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1 1. THE TRADITIONAL DERIVATION

Newton–Cartan gravity is a geometric reformula�
tion of Newtonian gravity in which the curved trajec�
tories of particles in flat space �d are replaced by geo�
desics in curved Newtonian spacetime. This spacetime
has a singular metric structure [2, 3] due to the abso�
lute time t. The spatial metric hμν and temporal metric
τμν, with hμντνρ = 0, are covariantly constant: ∇ρhμν =
∇ρτνν = 0. This defines a class of connections Γ. These
can be solved for by introducing hμν and τμν with
hμρτρν = 0, and the projective relation hμρhμν + τμρτμν =

. Unlike in general relativity, Γ is not uniquely
determined from metric compatibility; there is an
ambiguity which is parametrized by an arbritary two�
form Kμν.

Writing τμν = τμτν, the metric compatibility of τμν

implies in adapted coordinates x0 = t that τμ = ∂μt = δ0
μ

and hμ0 = 0. This leaves us with nonzero connection

components {   } with i = 1, … d. The form
of the connection suggests the definitions Φi = ∂0hi0 –
1/2∂ih00 + Ki0, and Ωij = ∂[ihj]0 – 1/2Kij. To identify the
Newtonian potential, a number of constraints needs to
be imposed on the Riemann tensor. These are summa�
rized by what are known as the Ehlers conditions [4, 5]

(1)

In adapted coordinates, these conditions imply

( ) = 0. This means that space is flat, so that we
can choose spatial coordinates in which hij = δij, and

thus obtain  = 0 and  ∝ Ωij. In this coordinate
system we are still allowed to perform time dependent
spatial rotations, which preserve hij = δij. The symmet�
ric part (νρ) of the Ehlers conditions (1) implies

1 The article is published in the original.
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∂[ρKμν] = 0. The full expression leads to the restric�
tions

(2)

The second restriction shows that Ωij only depends on
time, so that it can be set to zero via a time�dependent

rotation. This means that  = 0, which in terms of K
is equivalent to Kij = 2∂[ihj]0. Since the curl of K van�
ishes, we can introduce a vector Mμ such that

(3)

which means that hj0 = Mj + ∂jf, where f is an arbitary
function. This enables us to write the only remaining

non�zero connection coefficients  as

(4)

which defines the Newtonian potential φ. This identifi�
cation is motivated by the form of the geodesic equation
of a particle in our singular metric and by considering the
Einstein equations, in which only R00 = ∂i∂iφ is nonzero.

2. THE ALGEBRAIC DERIVATION

Our starting point in the algebraic approach [1] is
the Lagrangian of a non�relativistic free particle with is
invariant under the centrally extended Galilei algebra
known as the Bargmann algebra. A gauging procedure
is applied to this Bargmann algebra giving rise to a
gauge field for every generator with corresponding
curvatures that satisfy Bianchi identities.
In a next step we impose a set of constraints on the cur�

vatures such that the gauge fields  and τμ corre�
sponding to the spatial and temporal translations,
respectively, transform as vielbeins. These constraints
have the additional effect that the spin connections

 and  corresponding to the rotations and to

∂0Ωij ∂ Φi[ j ]– 0, ∂kΩij 0.==
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the Galilean boosts can be expressed in terms of the

independent fields  and τμ together with the gauge
field mμ corresponding to the central charge transfor�
mations. Without the central charge, the spin connec�
tions could not have been solved for.

To identify the Newtonian potential we need to
impose a further curvature constraint. To motivate this
constraint we first construct a connection by the

requirement that ∇ρ  = ∇ρτμ= 0. These vielbein
postulates imply that Γ can be expressed uniquely in
terms of the independent fields, in contrast to the tra�
ditional approach. Then in adapted coordinates one

has again that  = 0, leaving us with nonzero con�

nection components {   }.

We now impose that the curvature of the rotational

symmetries vanishes, (J) = 0. By expressing the
Riemann tensor in terms of the curvatures of the Barg�
mann algebra, this constraint implies that space is flat,

( ) = 0. We can therefore again choose spatial

coordinates such that hij = δij and hence  = 0. The

fact that (J) = 0 also implies that  is a pure
gauge, and can be set to zero by a local rotation. Phys�
ically, these coordinates describe a non�rotating
observer. Since is a pure gauge, and can be set to zero
by a local rotij is a dependent field, this implies the fol�
lowing relation between the central charge gauge field

mμ and the time�component of the vielbein :

(5)

A further analysis shows that the only remaining con�

nection coefficients  are given by

(6)

where h00 = ke0k and φ is the Newtonian potential.
Here f arises from (5), which implies e0k – mk = ∂kf.

Just as in the previous analysis we find that  = ∂iφ,
and that R00 is therefore the only nonzero component
of the Ricci tensor.

3. CONCLUSION AND DISCUSSION

We conclude that the expression (6) for the Newto�
nian potential derived in the algebraic analysis coin�
cides with the expression (4) derived in the traditional
analysis. Therefore, the two procedures lead to the
same final result. The central charge gauge field mμ in
the gauge algebra analysis corresponds in the tradi�
tional derivation to the field Mμ in (3).

The advantage of the algebraic procedure is that it
can be applied to define other nonrelativistic limits of

general relativity, e.g. by switching to nonrelativistic
strings [9]. There, the starting point is the symmetry
group of the nonrelativistic string action which is a
deformation of the stringy Galilei group. Gauging this
algebra and imposing a set of curvature constraints
similarly to the point particle leads to a new nonrela�
tivistic gravity theory. The foliation space then
becomes a two�dimensional Minkowski foliation,
τab = ηab, (a = 0, 1). The extra foliation direction cor�
responds to the longitudinal direction along the string.
We thus end up with a generalization of the Poisson
equation and the geodesic equation, involving a gravi�
tational tensor potential φab. By changing the curva�
ture constraint for the foliation space this nonrelativ�
istic string can be placed in a spacetime exhibiting
stringy Newton–Hooke symmetry [6], where the foli�
ation space is AdS2 and the transverse space is flat.
These new nonrelativistic limits of general relativity, in
the case of strings, could have applications in the con�
text of nonrelativistic versions of AdS/CFT [7].
Although most of the literature on this topic concerns
background solutions of general relativity with nonrel�
ativistic isometries, such as the Schrodinger and Lif�
shitz symmetries, there are a number of intriguing field
theories with Galilei symmetries as well. It would be
interesting to see whether the gravitational description
of this class of field theories can be understood by
using the stringy nonrelativistic limit of general rela�
tivity that follows from our procedure.
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