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Dynamic Changes in Ezh2 Gene Occupancy Underlie Its
Involvement in Neural Stem Cell Self-Renewal and
Differentiation towards Oligodendrocytes
Falak Sher, Erik Boddeke, Marta Olah, Sjef Copray*

Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Abstract

Background: The polycomb group protein Ezh2 is an epigenetic repressor of transcription originally found to prevent
untimely differentiation of pluripotent embryonic stem cells. We previously demonstrated that Ezh2 is also expressed in
multipotent neural stem cells (NSCs). We showed that Ezh2 expression is downregulated during NSC differentiation into
astrocytes or neurons. However, high levels of Ezh2 remained present in differentiating oligodendrocytes until myelinating.
This study aimed to elucidate the target genes of Ezh2 in NSCs and in premyelinating oligodendrocytes (pOLs).

Methodology/Principal Findings: We performed chromatin immunoprecipitation followed by high-throughput sequencing
to detect the target genes of Ezh2 in NSCs and pOLs. We found 1532 target genes of Ezh2 in NSCs. During NSC
differentiation, the occupancy of these genes by Ezh2 was alleviated. However, when the NSCs differentiated into
oligodendrocytes, 393 of these genes remained targets of Ezh2. Analysis of the target genes indicated that the repressive
activity of Ezh2 in NSCs concerns genes involved in stem cell maintenance, in cell cycle control and in preventing neural
differentiation. Among the genes in pOLs that were still repressed by Ezh2 were most prominently those associated with
neuronal and astrocytic committed cell lineages. Suppression of Ezh2 activity in NSCs caused loss of stem cell characteristics,
blocked their proliferation and ultimately induced apoptosis. Suppression of Ezh2 activity in pOLs resulted in derangement
of the oligodendrocytic phenotype, due to re-expression of neuronal and astrocytic genes, and ultimately in apoptosis.

Conclusions/Significance: Our data indicate that the epigenetic repressor Ezh2 in NSCs is crucial for proliferative activity
and maintenance of neural stemness. During differentiation towards oligodendrocytes, Ezh2 repression continues
particularly to suppress other neural fate choices. Ezh2 is completely downregulated during differentiation towards neurons
and astrocytes allowing transcription of these differentiation programs. The specific fate choice towards astrocytes or
neurons is apparently controlled by epigenetic regulators other than Ezh2.
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Introduction

Multipotent neural stem cells (NSCs) give rise to neurons,

astrocytes and oligodendrocytes. Insight in the molecular regula-

tory mechanisms underlying NSC self-renewal and differentiation

into each of these cell types is of fundamental importance for

understanding proper brain development, for explaining brain

tumor formation and for application of NSCs in regenerative

therapies for various neurodegenerative disorders.

The differentiation of NSCs into a specific neural cell type is

ultimately determined by an interplay between extrinsic and

intrinsic factors. Several signaling pathways are intricately

involved in triggering a distinct set of transcription factors, which

in turn set off the transcription of genes that determine a specific

neural cell type. In case of neuronal differentiation, it is essential

that, besides active transcription of neuronal genes, the transcrip-

tion of genes encoding for a glial fate is suppressed and in case of

glial cell differentiation, vice versa [1–4]. It has become clear that

epigenetic programming is implicated in specifying the fate of

NSCs, in particular, in the silencing of genes that encode for

alternative cell fates [5]. Polycomb group (PcG) proteins have

emerged as central players in such repressive epigenetic program-

ming events.

PcG proteins were originally identified in Drosophila melanogaster

(D. melanogaster) as factors necessary to preserve cell-fate decisions

throughout embryogenesis by silencing Hox genes in a body-

segment-specific manner [6], [7]. PcG proteins are transcriptional

repressors that function by modulating and altering higher-order

chromatin structure at the site of their target genes [8], [9].

Hundreds of genes are silenced by polycomb proteins, including

dozens of genes that encode crucial developmental regulators in

organisms ranging from plants to human [10].

PcG proteins are structurally and functionally diverse and form

large multimeric complexes of two general types: Polycomb

repressive complex-1 (PRC1) and -2 (PRC2) [11]. Biochemical
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purification of PRC1 from mammalian cells has revealed the

presence of a number of subunits including BMI1/MEL18,

RING1A/RING1B/RNF2, hPC 1–3, hPH1–3, and YY1, among

others [12]. PRC2 contains Eed, Suz12, and the methyltransferase

Ezh2 that catalyzes histone H3 lysine 27 trimethylation

(H3K27me3) [13], [14]. Both Suz12 and Eed are required for

complex stability and for the methyltransferase activity of the Ezh2

[15]. A common contention of the current models is that PRC2

initiates transcriptional repression, whereas PRC1 maintains the

repressive state. Ezh2 mediated H3K27 methylation is required

for the function of PRC1 and ultimate target gene silencing [16].

Ezh2-mediated transcriptional silencing depends upon its evolu-

tionarily conserved catalytic SET domain, which imparts histone

methyltransferase activity to the complex [13]. Functional

mutations in the components of PRCs eradicate the aptitude of

embryonic stem (ES) cells to be pluripotent [17]. Indeed, genome-

wide chromatin immunoprecipitation (ChIP) studies and other

approaches have greatly expanded our knowledge of the PRCs

and it has become evident that transcription factors and signaling

components with key roles in cell fate decisions are the most

frequent PRC2 targets [18].

Ezh2, the pivotal catalytic component of PRC2, has received

considerable attention during recent years. In accordance with the

suggested function of PRC2 in maintaining ES pluripotency and

ES self-renewal, Ezh2 is highly expressed in ES cells and down

regulated during differentiation towards somatic cells [19]. Using a

conditional knockout strategy, Ezh2 was also shown to be required

for H3K27me3 formation in pluripotent epiblast cells that

ultimately give rise to derivatives of the three germ layers [20].

In addition to its role in early embryonic development, Ezh2 has

also been implicated in regulating the maintenance and self-

renewal of multipotent tissue-specific stem cells, such as muscle cell

stem cells [21], hematopoietic stem cells [22], and epidermal stem

cells [23] and by that controlling proceeding into differentiation.

Previously, we have demonstrated the expression of Ezh2 in

NSCs [24]. Its expression in undifferentiated NSCs and subse-

quent downregulation during the differentiation into neurons or

astrocytes, suggested a role of Ezh2 in the maintenance and self-

renewal of these multipotent stem cells. Indeed, we have shown

that forced expression of Ezh2 in astrocytes induced their

dedifferentiation into NSC-like cells [25]. Moreover, recent papers

have elucidated the involvement of Ezh2 and the PRC2 complex

in the control of neuronal and astrocytic differentiation during

neocortical development [26], [27]. Surprisingly, Ezh2 remained

highly expressed in NSCs that differentiated toward the oligoden-

drocytic cell lineage. Ezh2 expression was present in the early

proliferating oligodendrocyte precursor cells (OPCs) up to the

stage of premyelinating oligodendrocytes (pOLs). In mature,

myelinating oligodendrocytes Ezh2 expression was no longer

detectable [24]. The differentiation stages of OPCs are most

strikingly characterized by derepression, i.e. silencing of repressors

of oligodendrocyte cell lineage genes and myelination genes [28].

In view of its known repressor functions, Ezh2 may play a role in

the repressive epigenetic mechanisms during oligodendrocyte

differentiation and maturation.

In order to further investigate the role of Ezh2 in undifferen-

tiated NSCs and in the differentiation of oligodendrocytes, we

have used chromatin immunoprecipitation and massive parallel

sequencing (Chip-Seq: high-throughput sequencing) to map the

Ezh2 target genes in NSCs and those in pOLs. In addition, we

aimed to present further evidence for the relevance of Ezh2

expression in pOLs in vivo, during de- and remyelination in the

cuprizone mouse model.

Methods

All animal work was designed and carried out in accordance

with the National Institutes of Health Guide for the Care and Use

of Laboratory Animals and regulations of the local Experimental

Animal Committee at the UMCG, University of Groningen,

Groningen, The Netherlands.

Cell Culture
Primary mouse neural stem cell culture. Neural stem

cells (NSCs) were isolated from the telencephalon of C57/BL6

mouse embryos at embryonic day 14 (E14). Cells were cultured in

T25 (Nunc, Roskilde) tissue culture flasks containing proliferation

medium, consisting of Neurobasal medium supplemented with 2%

B27, human recombinant epidermal growth factor (EGF; 20 ng/

ml), basic fibroblast growth factor (bFGF; 20 ng/ml), 1%

GlutaMAX (Invitrogen) Primocin (100 micrograms/ml; Lonza),

and heparin (5 micrograms/ml; Sigma-Aldrich) in a humidified

5% CO2/95% air incubator at 37uC. Within 3–5 days, the cells

grew as free-floating neurospheres. NSC differentiation was

induced by withdrawing growth factors (EGF & bFGF) and

heparin from the proliferation medium.

Primary murine oligodendrocyte cultures. Mixed glial

cultures were established from the brains of postnatal C57/BL6

pups in T75 cm2 tissue culture flasks containing Dulbecco’s

modified Eagle’s medium (DMEM) with 10% FCS. After 10–14

days in vitro, the mixed glial cultures were placed on an orbital

shaker (150 rpm) at 37uC for one to two hours, after which the

detached microglia were removed from the supernatant. To

obtain oligodendrocyte precursor cells (OPCs), cultures were

placed on a shaker again (240 rpm) overnight at 37uC. On the

following day, the supernatants were centrifuged and the pellets

were resuspended in culture medium and plated on uncoated

culture dishes for 30 minutes at 37uC. Microglia and astrocytes

attached to the bottom of the culture dish, whereas oligodendro-

cyte precursor cells (OPCs) remained floating. In consecutive

panning steps the floating cells were transferred from one culture

dish to another until a pure (90–95%) OPC culture was obtained.

The primary OPCs were cultured in standard SATO medium.

During the first 2 days of culture, SATO medium was

supplemented with Sonic hedgehog (100 ng/ml; R&D Systems)

platelet-derived growth factor (PDGF)-a (10 ng/ml; R&D Sys-

tems) and basic fibroblast growth factor (bFGF; 20 ng/ml). During

subsequent culturing, the OPCs differentiated and maturated

along standard stages. At the pOLs stage (RIP-positive) the cells

were used for chromatin immunoprecipitation.

Chromatin Immunoprecipitation (ChIP)
We followed Upstate’s method for chromatin immunoprecip-

itation with minor adaptations. Mouse primary NSCs and pOLs

were cross-linked with 1% formaldehyde for 10 minutes, lysed in

lysis buffer (5 mM PIPES, 85 mM KCl, 0.5% NP-40; Sigma),

followed by nuclear lysis buffer (50 mM TRIS, 10 mM EDTA,

1% SDS). Chromatin was fragmented (500–700 bp) using a

sonicator (Sonics Vibracell). Fragmented chromatin was pre-

cleared with protein A agarose/salmon sperm DNA (Millipore).

Precleared chromatin was incubated overnight at 4uC with 5

micrograms of anti-Ezh2 antibody (Diagenode pAB-039-100) and

isotype control (IgG). The next day, protein A agarose/salmon

sperm DNA was added and samples were rotated for 2 hours at

4uC. Resultant immune complexes were washed once with low salt

buffer (150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM

EDTA, 20 mM TRIS), once with high salt buffer (500 mM NaCl,

0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM TRIS), once
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with LiCl buffer (0.25 M LiCl,1% NP-40, 1% Na-deoxycholate,

1 mM EDTA, 10 mM TRIS) and twice with TE buffer. The

immune complexes were eluted by adding twice 250 ul of freshly

prepared elution buffer (0.1 M NaHCO3, 1% SDS). The DNA

protein cross-links were reversed by heating with 200 mM sodium

chloride, the proteins were removed by treatment with proteinase

K and DNA was precipitated using the phenol/chloroform/

isoamyl alcohol method.

Within each ChIP experiment, a negative control ChIP was

performed using 5 micrograms of polyclonal rabbit anti-mouse

immunoglobulin (IgG). To verify the ChIP conditions, a qPCR

was performed on enriched DNA using promoter primers against

Cdkn2a a known target of polycomb group proteins. The

enrichment of immunoprecipitated DNA with anti-Ezh2 antibody

versus negative control (IgG control) was calculated with following

formula: FC = 2̂(ddCT), FC.error = ln(2) * ddSD * FC. (FC =

fold change, CT = cycle threshold, SD = standard deviation and

d stands for delta). Multiple enriched samples were pooled and

used for high-throughput sequencing (ChIP-Seq) on the Illumina

Genome Analyzer IIx. The primer sets used for the ChIP

experiments can be found in Table S2.

ChIP-Sequencing (ChIP-Seq) and Data Analysis
The enriched and IgG control DNA was processed for analysis

on the Illumina Genome Analyzer IIx using the Illumina ChIP-

Seq sample preparation kit (IP-102-1001). Following the instruc-

tions on kit ‘A’, bases were added to the 39 end of the DNA

fragments and the fragments were ligated to Adapters. Subse-

quently, the Adapter-Modified DNA fragments were run on a 2%

agarose gel to generate the DNA libraries based on fragments

length (200625 bp). Finally the Adapter-Modified DNA fragment

libraries were enriched by PCR. After validating (quality control)

the libraries by the Bioanalyzer, the sequencing reactions were

performed with standard system components and reagents.

The sequence reads were analyzed using Galaxy [29], [30], a

web based platform for computational and biomedical research.

We obtained approximately 12.9 million reads from ChIP-Seq-

NSCs, and 11.5 million from ChIP-Seq-pOLs samples. Before

mapping, the quality control checks on raw sequence data coming

from high throughput sequencing pipelines were performed using

FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

), a quality control tool for high throughput sequence data

(complete FastQC reports on all data sets can be seen in

Information S4, Information S5 and Information S6). Illumina

1.9 reads were converted to Sanger format by running the tool

FASTQ Groomer. The reads with a quality score ,10 were

filtered out using the Filter FASTQ tool. The reads were also

trimmed (16 bp from 39 end) using FASTQ Trimmer tools.

FASTQ data tools [31] were used from the Metaserver of Galaxy

(for detail see Table S4 and FASTQC reports (pdf) for all three

sequence files in Information S4, Information S5 and Information

S6). After quality control, all three sequences (ChIP-Seq – NSCs,

ChIP-Seq-pOLs and ChIP-Seq-IgG control) were aligned against

the mouse mm9 genome using Bowtie for Illumina tool [32]. For

the ChIP-Seq-NSCs, over 67% of the reads were mapped

uniquely to the mm9 genome, whereas for the ChIP-Seq-pOLs

this was about 30%. SAM files were converted to BAM format

using SAM tools http://samtools.sourceforge.net [33]. BAM files

can be directly viewed and analyzed at the UCSS genome

browser. BAM files were converted to Wig and finally to BigWig

format. They are available at the GEO database via link: http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31655. To

identify peaks we used the Model-based Analysis of ChIP-Seq

(MACS) tool (http://cistrome.org/ap/root) [34], [35]. MACS

detected 1571 regions in ChIP-Seq-NSCs and 607 regions in

ChIP-Seq-pOLs as peak regions by using ChIP-Seq-IgG as a

control. For the gene annotations, we used peak to gene script

from the Galaxy/Cistrome. To avoid redundancies we performed

visual inspection of each annotated gene peak detected by MACS

on UCSC Genome Browser using BAM and BigWig tracks of

ChIP-Seq-Ezh2 and ChIP-Seq-IgG (comparison of actual detected

reads ChIP and IgG control). Some peaks identified by MACS

occurred in a region where no substantial difference between the

IgG control and ChIP could be observed. We concluded such

peaks as false positives and they were ignored while preparing the

final list (for details see Information S1 and Figure S5).

Furthermore, we used Genomic Regions Enrichment of Annota-

tions Tool (GREAT) to analyze the association of input genomic

regions to the transcription start site (TSS) of all the genes

putatively regulated by the genomic regions in NSCs and pOLs

(http://great.stanford.edu/public/html/index.php).

Annotations and pathways analysis of the peaks were done

either by manual search in the databases or by using online

software including The Database for Annotation, Visualization

and Integrated Discovery (DAVID) [36], [37] and Ingenuity

Pathways Analysis (IPA) (http://www.ingenuity.com/).

ShRNA Knockdown of Ezh2 in NSCs and pOLs
Ezh2 expression in NSCs and pOLs was silenced by using Ezh2

short hairpin RNA (Ezh2-shRNA) plasmid DNA construct

targeting the coding region of the Ezh2 gene transcript (MISSION

DNA NM 007971; Sigma-Aldrich). Five vectors (targeting

different sequences in the coding region of Ezh2 transcript) for

Ezh2 silencing were tested, of which two appeared to be similarly

efficient in reducing Ezh2 expression (for details about these 2

Ezh2 shRNA, encoded sh-4 and sh-5, see Information S1, Figure

S1B and C and Figure S4). The effects of Ezh2 silencing on NSCs

and pOLs as described in the Results section were all obtained

with one of the 2 efficient Ezh2shRNAs (sh-4); to exclude the

possibility that they could be due to some off-target effects, we

repeated some of the silencing experiments with the other efficient

Ezh2 shRNA, sh-5, targeting other sequences in the coding region

of the Ezh2 gene and depicted the results in Figure S1 and Figure

S2. All gene transfections were performed by using an electro-

poresis-based transfection protocol (Lonza previously known as

Amaxa, http://www.lonzabio.com/cell-biology/transfection/)

specifically designed for the transfection of mouse neural cells by

Amaxa. 2–3 million cells were transfected with 3 micrograms of

Ezh2-shRNA plasmid DNA construct. For control transfections,

the same vector (pLKO.1-puro) (containing the sequence that does

not target any mouse/human gene (nc-shRNA)) was used. After

transfection, the cells were kept for 24 hours in a humidified 5%

CO2-95% air incubator at 37uC in proliferation medium (NSCs)

and Sato medium (pOLs). The transfection efficiency of this

procedure amounted to 60–80% and resulted in the transient

expression of the transfected gene lasting up to 10–12 days. Ezh2

repression after 24 hours of transfection was established at the

RNA level (with quantitative reverse transcription polymerase

chain reaction [qRT-PCR]) and at protein level (with Western

blotting).

Western Blot Analysis
Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophore-

sis and Western blot analysis were used to detect the expression of

Ezh2 and other proteins in undifferentiated NSCs and OPCs. Cell

lysates were made in nuclear lysis buffer/RIPA buffer, containing

the Protease Inhibitor Cocktail from Sigma. Protein samples were

made in Laemmli sample buffer and boiled for 5 minutes. Proteins
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were separated for 1.5 hours on a 7.5–15% SDS-polyacrylamide

gel electrophoresis apparatus (Bio-Rad). Subsequently, proteins

were transferred to nitrocellulose membranes by using semidry

transfer buffer (25 mM Tris, 150 mM glycine, and 10% [v/v]

methanol) and 3 mA/cm2 current for one to two hours.

Nitrocellulose membranes were blocked with Odyssey Blocking

Buffer (www.licor.com). Membranes were probed with antibodies

overnight at 4uC. The antibodies against housekeeping proteins

were used for normalization of the expression levels of the proteins

of interest. Membranes were washed four times (10 minutes each)

with TBS-T. Primary antibodies were detected using fluorescent

secondary antibodies with incubation at room temperature for one

hour. After four washes in TBS-T, protein signals were detected by

using the Odyssey Infrared Imaging System. The intensities of the

protein signals were quantified using ImageJ software (NIH Image,

Bethesda, MD).

Statistical analysis of the results of three experiments was done

using Student’s t test.

The specification of the primary and secondary antibodies we

used can be found in Table S3.

RT-PCR Analysis
Total RNA was isolated from NSCs and pOLs with or without

Ezh2-shRNA treatment. Cells were lysed in guanidinium isothio-

cyanate/mercaptoethanol buffer and RNA was extracted with

phenol-chloroform and precipitated using isopropanol. To de-

grade possible genomic DNA traces, DNase (Fermentas) was used.

1 microgram of total RNA was used for the reverse transcriptase

(RT) reaction and 5 nanograms of copy DNA was used in the

subsequent quantitative polymerase chain reaction (qPCR) ampli-

fication using appropriate primer pairs for each gene. The primer

pair sequences we used for each gene can be found in Table S1.

Immunocytochemistry
Cell cultures were fixed with 4% paraformaldehyde (PFA) and

immunostained using antibodies against specific proteins. For the

immunostaining of brain tissue sections (fixed with 4% PFA) heat-

induced antigen/epitope retrieval (HIER) (10 mM sodium citrate,

0.05% Tween 20, pH 6.0) was used. The specification of the

primary and secondary antibodies we used for immunocytochem-

istry can be found in Table S3.

Microscopic Analysis
Microscopic analysis was performed using a Zeiss (Axioskope 2)

fluorescent microscope equipped with a Leica DFC300FX camera

and the Leica Microsystems LAS program. The phase contrast

images were made by Axiovert 40 CFl (Zeiss) microscope.

Cuprizone Model for Demyelination
C57BL/6 mice were put on a diet of 0.2% (w/w) cuprizone

(Sigma-Aldrich, Zwijndrecht, The Netherlands, http://www.

sigmaaldrich.com), a copper chelator. This diet leads to selective

oligodendrocyte death followed by demyelination of axons mainly

in the corpus callosum [38]. Spontaneous remyelination can be

seen as early as four days after withdrawal of cuprizone. The

corpus callosum was dissected under a dissection microscope from

control mice, from mice put on cuprizone diet for five weeks

(demyelination state) and from mice put on normal diet again for

two subsequent weeks (remyelination state). Tissue lysates were

prepared with RIPA buffer. From mice in the same experimental

groups, brains were prepared separately for immunohistochemis-

try.

Results

Genome Wide Identification of Target Genes of Ezh2 in
NSCs and pOLs

To unravel the function of Ezh2 in NSCs and in premature

oligodendrocytes (pOLs), we identified the target genes of Ezh2 in

both cell types by chromatin immunoprecipitation (ChIP) using

anti-Ezh2 antibodies, followed by ultra high-throughput massive

parallel sequencing (ChIP-Seq). We used the IlluminaR sequencing

technology for ultra high-throughput sequencing of enriched

genomic DNA (IP with anti-Ezh2) and of background noise

genomic DNA (IP with isotype control IgG) in both cell types.

Using the metaserver of Galaxy, a web-based platform for genome

analysis, we mapped the sequence files with the reference mouse

genome (mm9). To identify peaks, we used the Model-based

Analysis of ChIP-Seq (MACS) tool from the Galaxy/Cistrome

metaserver. We extracted significant ChIP peaks after normalizing

with background noise (IgG control). To obtain the annotations

for genes we used the ‘‘peak2gene’’ script from the Galaxy/

Cistrome. All annotated gene peaks detected by MACS in both

cell types were visually inspected in the UCSC genome browser by

loading BAM/BigWig tracks of ChIP-Seq-Ezh2 and ChIP-Seq-

IgG control. The peaks detected by MACS that showed no

considerable difference between ChIP-Seq-Ezh2 and ChIP-Seq-

IgG signal (with respect to number of reads) at the UCSC genome

browser, were rejected. Finally, we filtered 1532 annotated gene

peaks in NSCs and 393 in pOLs respectively as targets of Ezh2. All

of the 393 genes in pOLs were also target in the NSCs. The

complete lists of target genes in both cell types are provided in

information S2 and information S3. As an additional quality

control we analyzed, using the Genomic Regions Enrichment of

Annotations Tool (GREAT) [39] the association of input genomic

regions (peaks) to the transcription start site (TSS) of all the genes

putatively regulated by the given genomic regions in NSCs

(Figure 1A–A’’) and pOLs (Figure 1B–B’’). The algorithm found

that less than 5% of the input genomic regions from both cell types

Figure 1. Target genes of Ezh2 in NSCs and pOLs. (A–B’’) Association of input genomic regions with the transcription start site (TSS) of all the
genes putatively regulated by the genomic regions in NSCs (A–A’’) and pOLs (B–B’’). (A, B) ‘‘Number of associated genes per region" graphs show
how many genes in each genomic region is assigned as putatively regulating based on the association rule used. (Details of association rule see
online: http://great.stanford.edu/public/html/help/index.php?title = Association_Rules). (A’, B’) Graphs show the distance between input regions and
their putatively regulated genes (i.e. binned by orientation and distance to TSS). The distances are divided into four separate bins: 0 to 5 kb, 5 kb to
50 kb, 50 kb to 500 kb, and .500 kb. All associations precisely at 0 (i.e. on the TSS) are split evenly between the [25 kb, 0] and [0,5 kb] bins. (A’’, B’’)
Binned by absolute distance to TSS (only the distance to TSS is considered, not the orientation). Functional gene ontology (GO) analysis of Ezh2 target
genes (DAVID online tool) in NSCs (C) and pOLs (D). The bar graphs represent the percentage of DAVID genes (since DAVID converts user input gene
IDs to corresponding DAVID gene IDs) in the list associated with particular annotation term. The corresponding line graphs represent –log10
transformation of the modified Fisher Exact P-value. Fisher Exact is adopted to measure the gene-enrichment in annotation terms. The smaller the P-
value, the more enriched a GO term is for genes of the given assay. (E) Comparison of canonical signaling pathways enriched in Ezh2 target genes in
NSCs and pOLs.
doi:10.1371/journal.pone.0040399.g001
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was not putatively associated with any gene (Figure 1A and 1B). In

both NSCs and pOLs most of the input genomic regions were

found to be associated with one or two genes (Figure 1A and 1B).

In both cell types most of the genomic regions from our Chip-Seq

study were annotated within 500 bp distance of the transcription

start site (TSS) of the putatively regulated gene (Figure 1A’ and

A’’; Figure 1B’ and 1B’’). Less than 10% of the input genomic

regions annotated further away from the TSS than 500 bp. These

findings are in line with an earlier report [40] in which genomic

sites occupied by PRC2 were found to be within 1 kbp distance of

the TSS.

Figure 2. Target genes of Ezh2 in NSCs and pOLs: genome browser views. ChIP-Seq signals (peaks) are shown for anti-Ezh2 and IgG control
antibodies after loading BigWig files on UCSC genome browser. (A) UCSC genome browser view of the known polycomb group protein target region,
the Hox locus (located on chromosome 6 in the mouse), after loading three tracks: ChIP-Seq-IgG control, ChIP-Seq-NSCs and ChIP-Seq-pOLs. (B) ChIP-
Seq–NSCs tracks show, neuronal, oligodendrocytic and astrocytic lineage determining genes as the targets of Ezh2. Upon differentiation of NSCs
towards oligodendrocytes, as shown in the ChIP-Seq-pOLs tracks, Ezh2 releases the oligodendrocytic lineage determining genes, while still
suppressing neuronal and astrocytic lineage genes.
doi:10.1371/journal.pone.0040399.g002

Figure 3. Chromatin immunoprecipitation (ChIP) using IgG isotype control, anti-Ezh2, and anti-H3K27me3 antibodies. (A) ChIP-Ezh2-
quantitative PCR (qPCR) analysis. The graph shows quantitative PCR on DNA purified from ChIP-Ezh2, using promoter primers for genes associated
with selected peaks from the ChIP-Seq data. In NSCs ChIP-Ezh2, there is high enrichment (Ezh2 occupancy) of neuronal, astrocytic and
oligodendrocytic lineages determining genes while in pOLs ChIP-Ezh2 only neuronal and astrocytic lineage specific genes show enrichment
(occupancy by Ezh2). (B) ChIP-H3K27me3-qPCR analysis. A similar pattern of gene enrichment can be observed in PCR analysis on DNA purified from
ChIP-H3K27me3 (trimethylation of H3K27 is a functional mark of Ezh2): in NSCs, there is high enrichment (trimethylation of H3K27) of neuronal,
astrocytic and oligodendrocytic lineages determining genes while in pOLs only neuronal and astrocytic lineage specific genes show high enrichment
(higher level of trimethylation of H3K27). Rpl32 (the gene encoding the 60S ribosomal protein L32, a non-target of Ezh2) was used as a negative
control. Acute Ezh2 reduction in NSCs and pOLs mediated by Ezh2-shRNA. (C) Western blot shows the reduction in Ezh2 protein in comparison to
control. Lysates were prepared after in vitro transfection with Ezh2-shRNA and non-coding shRNA (nc-shRNA) as control, in both NSCs and pOLs.
Reduction in Ezh2 protein resulted in a decrease in the global level of H3K27 tri-methylation, an Ezh2-associated gene repression mark (17 kDa band).
(D) Derepression of tested Ezh2 target genes after knocking down Ezh2 protein expression in NSCs and pOLs. The transcript levels were quantified by
real-time PCR, normalized to GAPDH (housekeeping gene) and represented as a fold change between nc-shRNA (control) and Ezh2-shRNA in both
NSCs and pOLs. Bars represent mean of three independent experiments 6 S.D.
doi:10.1371/journal.pone.0040399.g003
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The pattern of Ezh2 gene occupancy during the differentiation

of NSCs suggests that Ezh2 keeps on repressing a number of genes

when cells enter the oligodendrocytic cell lineage. As extensively

described before [24], no Ezh2 expression (at mRNA or protein

level) and so no Ezh2 target genes could be found and pulled down

with ChIP in freshly differentiated neurons or astrocytes (data not

shown).

In order to reveal general functional characteristics of the

molecular programs involving Ezh2, we first conducted a gene

ontology analysis on the target gene lists of NSCs and pOLs using

the online tool Database for Annotation, Visualization and

Integrated Discovery (DAVID) v6.7. (Figures 1C and D). In

NSCs, we found that Ezh2 targeted genes mainly associated with

gene ontology terms like Developmental processes, mRNA

transcription regulation, Neurogenesis, Cell proliferation and

differentiation and Cell cycle control (Figure 1C). In pOLs the

major significantly enriched gene ontology terms were also

Developmental processes, mRNA transcription regulation and

Neurogenesis but besides these, terms that refer to neuronal

specification and neuronal fate commitment were also significantly

enriched (Figure 1D).

Further insight in the function of the Ezh2 target genes in NSCs

and in pOLs was obtained using DAVID tools that visualize genes

on BioCarta & KEGG pathways and allow identification of the

top canonical signaling, disease and metabolic pathways repre-

sented by the genes that are significantly enriched in a given cell

type. We observed 7 significantly enriched pathways both in NSCs

and pOLs (Figure 1E). Two pathways, i.e. the PDGF- and Shh-

signaling pathway, were only apparent in NSCs, whereas the

dopamine receptor mediated signaling pathway was only enriched

in Ezh2 targets in pOLs.

Further analysis of the Ezh2 target genes coming up from the

ChIP-Seq tracks in the UCSC genome browser view (Figure 2)

revealed that in NSCs, genes are targeted which are involved in

differentiation to each of the 3 neural cell types, i.e. oligoden-

drocytic lineage specific genes (e.g. Olig2, Olig3, Pdgfra, Nkx2.2 and

Figure 4. Acute reduction of Ezh2 induces apoptosis in NSCs. (A) Phase contrast images show that NSCs treated with Ezh2-shRNA cannot
form normal neurospheres in proliferation medium. Immunostaining of dissociated neurospheres in proliferation medium shows a decrease in
proliferation and increase in cell death after using Ezh2-shRNA compared to the control (nc-shRNA). (B) Quantification of proliferating (Ki67 positive)
and apoptotic (cleaved caspase 3 positive) NSCs in control and NSC cultures treated with Ezh2-shRNA. (C) Western blot of protein samples prepared
48 hours after transfection shows a decrease in Ezh2 and PCNA (a proliferation marker) and an increase in cleaved caspase 3 bands in NSCs treated
with Ezh2-shRNA. Bars represent mean of three independent experiments 6 S.D.; Student-t-test was used to calculate significance. p,0.05 was
considered significant. (Calibration bar in A represents 100 micrometers and 5 micrometers, which are valid for the phase contrast, propidium iodide
and the Hoechst/Ki67, cleaved caspase 3, cleaved caspase 3/Hoechst/nestin photomicrographs, respectively (A); ** in (B) represents p,0.01).
doi:10.1371/journal.pone.0040399.g004
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6.2), neuronal lineage specific genes (e.g. NeuroD2, Tlx3 and

Phonx2b) and astrocytic lineage specific genes (e.g. Tal1, also known

as Scl). In pOLs, the oligodendrogenic lineage specific genes are no

longer targeted by Ezh2, whereas the astrocytic and neuronal

lineage specific genes still are. The Ezh2 targeted neuronal lineage

genes not only include genes encoding general neuronal proper-

ties, but also genes involved in the differentiation of a more specific

neuronal cell type. For instance, Nurr1, Lmx1a/1b, En1/2, Otx2,

Pitx3 and Isl1 and Isl2 are all Ezh2 target genes involved in

dopaminergic neuron and motor neuron differentiation, respec-

tively.

Validation of a selection of genes associated with peaks in the

ChIP-Seq data using quantitative PCR analysis of DNA purified

by Ezh2-ChIP (Figure 3A), confirms the evidence described above.

In addition, we performed ChIP-qPCR analysis on trimethylated

histone 3 lysine 27 (H3K27me3), since H3K27 trimethylation is

the major functional mark of Ezh2. Quantitative PCR analysis of

DNA purified from the H3K27me3-ChIP on the same selection of

genes revealed a similar pattern as with Ezh2-ChIP: in NSCs,

there is high enrichment (trimethylation of H3K27) of neuronal,

astrocytic and oligodendrocytic lineages determining genes while

in pOLs only neuronal and astrocytic lineage specific genes show

high enrichment (higher level of trimethylation of H3K27)

(Figure 3B).

Reduction of Ezh2 in NSCs and pOLs by silencing with Ezh2

specific shRNA decreases H3K27 tri-methylation (Figure 3C),

enabling the transcription of the Ezh2 target genes and the

expression of the proteins encoded by them. By PCR analysis of a

selection of genes we demonstrated that, indeed, the Ezh2 target

genes in NSCs and pOLs were re-expressed after Ezh2 silencing,

resulting in a 3–10 fold increase in expression levels. However, for

the target genes in pOLS that were no longer repressed by Ezh2,

e.g. Olig2, this silencing did not lead to significant changes in

comparison to the basal level of expression (Figure 3D).

Acute Suppression of Ezh2 in NSCs
To determine the significance of Ezh2 activity for NSCs

maintenance and self-renewal, we followed Ezh2-shRNA trans-

fected NSCs up to three days in culture as they developed into

neurospheres during their clonal expansion. We observed

dramatic changes in neurosphere morphology (Figure 4A): Ezh2

silenced neurospheres were smaller, more flattened and contained

many dying cells in comparison to controls as revealed by

propidium iodide staining. Immunostaining for the proliferation

marker Ki67 revealed a strong reduction of proliferation activity

(Figure 4A and 4B). Cleaved caspase 3 immunostaining confirmed

the increase in apoptosis (Figure 4A and 4B). These effects of

Ezh2-shRNA on NSCs were further confirmed by Western blot

analysis using anti-PCNA (another proliferation marker) and anti-

cleaved caspase 3 antibodies (Figure 4C). The results of these

silencing experiments further substantiate the idea that Ezh2

Figure 5. Cell cycle regulation and TGF-beta signaling in Ezh2-shRNA treated cells. (A) Real-time quantitative PCR analysis of total RNA
extracted from nc-shRNA (control; C) and Ezh2-shRNA treated NSCs and pOLs shows increase in the transcript level of cell cycle arrest genes, however
the transcript level of growth differentiation factors (Gdfs) belonging to TGF-beta superfamily increased only in Ezh2-shRNA treated NSCs (consistent
with ChIP-seq data). (B) Western blot confirms the upregulation of cell cycle arrest proteins (e.g. p16, a product of Cdkn2a) and the activation of TGF-
beta signaling pathway (Smads) in Ezh2-shRNA treated NSCs as compared to the control (C).
doi:10.1371/journal.pone.0040399.g005

Ezh2 in NSC Self-Renewal and Differentiation

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e40399



Ezh2 in NSC Self-Renewal and Differentiation

PLoS ONE | www.plosone.org 10 July 2012 | Volume 7 | Issue 7 | e40399



mediated gene repression in NSCs is essential for maintenance (i.e.

suppressing differentiation) and survival of NSCs and for

controlling proliferation and cell cycle as has been shown before

[24]. The results of acute Ezh2 silencing on NSC morphology and

apoptosis as described above were obtained with one of the

Ezh2shRNAs (sh-4); to exclude the possibility that they could be

due to some off-target effects, we repeated these silencing

experiments with the other efficient Ezh2 shRNA (sh-5, targeting

other sequences in the coding region of the Ezh2 gene) and found

similar results, depicted in Figure S1 and Figure S2. Our ChIP-

Seq data analysis reveals a number of potential target genes of

Ezh2 that are involved in cell cycle arrest, cell death and cellular

compromise: Cdkn2a, Tcf21 and Six1. Indeed, RT-qPCR analysis

showed an 8 and 12 fold increase in transcript levels of Tcf21 and

Cdkn2a respectively (Figure 5A) after Ezh2 silencing, confirmed by

Western Blotting using anti-p16-INK4a (a product of Cdkn2a)

antibody (Figure 5B). In addition, the DAVID analysis revealed a

significant involvement of Ezh2 target genes in NSCs in the TGF-

beta signaling pathway. TGF-beta signaling plays an important

role in various physiological and pathophysiological processes in

the brain [41]. Various studies have demonstrated the involvement

of TGF-beta signaling in suppressing NSC proliferation and self-

renewal [41,42]. Gdf6 and Gdf7, subfamily members of the TGF-

beta superfamily, appear to be Ezh2 target genes in NSCs.

Suppressing Ezh2 activity should activate Gdf6 and Gdf7 expres-

sion, which should lead to activation of TGF-beta signaling and an

upregulation of Smads, the downstream effectors of TGF-beta

signaling. Indeed, with RT-qPCR analysis, we found a seven to

ten fold upregulation in the transcripts of Gdf6 and Gdf7 in Ezh2-

shRNA treated NSCs (Figure 5A). Moreover, Western blot

analysis revealed an increase in the expression of Smads (Smad1,

Smad2, Smad3, Smad5 and Smad8) in Ezh2-shRNA treated

NSCs (Figure 5C).

The Ezh2 silencing data in NSCs point to a specific inhibition of

cell cycle arrest genes (Cdkn2a, Tcf21) and genes involved in TGF

beta signaling pathways by Ezh2, thus promoting cell proliferation

and cell survival.

Acute Suppression of Ezh2 in pOLs
Similar to NSCs, we investigated the significance of Ezh2-

mediated gene repression for the maintenance and survival of

pOLs. To that purpose we reduced Ezh2 expression by Ezh2-

shRNA silencing in A2B5-positive pOLs enriched cultures

(,90%). pOLs treated with Ezh2-shRNA rapidly (within 24

hours) developed an abnormal morphology: they retracted their

extensions, lost RIP immunostaining, and underwent apoptosis as

indicated by high levels of cleaved caspase-3 (Figure 6). The results

of Ezh2 silencing on pOL morphology and apoptosis as described

above were obtained with one of the Ezh2shRNAs (sh-4); to

exclude the possibility that they could be due to some off-target

effects, we repeated the silencing experiments with the other

efficient Ezh2 shRNA (sh-5, targeting other sequences in the

coding region of the Ezh2 gene) and found similar results, depicted

in Figure S1 and Figure S2. The ChIP-Seq data analysis revealed

that pOLs have specific sets of genes responsible for neuronal and

astrogenic cell lineage as Ezh2 target genes in common with

NSCs. Indeed, most of these genes became upregulated after

knocking down the expression of Ezh2 (see also Figure 3D) and

their appearance in the differentiated pOLs must have resulted in

prominent cell stress. Besides that, just like in NSCs, also in pOLs,

cell cycle arrest and cell death genes like Cdkn2a, Tcf21 are Ezh2

target genes, and their re-expression (see Figure 5A) after Ezh2

silencing may have caused apoptosis in a similar way as in the

NSCs.

Expression of Ezh2 in NSCs and pOLs in the Mouse Brain
To further confirm the relevance of Ezh2 expression in NSCs

and during their differentiation into oligodendrocytic cell lineage,

we extended our previous in vitro observations to an in vivo model.

We performed Ezh2-immunostaining on adult mouse brain

sections containing the subventricular zone. NSCs in this zone

appeared to be specifically stained for Ezh2 (Figure 7A, and 7B–

7B’’’). Ezh2-immunostaining of the adjacent corpus callosum

revealed only sporadically Ezh2 staining in a few oligodendrocyte

precursor cells (Figure 7A and 7C–C’’’) while adult oligodendro-

cytes did not express Ezh2. Exposing mice to a diet containing

0.2% cuprizone for five weeks results in oligodendrocyte death and

demyelination in the corpus callosum. In reaction to this

demyelination, OPCs from neighboring areas invade the corpus

callosum and proliferate. Restoring normal diet after this period

even further stimulates OPCs recruitment, evoking remyelination

activity of the corpus callosum within two weeks. Immunostaining

revealed the high expression of Ezh2 in the OPCs in the corpus

callosum after five weeks on diet (Figure 7D, 7E–E’’’ and 7H) as

well as after two weeks after restoring normal diet (Figure 7D, 7F–

F’’’ and 7H). Western blot analysis of isolated SVZ and corpus

callosum tissue confirmed the expression patterns of Ezh2 in

control and cuprizone treated mice as observed in the immuno-

histochemical sections (Figure 7G).

Discussion

Previously, we have shown that the PcG protein Ezh2 is

prominently expressed in NSCs and in premyelinating oligoden-

drocytes in vitro [24]. We now have extended these observations

with in vivo data on the expression of Ezh2 in adult NSCs and most

prominently in OPCs, recruited for remyelination in adult mice

put on a 0.2% cuprizone diet. Our ChIP-Seq analysis revealed

1532 genes targeted by Ezh2 in NSCs of which 393 remained an

Ezh2 target in OPCs up to the stage of becoming a myelin-

forming oligodendrocyte. The Ezh2-silencing experiments present

evidence for the involvement of Ezh2 in proliferation and self-

renewal in NSCs by specifically targeting genes involved in cell

death, cellular compromise, and cell cycle arrest (e.g. p16 pathway)

and sets of genes involved in NSC differentiation. Genes that

remain targeted by Ezh2 in pOLs appear to be partly associated

with cell death signaling and prominently with neuronal and

astrocytic lineage determination.

Figure 6. Acute suppression of Ezh2 induces apoptosis in pOLs. (A, B) Phase contrast images show that pOLs retract their projections when
treated with Ezh2-shRNA. (C, D) Immunostaining for apoptosis marker, cleaved caspase 3 (green) shows increase in cell death in pOLs cultures
treated with Ezh2-shRNA compared to control cultures (nc-shRNA). (E, F) Co-immunostaining using anti-cleaved caspase 3 and anti-RIP (an
oligodendrocyte maker) shows restriction of cell extensions and increased cell death, in cultures treated with Ezh2-shRNA. (G) Western blot of protein
samples prepared after 24 hours of transfection shows a decrease in Ezh2 and a strong increase in cleaved caspase 3 bands in pOLs treated with
Ezh2-shRNA, compared to the cultures treated with nc-shRNA (control). PCNA (a proliferation marker) expression remained about the same in both
conditions. (H) Quantification of apoptotic (cleaved caspase 3-positive) and differentiating (RIP-positive) cells in Ezh2-shRNA treated and control (nc-
shRNA) pOLs. Bar graphs represent mean of three independent experiments 6 S.D. (Calibration bar in (A) represents 100 micrometers, which is valid
for all the photomicrographs (A–F); ** in (H) represents p,0.01).
doi:10.1371/journal.pone.0040399.g006
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Figure 7. NSCs and pOLs express Ezh2 in mouse brain. (A) Hoechst (nuclear) stained section of mouse brain with rectangles indicating the
subventricular zone (B) and the corpus callosum (C). (B–B’’) Immunohistochemistry of mouse brain sections containing the subventricular zone (SVZ).
(B’) = anti-nestin, (B’’) = anti-Ezh2, (B’’’) overlay of (B’) and (B’’) and Hoechst nuclear staining (blue). (C–C’’’) Immunohistochemistry of mouse brain
sections containing the corpus callosum. (C’) = anti-RIP (RIP = oligodendrocyte marker), (C’’) = anti Ezh2, (C’’’) overlay of (C’) and (C’’) and Hoechst
nuclear staining. (E–H) OPCs in corpus callosum express Ezh2 during demyelination and remyelination in cuprizone fed mice. (D) Hoechst
(nuclear) stained section of mouse brain with corpus callosum indicated (E, F). (E–E’’’) Immunohistochemistry on corpus callosum sections of five
weeks cuprizone fed mice (five weeks of demyelination = 5WD) (E’) = anti-RIP, (E’’) = anti-Ezh2, (E’’’) = overlay of (E’ and E’’) and Hoechst nuclear
staining (blue). (F–F’’’) Immunohistochemistry on corpus callosum section of brain of mouse kept for five weeks on cuprizone diet followed by two
weeks on normal diet (two weeks remyelination = 2WR), (F’) = anti-RIP, (F’’) anti-Ezh2, (F’’’) = overlay of (F’) and (F’’) and nuclear staining. (G)
Western blot showing the expression of Ezh2 protein (91 kDa band) in vivo, in the tissue lysates prepared from SVZ and hippocampus of adult mouse
brain, and in in vitro cultured mouse adult NSCs. (H) Western blot showing the loading control (beta-actin), Ezh2 and H3K27me3 protein bands in
lysates from corpus callosum of control, 5WD and 2WR mouse brains. In the corpus callosum of control mouse brain, the Ezh2 band was below the
detection level. (I) Western blot on the same lysates used in (H) but immunoblotted with an antibody against NG2 (an early oligodendrocyte marker).
(Calibration bars in (A) and (D) represent 250 micrometers; calibration bars in (B’) and (E’) represent 100 micrometers and are valid for (B’–C’’’) and
(E’–F’’’)).
doi:10.1371/journal.pone.0040399.g007
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The target genes of Ezh2 that we found in NSCs as well as in

pOLs substantially overlap with most of the polycomb target genes

conserved in embryonic stem cells (ES cells) in flies and vertebrates

[43], [44]. The repression of these target genes (which include

most of the Hox genes) are all considered essential for the

maintenance of a pluripotent state. Our findings suggest that the

same genes are required for maintaining multipotency and seem to

imply that the oligodendrocyte precursor cells may not be

considered merely unipotent, but still have a multipotent

signature. Indeed the studies by Kondo et al. have shown that

OPCs can be easily reprogrammed into NSCs [45]. Such a

continuing multipotent signature during differentiation apparently

does not exist during the differentiation of NSCs into neurons or

astrocytes, where there is an abrupt transition from NSC to

differentiated cell accompanied by an absolute downregulation of

Ezh2. Forced expression of Ezh2 in astrocytes seems to be a

prerequisite to induce their dedifferentiation back to NSC-like cells

[25]. The gradual stage-dependent decrease in Ezh2 expression

during oligodendrocyte differentiation seems to be in line with the

emerging view that PcG protein complexes dynamically regulate

the gene hierarchy during cell fate choice up to different levels of

differentiation [46], [47]. Our findings in the OPCs are also in line

with studies on the role of Ezh2 in other tissue-specific multipotent

stem cells, for instance in the skin: Ezh2-expressing basal

progenitor cells in the skin give rise to several epidermal cell

types and by controlling spatial and temporal epigenetic modifi-

cations Ezh2 orchestrates gene expression during the differentia-

tion into epidermis-specific cell types in a stepwise fashion [23].

Derepression of oligodendrogenic genes, while continuing the

Ezh2-mediated repression of neuronal and astrocytic lineage

genes, appears to be a major step in the differentiation of NSCs

towards an oligodendrocytic cell lineage. Apparently, such a

strategy is not followed during the differentiation into neurons or

astrocytes, when both astrogenic and neurogenic genes are no

longer Ezh2 target genes. Other epigenetic regulatory mechanisms

may be involved: for instance, it is possible that in these cell types

the homolog of Ezh2, Ezh1, may take over and execute the

trimethylation of H3K27 of the relevant target genes [48].

Otherwise, the role of REST, a major regulator of oligodendrocyte

differentiation, may interfere and modify the epigenetic mecha-

nisms in differentiating neurons and astrocytes [49].

In our studies, Ezh2 knockdown resulted in a profound decrease

in NSC proliferation and an increase in cell death. We conclude

that Ezh2 is critical for normal NSC survival and self-renewal.

This is in line with previous studies linking Ezh2 to cell survival

and proliferation [22], [50], [51]. We identified several target

genes of Ezh2, like Cdkn2a, Tcf21, and Six1, which are all involved

in cell cycle control, cell death and cellular compromise. We found

a strong increase in the p16 protein encoded by Cdkn2a after Ezh2

silencing. P16 acts as a negative regulator of proliferation of

normal cells by interacting with CDK4 and CDK6. This inhibits

their ability to interact with cyclin D and to phosphorylate the

retinoblastoma protein and so to maintain a stable Rb-E2F

complex, which represses cell cycle progression. Our data suggest

that Ezh2 silencing leads to derepression of p16 transcription and

subsequent promotion of cell cycle exit. It would be interesting to

check whether p16 silencing can rescue the phenotype instigated

by Ezh2-shRNA. To this purpose, the use of Ezh2-conditional

knockout mice would be optimal. Other target genes of Ezh2 likely

involved in its control of proliferation and survival of NSCs are

Gdf6 and Gdf7 - subfamily members of the TGF-beta superfamily,

which when derepressed activate TGF-beta signaling. TGF-beta

signaling is involved in various physiological and pathophysiolog-

ical processes of the brain. It appears to be induced in the adult

brain after injury or hypoxia and during neurodegeneration when

it modulates and dampens inflammatory responses [41]. TGF-beta

signaling has been thought to limit the self-repair of the brain by

inhibiting neural stem cell proliferation [41], [52]. Moreover, in

vitro assays have shown that TGF-beta signaling activation resulted

in a strong suppression of NSCs proliferation and self-renewal

[42]. The identification of Gdf6 and Gdf7 as Ezh2 target genes has

implicated TGF-beta signaling for the first time in the Ezh2

controlled regulation of NSC proliferation and survival. Likewise,

the Ezh2 silencing experiments in pOLs showed a similar critical

role of Ezh2 in survival. Similar mechanisms as described above

for NSCs may be involved. In addition, it is clear that the forced

expression of genes encoding for other neural cell types in a cell

already committed to an oligodendrocytic cell lineage may amount

to considerable cell stress resulting in apoptosis.

So far, we assumed that Ezh2 exerts the same effect in NSCs

and in pOLs. The actual activity of Ezh2 is determined by the

composition of the PRC2 complex and this composition may vary

in different cell types. Previous studies have shown that, in general,

the core components of PRC2 are interdependent [15], [40], [53]

and indeed in a first experiment in our lab we have shown that the

core components of PRC2 (Ezh2, Suz12 and EED) were present in

both NSCs and pOLs (see Figure S3A and Figure S3B). However,

in pOLs we detected the presence of an additional isoform of

Suz12, possibly a sumoylated modification of this component (see

Figure S3C), which may affect PRC2 activity and the resulting

recruitment of PRC1 influencing the transcription of one or more

genes in a differential way. In future research, the specific

regulation of the expression of each of the Ezh2 target genes

should be addressed to understand in detail the role of PcG

epigenetic regulation in oligodendrocyte differentiation.

Supporting Information

Figure S1 Knock down of Ezh2 expression by two
independent Ezh2-shRNAs phenocopy each other’s ef-
fect in Ezh2 expressing neural cells. Part 1. (A) Western

blot showing the level of expression of Ezh2 in in vitro cultured

neural stem cells (NSCs), pre-myelinating oligodendrocytes

(pOLs), astrocytes and Oli-neu cell line (oligodendrocyte precursor

cells). Astrocytes are lacking the expression of Ezh2. (B) Western

blot. Five clones (sh-1 to sh-5) of Ezh2 short hairpin RNA

(targeting different sequences in the coding region of Ezh2)

plasmid DNA (cloned in pLKO.1-puro vector) were tested

independently. Non-target shRNA (nc-shRNA) pLKO.1-puro

vector containing a shRNA insert that does not target any human

or mouse gene, was used as control (nc). Two (sh-4 & sh-5) out of

five clones efficiently downregulated Ezh2 expression. Sh-4 & sh-5

were used for further experiments. (C) Western blot shows the loss

of function of Ezh2. A clear reduction in histone 3 lysine 27

trimethylation (H3K27me3) can be seen in cells transfected with

either sh-4 or sh-5 versus control shRNA (nc-shRNA). Effect of
Ezh2-shRNA on cell morphology. (D) NSCs transfected with

Ezh2-shRNA (sh-4 or sh-5) showed reduction in neurosphere size

(a–a’’) in comparison to the NSCs transfected with nc-shRNA.

However, in astrocytes, which do not express Ezh2 (see (A)),

transfection with Ezh2-shRNA had no effect on cell morphology

(b–b’’). Ezh2-shRNA in comparison to the nc-shRNA showed

dramatic effect on the morphology of pOLs (c–c’’) and Oli-neu (d–

d’’) both express high levels of Ezh2, as shown on the Western blot

in A. Retraction of cell extensions can be clearly seen. (Calibration

bar in (Da) represents 100 micrometers and it is valid for all the

photomicrographs in this figure).

(TIF)
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Figure S2 Knock down of Ezh2 expression by two
independent Ezh2-shRNAs phenocopy each other’s ef-
fect in Ezh2 expressing neural cells. Part 2. (A) Western

blot shows that two independent Ezh2-shRNAs (sh-4 & sh-5)

targeting two different sequences in the coding region of Ezh2

gene have the same effect in neural stem cells (NSCs) and pre-

myelinating oligodendrocytes (pOLs) (i.e. induce apoptosis as

shown by the upregulation of the apoptotic marker cleaved

caspase 3 (17–19 kDa band)). (B) Immunocytochemistry shows

transfection of NSCs (nestin positive cells) and pOLs (RIP (anti

oligodendrocyte) positive cells) either with sh-4 or sh-5 results in

the increase in apoptotic cells (cleaved caspase 3 positive cells).

Calibration bar in (B) represents 100 um, which is valid for all the

photomicrographs

(TIF)

Figure S3 Core components of PRC2 (Ezh2, Eed, &
Suz12) are conserved between NSCs and pOLs. (A-B)

Immunocytochemistry of cultured NSCs and pOLs shows the

expression of Ezh2, Suz12 and Eed. (Msi = anti-musashi, a NSC

marker; RIP = anti-CNPase, an oligodendrocyte marker;

Hoechst = nuclear staining, blue). (C) Western blot showing the

bands of Ezh2, Suz12, Eed and beta-actin at expected heights.

White arrow points at the additional band of Suz12 in pOLs, not

present in NSCs and ESCs. (ESCs = embryonic stem cells;

positive controls). (Calibration bars in (A) and (B) represent 50

micrometers and they are valid for all the photomicrographs in

this figure).

(TIF)

Figure S4 Detailed depiction of nc-shRNA (control) and
Ezh2-shRNA. The shRNA hairpin is cloned into the AgeI and

EcoRI site of the pLK0.1 vector. The CCGG is left over from the

AgeI site and this site is lost during the cloning. The CTCGAG is

the ‘‘loop’’ sequence. The TTTTT is the Polymerase III stop

sequence. The 39 G, if present, indicates an intact EcoRI site. The

Ezh2-shRNA clone has EcoRI still intact. The sense hairpin

sequence (RNAi sequence) is in red and antisense is in purple.

(TIF)

Figure S5 UCSC Genome Browser visual after loading
BigWig tracks of ChIP-Seq-Ezh2 and ChIP-Seq-IgG
control. The image displays two different 50 kb regions of

mouse chromosome 11. The upper track (green) represent ChIP-

Seq-IgG control while lower track represent ChIP-Seq-Ezh2

(NSCs). Lhx1, Igf2bp1 and GiP were identified as gene peaks by

MACS. However, while the regions near or in the promoter of the

Lhx1, Igf2bp1 show considerable high ChIP signal (high number of

reads) in ChIP-Seq-Ezh2 versus ChIP-Seq-IgG control track, such

difference did not exist in or near the promoter of GiP (large

arrow). Therefore GiP peak was concluded as false positive.

Directions of small arrows indicate orientation of the transcription.

(TIF)
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