏐⏐⏐⏐⏐ e jψobs
=

∫
s
Λ (σ) I (σ) e− j2πDλ.σdΩ (25)

where Λ(σ) ≡ A(σ)/A0 is the normalized tile reception pattern
at σ, A0 is the response at the beam center and I(σ) is the source
flux. Since there are four dominant strong sources in the FoV,
we assume that the integral can be replaced by a summation.
The complex plane in Fig. 6 right panel, shows the summations
of the visibility vectors as they were observed through hypo-
thetically identical sidelobes, Rtotal (solid line), as well as their
summation when they were attenuated differently by the actual
non-identical sidelobes, R′total (dotted line). We computed the
systematic errors in the phase and the amplitude of the visi-
bility by assuming the complex vector to be Rtotal = R3C 461 +
R3C 144 +R3C 405+R3C 400 using Eq. (25). For this, we choose the
baseline type given in Fig. 8, rightmost panel (D) and frequency
f = 120 MHz for Dλ = D/λ, where λ is the wavelength. We
set the average beam pattern of all 48 tiles as the identical beam
for the term A(σ) whose values are shown in Fig. 5 at differ-
ent source locations, as the quantity beam level. We use Λ(σ) =
A(σ)/A(σ3C 461). The source fluxes, I(σ) are given in Table 1.
We also compute R′total = R′3C 461+R′3C 144+R′3C 405+R′3C 400.
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Fig. 5. A-team radio sources in the FoV of an HBA station called RS208 on 24 November 2009 at 21:29:04 UTC. Tile beams are streered toward
3C 461 to provide the most redundant visibilities. The values of the average reception pattern of 48 tiles, A(σ), and their standard deviation,
std(A(σ)) at 120 MHz have also been indicated at other source locations, σ.

The computation settings are as before except that A(σ) is not
identical this time, but deviated from the average beam pattern
by the standard deviation values shown in Fig. 5 at different
source locations, as the quantity std(Beam). The bias introduced
to the amplitude and the phase of R′total as compared with Rtotal
are presented in the first row of Table 1.

We steer the beam toward each available strong source and
repeat the calculation to predict the systematic error due to the
other sources in the sidelobes with different standard devia-
tions. The results are presented in Table 1. We can conclude
that tracking CasA provides the best redundancy in the observed
visibilities.

The plot of the residuals for the corrected redundant visi-
bilities shown in Fig. 8 confirms the results in Table 1. Figure 8
reveals the non-redundancy in the measured visibilities (in terms
of amplitudes and phases). In Table 1, we predict the same quan-
tities, which are caused by non-identical sidelobes. There is a
few percent of discrepancy between the predicted residuals and
their actual values in our observation. This can be explained by
our simplifying assumption about the number of strong sources
in the FoV. However, Table 1 can play an instrumental role for
station calibration.

3.2. Redundancy calibration performance

To study the redundancy calibration performance, we tracked
CasA on 24 November 2009 from 15:25:43 UTC until

22:12:19 UTC. Running a redundancy calibration on 48 cap-
tured data sets during this observation, provided very stable re-
sults for the receiver complex gains over time. This is an indi-
cation of the system stability and a working calibration routine,
which operated approximately every 10 min. We compare the
variance in the estimated complex gains over 48 runs of redun-
dancy calibration with the CRB in Fig. 7. These quantities for the
amplitudes and the phases are presented in two separate plots, as
their estimators were decoupled in Sect. 2.3. The CRB (or the
theoretical minimum variance) and the actual variance in the es-
timated parameters over time are in good agreement. The small
difference between them can be explained by their not having
exactly the same S/N from one observation to another during
our survey from 15:25:43 UTC until 22:12:19 UTC, while the
predicted S/N for this observation is S/N 
 0.75, following the
analysis of Wijnholds & van Cappellen (2011). This predicted
value was used to compute the presented CRB in Fig. 7.

We also studied the residuals for the corrected redundant
visibilities. Figure 8 shows an example of the residuals in both
the amplitudes and phases of the corrected visibilities on a dis-
tinct type of redundant baseline. The snapshot is captured at
21:29:04 UTC, when CasA is at high elevation. The first row
compares the results after redundancy calibration to those after
the model-based calibration in the second row. The type of re-
dundant baseline is depicted on the station configuration in the
rightmost panel. The integration time is one second per fre-
quency channel. More plots of the residuals from the same
observation are presented in Fig. A.1. By comparing them, one
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Fig. 6. Total complex visibility on a certain baseline due to the contribution of all strong sources shown in Fig. 5. The ones that contribute through
non-identical sidelobes introduce non-redundancy or systematic errors into the total redundant visibility. This has been demonstrated in a complex
plane on the right. The solid line shows the visibility vectors as they were observed through hypothetically identical sidelobes. The dotted line
shows the visibility vectors when they are attenuated differently by the actual non-identical sidelobes.

Table 1. A-team radio sources in the FoV of RS208, on 24 of November 2009 at 21:29:04 UTC and the predicted levels of systematic errors in the
amplitudes and the phases of the redundant visibility due to the contribution of other strong sources through non-identical sidelobes.

Calibrator source Source flux [Jy] Normalized error in amplitudes Error in phases [rad]
3C 461 (CasA) 8609 0.07 0.06
3C 405 (CygA) 8100 0.20 0.09
3C 400 540 0.93 0.01
3C 144 (TauA) 1420 0.84 0.28

Notes. The baselines given in Fig. 8, rightmost panel and frequency, f = 120 MHz were chosen for the computations.

may note that the baseline length does not make a significant dif-
ference in the residuals. The residuals are on the order of 2−5%
in both phases and amplitudes. Because a strong source such
as CasA in the field of view dominates the effect of any possi-
ble correlated noise, this can be explained by not having 100%
identical main beams or the corruption due to the nonidenti-
cal sidelobes (see Table 1). However, these results are satisfac-
tory. Moreover, Fig. 7 showed that the estimated complex gains,
which are our parameters of interest in a station calibration,
are very stable. This is due to the constraints on them in the
formalism of the redundancy calibration.

Using the data captured at 15:25:43 UTC, when CasA is at
low elevation, reveals slightly larger residuals in the order of
5−10% (see Fig. A.2). This is due to a different mutual coupling
environment which leads to less identical beams in either the
main lobe or the sidelobes.

The residuals also show that the two calibration methods
perform almost equally well, although the redundancy method
behaves more consistently. The model-based calibration has

slightly larger residuals on short baselines, e.g. up to ∼0−1%
in phases and ∼0−2% in amplitudes, whereas it shows simi-
lar residuals as the redundancy calibration on long baselines.
Extended structures such as the Galactic plane or north polar
spur, are captured on short baselines. Modeling them is com-
putationally expensive and somehow impractical. Therefore,
in the model-based method, one has to discard the visibil-
ities measured on short baselines to simplify the measured
sky for a corresponding simple sky model, while the re-
dundancy method is sky-model-independent. Experiment has
shown that discarding the equations of short baselines in the
redundancy calibration routine, will not improve its results
significantly.

Moreover, the model-based methods are sensitive to RFI
sources, as their presence confuses the sky model. Since the
redundancy calibration is independent of the sky model, it is less
sensitive to RFI. One may note that more frequency channels had
to be flagged in the model-based calibration.
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Fig. 7. Theoretical minimum variances in the estimated amplitudes and phases of the complex gains or CRB compared with their actual variance.
These quantities for the amplitudes and the phases are presented in two separate plots as their estimators were decoupled in Sect. 2.3.

Fig. 8. Plots of the residuals for corrected redundant visibilities in terms of phases and amplitudes on a given set of redundant baselines. The first
row shows the results after redundancy calibration. The second row shows the result after model-based calibration. The data is taken from the
observation done on 24 November 2009 at 21:29:04 UTC, when CasA is at high elevation. The station configuration of RS208 is shown in the
rightmost panel. The corresponding redundant baselines to each redundant visibility are also depicted on the station layout, with the same color
code.

As discussed by Liu et al. (2010), redundancy calibration
quality depends on the S/N of the observed sky, although it
is independent of a sky model. Liu et al. (2010) showed that
the estimated parameters are affected differently in the pres-
ence of baseline-dependent noise, assuming that it is Gaussian
noise. The vector β in Eq. (23) reveals a non-Gaussian baseline
dependent noise. We have taken this into consideration in the
following results. After adding different levels of a non-i.i.d.

Gaussian noise to the output vector of the array (Eq. (1)), we
simulated the station visibility assuming that the station ele-
ments have identical beams. We used the station configuration
of RS208 (see Fig. 8, rightmost panel). The complex gains
were estimated over 100 runs of Monte-Carlo simulation for
different S/N’s per visibility. The variance of the error in the
estimated complex gains (over simulation runs with different
random noises) versus different S/N’s per visibility is shown in
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Fig. 9. The variance of the estimated complex gains in terms of amplitude (left) and phase (right) versus the (S/N)−1 per visibility. Each color
represents the estimated complex gain of a tile whose number is mentioned in the legend.

Fig. 9. These plots indicate that the variances in the estimated
complex gains, which are our parameters of interest in a station
calibration, are the same for the different tiles. This illustrates
the stability of the algorithm. However, an analysis of this nature
is very array-configuration-dependent, as the array configuration
determines the coefficient matrices by which our estimators are
defined.

3.3. Limitations of the redundancy calibration

The applicability of the redundancy calibration is limited by the
following factors:

1. The station configuration.
2. Mutual coupling between the station elements, which

leads to:
– non-identical element beams;
– the presence of baseline dependent noise.

3. The signal-to-noise ratio across the observed sky.

The station configuration can influence the suitability of redun-
dancy in different ways. The redundancy calibration method re-
quires a regular arrangement of station elements. In a station
with p elements, one needs a sufficient number of distinct types
of redundant baseline to have a system of equations in which
all station element gains are involved. The more redundant the
station’s baselines are, the less information in the measured vis-
ibilities will be missed in the computation. This is not a concern
in the HBA stations, as they are highly redundant. We denote
by I the ratio of the number of the measured visibilities that are
used in the computations, to the total number of the measured
visibilities. The station configuration also determines the coef-
ficient matrices i.e. Eph or Eampl for the phase and amplitude
estimators, respectively. The condition number is a relative error
magnification factor i.e. errors in the right-hand side of a lin-
ear system of equations can cause errors κ(Eph) times as large
in the solution. Figure 10 shows three different configurations
for the HBA stations in the LOFAR system. After recognizing
the redundant baseline in a certain configuration, one can calcu-
late the aforementioned quantities, which are given in Table 2.
This table shows that RS208 is the most reliable configuration,

from the redundancy calibration point of view. However, these
quantities can be figures of merit when we design for redun-
dancy within the stations and in terms of the arrangement of the
stations within the whole array.

Configuration and element spacing in a station are usually
decided based on obtaining low sidelobes of the station beam.
Minimizing the mutual coupling between the station elements
should be taken into consideration as other important figures of
merit in a station layout for the sake of redundancy applicabil-
ity. This consideration serves a twofold goal, obtaining identical
element beams at least in the main beam and minimizing the
receiver correlated noise (Rrec). The dissimilarities between the
element beams introduces systematic errors that cannot be elim-
inated by either any statistical method or a longer integration
time. In the presence of the baseline dependent noise, the esti-
mated parameters will deviate from their true values as given by
Eq. (23). Quantifying this deviation for a given array, requires a
good understanding of the noise terms in Eq. (7), especially Rrec.
The correlated noise terms are difficult to model analytically,
Maaskant (2010). One may use a powerful and generic tool
called CAESAR to compute them numerically using its electro-
magnetic (EM) and microwave (MW) simulators, which is in-
deed an ongoing project at the HBA and EMBRACE stations.
Primary results from the MW-simulation for an HBA station
have demonstrated a negligible contribution of Rrec. However,
Fig. 9 indicates that whatever the effect of the calibration ac-
curacy may be, it does not make the redundancy algorithm
unstable.

4. Discussion

We have studied the applicability of redundancy calibration to
phased-array stations for the first time. The performance of
this calibration method was demonstrated using data acquired
with a new telescope, LOFAR. This required new considera-
tions to the original design of conventional arrays e.g. WSRT
and VLA. We took them into account by refining the data model.
Reformulating the redundancy calibration formalism using the
new data model, helped us to understand its potential, limitations
and the effects of non-Gaussian baseline-dependent noise on the
calibration accuracy.
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Fig. 10. Three different station configuration for HBA stations.

Table 2. Station configuration and the condition of the redundancy calibration.

Station Conf. Number of distinct redundant baseline size(Eph) size(Eampl) κ(Eph) κ(Eampl) I

RS208 84 1127 × 132 1125 × 132 52.72 9.74 99.65%
CS302 113 1123 × 161 1121 × 161 6.74e16 9.99 99.29%
CS004 72 547 × 120 545 × 120 8.42e16 1.73e15 48.22%

We must consider both obtaining identical beams for sta-
tion elements and minimizing the correlated noise as figures
of merit for the configuration and spacings between the el-
ements within a station in Square Kilometre Array (SKA)
pathfinders and the SKA itself. This is definitely necessary, re-
gardless of the calibration method used. For the redundancy
method, it is fundamental, while having identical element
beams saves computational capacity and time for model-based
methods.

In the plots of residuals and Table 1, we have demon-
strated how non-identicalness of the beams leads to system-
atic errors that cannot be eliminated by any statistical meth-
ods or longer integration time. Since, identical element beams
are fundamental especially for the redundancy calibration, sim-
ilar EM-simulations to those presented here, are highly recom-
mended for any array that is to be calibrated using redundancy.
Moreover, redundancy turns out to be an extremely suitable
diagnostic tool for recognizing and monitoring failing station
elements. This is of concern in arrays with large number of

elements, such as LOFAR and SKA. It is currently being used
for this purpose in the LOFAR system.

Wide field science with new radio telescopes such as SKA
(van Ardenne et al. 2009), demands an enormous amount of
signal processing and computational capacity. This is mainly
due to the large number of elements, the variable beams, and
the effect of the ionosphere over a large field of view. The re-
dundancy calibration results encourage us to seriously recom-
mend considering redundancy in the SKA configuration, both at
the station and whole array level. In large interferometers such
as SKA, where the baselines are non-coplaner, one has to how-
ever, think of redundancy in UVW-space, however, not only in
UV-space. Redundancy can be applied to the gain calibration of
the whole array in specific regimes where the stations observe
the sky, through the same ionospheric patch. It also saves com-
putational capacity and gives a more accurate estimate of the
telescope gains than the model-based gain calibration. This is of
course a major step forward in achieving radio images of higher
dynamic range.
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5. Conclusion

For the first time, we have studied the applicability and limita-
tions of redundancy calibration in phased-array stations using
both real and simulated data of a new telescope, that uses aper-
ture array technology such as LOFAR. The results clearly show
that the additional contraints provided by redundant baselines
do improve the quality of the calibration and in addition provide
a powerful tool for system diagnostics at different levels of the
telescope phased-array hierarchy (both intra-station and inter-
station). The merit of redundancy in the station and full array
layout and the additional advantage for diagnostics are clearly
demonstrated by this study. We therefore strongly recommend
to ensure redundancy in both the station layout and the array
configuration of future aperture arrays, in particular the SKA,
where the required dynamic range will be an order of magni-
tude beyond any existing array. Because redundancy gives a bet-
ter handle on characterizing the state of the system, it provides
in addition a model-independent diagnostic tool for subsystems
such as a station.
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Appendix A: More plots of residuals for corrected
redundant visibilities

We present additional plots of the residuals for the cor-
rected redundant visibilities of our observational campaign on
24 November 2009. Figure A.1 shows similar results of the same
data set (captured at 21:29:04 UTC, when CasA was at high el-
evation) presented in Fig. 8 but for different baselines, shown in
the rightmost panel.

Figure A.2 shows similar results using the data captured at
15:25:43 UTC, when CasA was at low elevation. They reveal
slightly larger residuals in the order of 5−10% than the results
in Figs. 8 and A.1. This is due to a different mutual coupling
environment which leads to less identical beams in either the
main lobe or the sidelobes. As discussed in Sect. 3.2, we still see
smaller residuals after redundancy calibration as compared with
the model-based method.

Fig. A.1. Plots of the residuals for corrected redundant visibilities in terms of phases and amplitudes on a given set of redundant baselines. The
first row shows the results after redundancy calibration. The second row shows the result afters model-based calibration. The data is taken from an
observation done on 24 November 2009 at 21:29:04 UTC, when CasA was at high elevation. The station configuration of RS208 is shown in the
rightmost panel. The corresponding redundant baselines to each redundant visibility are also depicted on the station layout, with the same color
code.

Fig. A.1. continued.
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Fig. A.2. Plots of the residuals for corrected redundant visibilities in terms of phases and amplitudes on a given set of redundant baselines. The
first row shows the results after redundancy calibration. The second row shows the result afters model-based calibration. The data is taken from the
observation done on 24 November 2009 at 15:25:43 UTC, when CasA was at low elevation. The station configuration of RS208 is shown in the
rightmost panel. The corresponding redundant baselines to each redundant visibility are also depicted on the station layout, with the same color
code.

Fig. A.2. continued.
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Fig. A.2. continued.
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