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ABSTRACT
We introduce a new implementation of the FASTICA algorithm on simulated Low Frequency
Array Epoch of Reionization data with the aim of accurately removing the foregrounds and
extracting the 21-cm reionization signal. We find that the method successfully removes the
foregrounds with an average fitting error of 0.5 per cent and that the 2D and 3D power spectra
are recovered across the frequency range. We find that for scales above several point spread
function scales, the 21-cm variance is successfully recovered though there is evidence of
noise leakage into the reconstructed foreground components. We find that this blind indepen-
dent component analysis technique provides encouraging results without the danger of prior
foreground assumptions.

Key words: methods: statistical – cosmology: theory – dark ages, reionization, first stars –
diffuse radiation.

1 IN T RO D U C T I O N

Four hundred thousand years after the big bang, the recombination
of electrons and protons resulted in a neutral Universe, steadily
cooling with the Hubble expansion. The ‘Dark Ages’ followed re-
combination until, 400 Myr after the big bang, the first ionizing
sources came into existence. This Epoch of Reionization (EoR) is
one of the last unobserved eras of our Universe, but with a new
generation of radio telescopes coming online [e.g. Low Frequency
Array (LOFAR),1 Giant Metrewave Radio Telescope,2 Murchison
Widefield Array,3 Precision Array to Probe the Epoch of Reioniza-
tion,4 21 Centimeter Array5 and Square Kilometre Array (SKA)6],
this is soon about to change.

It is generally accepted that the most rewarding way to probe
reionization is through the 21-cm spectral line – produced by a spin
flip in neutral hydrogen (van de Hulst 1945; Ewen & Purcell 1951;
Muller & Oort 1951). This 21-cm radiation can be observed interfer-

�E-mail: eow@star.ucl.ac.uk
1 http://www.lofar.org/
2 http://gmrt.ncra.tifr.res.in/
3 http://www.mwatelescope.org/
4 http://astro.berkeley.edu/dbacker/eor/
5 http://21cma.bao.ac.cn/
6 http://www.skatelescope.org/

ometrically at radio wavelengths as a deviation from the brightness
temperature of the cosmic microwave background (CMB) (Field
1958, 1959; Madau, Meiksin & Rees 1997; Shaver et al. 1999).

Observationally, the 21-cm signal will be accompanied by sys-
tem noise and Galactic and extragalactic foregrounds (e.g. Jelić
et al. 2008, 2010) which are orders of magnitude larger than the
21-cm signal we wish to detect. On top of this there are system-
atic effects due to the ionosphere and instrument response. The
foregrounds must be carefully removed using a cleaning process
of high accuracy and precision as any error at this stage has the
ability to destroy the underlying 21-cm signal. Foreground removal
and the implications for 21-cm cosmology have been extensively re-
searched over the past decade (e.g. Di Matteo et al. 2002; Oh & Mack
2003; Di Matteo, Ciardi & Miniati 2004; Morales & Hewitt 2004;
Zaldarriaga, Furlanetto & Hernquist 2004; Santos, Cooray & Knox
2005; Bowman, Morales & Hewitt 2006; McQuinn et al. 2006;
Wang et al. 2006; Gleser, Nusser & Benson 2008; Jelić et al. 2008;
Harker et al. 2009b, 2010; Liu, Tegmark & Zaldarriaga 2009a; Liu
et al. 2009b; Liu & Tegmark 2011, 2012; Mao 2012; Petrovic & Oh
2011). This paper constitutes only one step in the foreground re-
moval process and assumes that bright sources have been removed,
for example via a flux cut (Di Matteo et al. 2004).

There is currently no consensus on the most effective fore-
ground removal method, though a recent method implemented by
Harker et al. (2009b, 2010) has shown promising results while mak-
ing only minimal assumptions. The same method highlighted that
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foreground removal techniques can be carried out both in image and
visibility space – with the quality of results sometimes dependent
on the choice of space. It is possible that different methods will
be best suited for the extraction of different information from the
data and improvements in the recovery of any one statistic, even
at the expense of another, will still be useful. The statistical de-
tection of the EoR signal is fraught with uncertainty and applying
several foreground cleaning methods to the data independently will
be invaluable in confirming a statistical detection.

The method presented here is based on the independent compo-
nent analysis (ICA) algorithm, FASTICA (Hyvärinen, Karhunen & Oja
2001). ICA is a method originally designed to separate independent
signals with minimal prior knowledge of the form of the signals.
Thus ICA provides us with a foreground removal method which
compensates for the fact that we do not know the form of the fore-
grounds at the exact resolution and frequency range of LOFAR. A
non-parametric method, FASTICA, allows the foregrounds to choose
their own shape instead of assuming a specific form, such as a poly-
nomial. FASTICA is a versatile tool and has been applied recently
in the field of exoplanets (Waldmann 2012) and CMB foreground
removal with great success (e.g. Maino et al. 2002, 2003, 2007;
Bottino, Banday & Maino 2008, 2010), motivating its implementa-
tion on other cosmological data. The results presented focus on the
two main statistical aims of current EoR experiments, namely the
recovery of the power spectrum and variance of the cosmological
signal.

Section 2 briefly describes the FASTICA methodology and algo-
rithm used to identify independent components (ICs) . The various
methods used to simulate the 21-cm signal, foregrounds and noise
are set out in Section 3. The results and sensitivity of the FASTICA

method are presented in Sections 4 and 5 before a final summary
and discussion in Section 6.

2 FO R E G RO U N D R E M OVA L T E C H N I QU E S

The statistical detection of the 21-cm reionization signal depends on
an accurate and robust method for removing the foregrounds from
the total signal. Since it is impossible to observe the foregrounds
alone this is not a simple task.

The first attempts focused on exploiting the angular fluctuations
of the 21-cm signal (e.g. Di Matteo et al. 2002, 2004; Oh & Mack
2003), but the 21-cm signal was found to be swamped by vari-
ous foregrounds. The focus then moved on to the frequency cor-
relation of the foregrounds, with the cross-correlation of pairs of
maps used as a cleaning step (Zaldarriaga et al. 2004; Santos et al.
2005). While the foregrounds are expected to be highly correlated
on scales of 1 MHz (e.g. Di Matteo et al. 2002; Gnedin & Shaver
2004), the cosmological signal is expected to be highly uncorrelated
(Ali, Bharadwaj & Chengalur 2008) on the same frequency scales,
allowing frequency correlation to differentiate the signals.

As more methods have emerged, it has become clear that different
methods have different advantages and foreground subtraction has
become accepted as a three-stage process. The first and last stages
are bright source removal (Cooray & Furlanetto 2004; Di Matteo
et al. 2004; Zaldarriaga et al. 2004; Morales, Bowman & Hewitt
2006) and residual error subtraction, respectively (Morales & Hewitt
2004), and are not dealt with in this paper. For our data we assume
that the first stage has been carried out and all bright sources have
been removed, which will still leave foregrounds strong enough
to swamp the 21-cm signal (Di Matteo et al. 2002; Oh & Mack
2003). The second stage is known as spectral fitting, or line-of-
sight fitting, and has become by far the most popular in the lit-

erature. Line-of-sight methods can be divided into subcategories
of parametric and non-parametric methods. The majority of litera-
ture involves parametric methods, whereby at some point a certain
form for the foregrounds is assumed, for example polynomials (e.g.
Santos et al. 2005; Bowman et al. 2006; McQuinn et al. 2006; Wang
et al. 2006; Gleser et al. 2008; Jelić et al. 2008; Liu et al. 2009a,b;
Petrovic & Oh 2011). In contrast, non-parametric methods allow
the data to determine the form of the foregrounds with many more
free parameters, allowing much more freedom and not assuming
a specific form. This has obvious advantages for a cosmological
era so far not directly observed, but the results are often not as
promising as parametric results. A possible exception is the recent
method presented by Harker et al. (2009b, 2010), which preferen-
tially considered foreground models with as few inflection points
as possible. When applied to LOFAR-EoR data, this method com-
pared very favourably with parametric methods. FASTICA is another
non-parametric method which, as we will show, produces similarly
promising results.

2.1 The FASTICA method

2.1.1 Background

Introduced in the early 1980s, ICA has established itself as a
successful component separation technique with widespread ap-
plications. The method relies on the assumption that the multiple
elements making up a mixed signal are statistically independent.

ICA methods often formulate the data model as

x = As, (1)

where x is a vector representing the observed signal, s is a vector
the components of which are assumed mutually independent and
A is a mixing matrix to be calculated. For our data we have signal
maps of 512 × 512 pixels at 170 different frequencies. Equation (1)
represents one line of sight where, if m ICs are assumed, the sizes
of x, A and s are [170,1], [170,m] and [m,1], respectively. Actually,
FASTICA simultaneously considers all lines of sight, so x and s are
in effect matrices of sizes [170, 512 × 512] and [m, 512 × 512],
respectively. For clarity, we will set out the description as if only
one line of sight was being considered but the reader should bear
in mind that all lines of sight are simultaneously and independently
treated by the algorithm, with A being independent of the line of
sight.

It might immediately strike the reader that the model specified
here is the noise-free ICA model. This is because this implemen-
tation makes no effort to model the noise component through the
x = As + n formulation. Instead, one must appreciate that it is
the way in which FASTICA is not robust to noisy components that
we take advantage of here. Whereas x will represent the observed
signal of foreground, noise and 21-cm signal, s is considered to be
the foregrounds only. FASTICA ignores the Gaussian or non-smooth
spectral components in the observed signal. When we specify m
ICs, FASTICA reconstructs m ICs related to the foregrounds only.

To solve equation (1) for s, we seek a linear transform:

s = Wx, (2)

where W is a constant weight matrix that the ICA method aims
to determine assuming that the elements of s are as statistically
independent as possible.

FASTICA seeks to estimate W using the concept of mutual infor-
mation. The general philosophy behind FASTICA is outlined below,
but for a full treatment refer to Hyvärinen (1999) and Hyvärinen
et al. (2001).
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2520 E. Chapman et al.

Let us consider a single component of the signal s:

y = wTx =
∑

i

wixi, (3)

where if w is one of the rows of the inverse of A, then y is actually
one of the ICs, si. ICA then attempts to minimize the Gaussianity
of wTx. To understand why, we define a vector z:

z = ATw, (4)

so that we have a weighted sum of the independent signal compo-
nents:

y = zTs. (5)

The central limit theorem states that the greater the number of
independent variables in a distribution, the more Gaussian that dis-
tribution will be. zTs is therefore always more Gaussian than any
individual si. y will be least Gaussian when one, and only one, zi

is non-zero, and in such a case y is then one of the ICs. Thus by
maximizing the non-Gaussianity of wTx we find one of the ICs.

In order to estimate and adjust wTx in such a way that its Gaus-
sianity converges to a minimum, the methods need a robust measure
of non-Gaussianity. FASTICA favours negentropy as a measure of non-
Gaussianity, which is based on the idea of the entropy of a variable,
H(y):

H (y) = −
∑

i

P (y = ai) log P (y = ai), (6)

where ai are the possible values of y.
Negentropy is then defined as

J (y) = H (ygauss) − H (y), (7)

where ygauss is a random Gaussian variable with the same covariance
matrix as y. Using the maximum entropy principle, one can define

J (y) ≈
n∑

i=1

ki[E{Gi(y)} − E{Gi(ν)}]2, (8)

where ki are positive constants, ν is a Gaussian variable with zero
mean and unit variance, and G are non-quadratic functions. Though
almost any non-quadratic function can be used, the robustness and
speed of the FASTICA method depends on choosing these contrast
functions well, with different contrast functions more suited to dif-
ferent scenarios. For this implementation we choose a non-linearity,
g(u), of

g(u) = u × exp

(
−u2

2

)
, (9)

where g(u) = G′(u) = dG(u)
du

. This choice is particularly suited
when robustness is important or when the components have high
kurtosis.

Since s and A are both unknown, FASTICA cannot determine the
ICs’ magnitudes or order, as we can freely change the order of the
components in the mixing model or multiply any of them by a scalar
factor which can be balanced out by dividing out elsewhere. As such
FASTICA fixes the magnitudes of the ICs by assuming that they have
unit variance.

2.1.2 Algorithm

Here we summarize the fixed-point FASTICA algorithm for finding
one IC.

The mixed signal is input along with a parameter representing
the number of ICs we assume there to be. A typical choice in this
implementation is four ICs.

These data undergo several pre-processing steps within the
FASTICA program. First, the data are adjusted to be of zero mean
to simplify the algorithm. Then, using a principal component anal-
ysis to estimate the eigenvalues and eigenvectors for the data, the
data are whitened. This results in the vector x where the components
are uncorrelated, with unit variances.

We wish to choose a unit vector w such that the non-Gaussianity
of wTx is maximized. Under the assumption that the components
have unit variance (which for whitened data is equivalent to assum-
ing ||w||2 = 1) these maxima occur where

E{xg(wTx)} − βw = 0 (10)

is satisfied. To find the roots of this equation using Newton’s method
we arrive at the approximate Newton iteration:

w+ = w − [E{xg(wTx)} − βw]

E{g′(wTx)} − β
. (11)

This iteration is carried out using the algorithm summarized in the
following steps (Hyvärinen & Oja 2000).

(i) Choose an initial random weight vector w.
(ii) Let w+ = E{xg(wTx)} − E{g′(wTx)}w.
(iii) Let w = w+

‖w+‖ .
(iv) If the old and new values for w are not converged, then

repeat the process.

Here g is the derivative and g′ is the second derivative of the chosen
contrast function G. The use of the contrast function derivatives
comes from consideration of where the maxima of the negentropy
approximation are obtained. The non-Gaussianity is maximized
along the line of sight and across the map simultaneously, meaning
that the method’s constraining power benefits from having more
pixels and more frequency maps.

To extend the algorithm to n components requires FASTICA to run
simultaneously for n different weight vectors, w1, ..., wn, where
one wj corresponds to w in the above algorithm. To ensure that the
different wj x converge to different maxima (i.e. the same IC is not
found twice) all the outputs wj x must be decorrelated after every
iteration. For a more detailed treatment refer to Hyvärinen (1999)
and Hyvärinen et al. (2001).

2.1.3 Our implementation

We make use of the C++ implementation of FASTICA provided by
the IT++ library.7 Our foreground subtraction proceeds in the fol-
lowing steps.

(i) Read in the simulation data cube and specify the number of
foreground ICs for FASTICA to model.

(ii) Call FASTICA to calculate the mixing matrix and ICs of the
foregrounds.

(iii) Reconstruct the foregrounds by performing a multiplication
of the mixing matrix, which is common to all lines of sight, with
the vector of ICs for each line of sight.

(iv) Find the difference between the reconstructed foreground
cube and the input cube. This residual cube should equal the 21-cm
signal, noise and any foreground fitting errors.

Statistical tests can then be carried out on the residuals cube to
determine if the 21-cm signal is recoverable after the foreground
removal process.

7 http://itpp.sourceforge.net/devel/fastica_8cpp.html
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It is worth reiterating once more as it is such an important point:
the ICs referred to in the ICA methodology as applied here are the
ICs making up the foregrounds – the cosmological signal and noise
are at no point modelled or even taken into account by this FASTICA

implementation.

3 SI M U L AT E D E O R DATA

We simulate 170 frequency maps between 115 and 200 MHz with
spacings of 0.5 MHz. The maps consist of 5122 pixels representing
a 10◦ × 10◦ observation window, or a resolution of 1.17 arcmin
per pixel. Since an interferometer like LOFAR is insensitive to the
mean value of the brightness temperature, we use mean-subtracted
maps.

3.1 21-cm cosmological signal

Of the existing reionization simulation programs (e.g. Santos et al.
2010), we use the seminumeric modelling tool 21CMFAST to simulate
the observable of the 21-cm radiation, the brightness temperature Tb

(Mesinger & Furlanetto 2007; Mesinger, Furlanetto & Cen 2011).
21CMFAST treats physical processes with approximate methods for
small realization generation times and has produced results which
agree well with the most recent hydrodynamical simulations. The
code was run using a standard cosmology, (��,�m, �b, n, σ8, h) =
(0.72,0.28,0.046,0.96,0.82,73) (Komatsu et al. 2011), and initial-
ized at z = 300 on a 18003 grid. The velocity fields used to perturb
the initial conditions as well as the resulting 21-cm Tb boxes were
formed on a 4503 cruder grid before being interpolated up to 5123.
We define haloes contributing ionizing photons as having a mini-
mum virial mass of 1 × 109 M�.

When a hydrogen atom undergoes a ground-state hyperfine tran-
sition from the excited triplet state, where the spins of the proton and
electron are parallel, to the singlet state, where the spins are antipar-
allel, a photon is emitted of wavelength 21 cm or frequency ν10 =
1420 MHz. The 21-cm spectral line is forbidden – the probability of
a 21-cm transition is 2.9 × 10−15 s−1, equivalent to the triplet state
lifetime of 107 yr (Wild 1952). Even so, the vast amount of hydro-
gen in the Universe leads to 21-cm observations being achievable
(van de Hulst 1945). The intensity of 21-cm radiation is determined
by the spin temperature, Tspin, defined through (Field 1958)

n1

n0
= 3 exp

(−T ∗

Tspin

)
. (12)

The spin temperature is a fundamental measure of the number den-
sities of the triplet and singlet states (n1, n0) where T ∗ = hν10

kb
=

0.0681 K.
Tb is detected differentially as a deviation from TCMB and δTb

(Field 1958, 1959; Ciardi & Madau 2003):

δTb = 28 mK × (1 + δ)xH I

(
1 − TCMB

Tspin

) (
�bh

2

0.0223

)

×
√(

1 + z

10

) (
0.24

�m

)
, (13)

where δ is the mass density contrast, h is the Hubble constant in
units of 100 km s−1 Mpc−1, xH I is the fraction of neutral hydrogen,
and �b and �m are the baryon and matter densities in critical density
units.

3.2 Foregrounds

Though there have been foreground observations at frequencies rel-
evant to LOFAR using the Westerbork Synthesis Radio Telescope
(Bernardi et al. 2009, 2010), the foreground contamination at the
frequencies and resolution of LOFAR remains poorly constrained.
As a result, foreground models directly relevant for this paper rely
on using constraints from observations at different frequency and
resolution ranges. These constraints are used to normalize the nec-
essary extrapolations made from observations to create a model
relevant for LOFAR-EoR observations.

In general, the foreground components are modelled as power
laws in 3+1 dimensions (i.e. three spatial and one frequency) such
that Tb ∝ νβ (e.g. Shaver et al. 1999; Ali et al. 2008; Jelić et al.
2008, 2010).

The foreground simulations used in this paper are obtained using
the foreground models described in Jelić et al. (2008, 2010). The
foreground contributions considered in these simulations are as
follows.

(i) Galactic diffuse synchrotron emission (GDSE) originating
from the interaction of free electrons with the Galactic magnetic
field. It incorporates both the spatial and frequency variation of
β by simulating in 3 spatial and 1 frequency dimension before
integrating over the z-coordinate to get a series of frequency maps.
Each line of sight has a slightly different power law.

(ii) Galactic localized synchrotron emission originating from su-
pernova remnants (SNRs). Together with the GDSE, this emission
makes up 70 per cent of the total foreground contamination. Two
SNRs were randomly placed as discs per 5◦ observing window,
with properties such as power-law index chosen randomly from the
Green (2006) catalogue.

(iii) Galactic diffuse free–free emission due to bremsstrahlung
radiation in diffuse ionized Galactic gas. This emission contributes
only 1 per cent of total foreground contamination; however, it still
dominates the 21-cm signal. The same method as used for the GDSE
is used to obtain maps; however, the value of β is fixed to −2.15
across the map.

(iv) Extragalactic foregrounds consisting of contributions from
radio galaxies and radio clusters and contributing 27 per cent of
the total foreground contamination. The simulated radio galaxies
assume a power law and are clustered using a random walk algo-
rithm. The radio clusters have steep power spectra and are based
on a cluster catalogue from the Virgo Consortium8 and observed
mass–luminosity and X-ray–radio luminosity relations.

Unlike Jelić et al. (2008, 2010), this paper does not consider the
polarization of the foregrounds. The foregrounds simulated here
are up to five orders of magnitude larger than the signal we hope
to detect. Since interferometers such as LOFAR measure only fluc-
tuations, foreground fluctuations dominate by ‘only’ three orders
of magnitude. We will investigate polarized removal in a further
analysis.

3.3 Noise

The sensitivity of a receiving system is ultimately determined by
the system noise (Thompson, Moran & Swenson Jr 2001). The
system noise consists of contributions from both the sky and
the receivers themselves. Frequency dependence is introduced into

8 http://www.mpa-garching.mpg.de/galform/virgo/hubble/
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2522 E. Chapman et al.

Table 1. LOFAR and simulation parameters.

Parameter Description Value

nd Number of dipoles per tile 16
nt Number of tiles per station 24
ns Number of stations 48
ηa Antenna efficiency 1
ηs System efficiency 0.9

ν Frequency interval (MHz) 0.5
tint Integration time (h) 600
�arcmin Area of synthesized beam (arcmin2) 4
�sr Area of synthesized beam (sr) 1.35 × 10−6

the noise through the sky noise and through the frequency depen-
dence of the effective area of the telescope. It is assumed that the
noise across an image is Gaussian at any one frequency. For a de-
tailed look at the expected noise on LOFAR measurements, see
Labropoulos et al. (2009).

We have decided to reproduce the method for calculating the
noise here as the noise can have a significant effect on foreground
cleaning methods.

Our parameters for calculating the noise are listed in Table 1.
In order to create a noise curve, Fig. 1, we use the following pre-
scription: the system noise temperature consists of sky brightness
and instrumental components. We calculate this system temperature
using

Tsys = 140 + 60
( ν

300 MHz

)−2.55
. (14)

The effective area of the array is determined by multiplying the
effective area of a single dipole by the number of dipoles in the
array, where the effective area of a dipole is limited by the size of
the tile. We calculate the effective area of the LOFAR array using

Aeff = min

(
λ2

3
, 1.5625

)
ndnt. (15)

The system equivalent flux density (SEFD) then depends on both
of the quantities calculated above:

SEFD = 2Tsyskb

ηaAeff
. (16)

Figure 1. The rms of the simulated zero mean noise (blue; solid) and 21-cm
(red; dashed) maps over frequency.

Finally we calculate the LOFAR noise sensitivity

σ = 1

ηs

SEFD√
ns(ns − 1)
νtint�sr

. (17)

Fig. 1 shows the noise curve calculated from this prescription
compared to the rms of our 21-cm simulation.

For each frequency, a LOFAR measurement set was filled with
Gaussian noise in the uv plane. This was then imaged to create
a real-space image, the rms of which can be normalized to the
value as given by the prescription described above. For example the
noise sensitivity at 150 MHz for an integration time of 600 h and
a frequency spacing of 0.5 MHz was 64 mK. The 170 noise maps
were uncorrelated over frequency – i.e. a different noise realization
was used to fill the measurement set for each frequency.

3.4 Dirty images

The success of an interferometer such as LOFAR is highly de-
pendent on how uv space is sampled. The particular pattern of uv
sampling forms a beam which affects how the components such as
the foregrounds are seen by the interferometer. Dirty images were
simulated by convolving with the point spread function (PSF) of
the LOFAR setup used to simulate the noise in the previous section,
Figs 2 and 3.

The PSF used for creating dirty images (and for creating the
noise as described in the previous section) was chosen to be the
worst in the observation bandwidth – i.e. the PSF at 115 MHz. In
observations the synthesized beam decreases in size with increas-
ing frequency, causing point-source signals to oscillate with the
beam, producing a foreground signal with an oscillatory signal very
much like that of the 21-cm signal. However, this mode-mixing

Figure 2. The 21-cm signal at 150 MHz convolved with the PSF. The signal
is entirely in emission – this map has been adjusted to have a mean of zero
to reflect the observations of an interferometer.
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Figure 3. The total contribution of the simulated foregrounds at 150 MHz
convolved with the PSF.

contribution has been found not to threaten the 21-cm recovery and
has a power well below the 21-cm level (Bowman et al. 2006; Liu
et al. 2009a). As such we leave the consideration of a frequency-
dependent PSF to a future paper.

Once the foregrounds and 21-cm signal have been adjusted for
uv sampling, the three component cubes are added together. The
components of the total δTb along a random line of sight are shown
in Fig. 4.

Figure 4. The redshift evolution of the simulated cosmological signal (red;
dash–dotted), foregrounds (pink; solid), noise (blue; dashed) and total com-
bined signal (black; dotted). All components have undergone the PSF con-
volution. Note that the 21-cm signal has been amplified by 10 and displaced
by −1 K for clarity.

3.5 Fourier transformed data

The FASTICA method was implemented separately with data both in
real and Fourier space. For the latter method, the fiducial image
cube was 2D Fourier transformed at each frequency to create a
Fourier data cube. The complete cube was then processed with
FASTICA and the output reverse Fourier transformed to obtain the ICs
in real space. Unless otherwise stated all results refer to real-space
implementation.

4 R ESULTS

4.1 The independent components

The top panel of Fig. 5 shows the four ICs found by FASTICA for a
clean data cube. These ICs are the columns of the mixing matrix,
A. For comparison we show the line of sight δTb of the simulated
foreground contributions in the bottom panel of Fig. 5.

We can see that no single component corresponds to any one
single foreground contribution, even when processing a clean data
cube. Instead, the components are all a mixture. While in ICs 2
and 4 the presence of Galactic synchrotron is obvious, in the other
components the combination of the contributions is not so clear. It
is also worth noting that while IC4 shows a significant contribution
from Galactic synchrotron, it is inverted. FASTICA can only determine
the ICs up to a multiplicative constant and so the sign and magnitude
of the components are irrelevant.

The coefficients of the ICs are stored in the matrix s and are
presented in Figs 6–9. We can compare these coefficients to the
maps of the foreground contributions, Figs 10–12. We see that all
four coefficients are a mixture of the contributions as expected.

Figure 5. In the top panel we show the four columns of the mixing matrix
representing the four ICs. The brightness temperatures of the foreground
contributions along a random line of sight are shown in the bottom panel.
We see that the ICs are each a scaled mixture of the foreground contributions.
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Figure 6. The first coefficient map of the ICs when FASTICA processes the
clean data cube.

Figure 7. The second coefficient map of the ICs when FASTICA processes
the clean data cube.

Figure 8. The third coefficient map of the ICs when FASTICA processes the
clean data cube.

Figure 9. The fourth coefficient map of the ICs when FASTICA processes the
clean data cube.

Figure 10. The simulated extragalactic foregrounds at 150 MHz.

4.2 Fitting errors and variance

We will first discuss the FASTICA results on the simulation where the
data cube has been convolved with the PSF; then the data processing
is carried out in real space and four ICs are assumed. The word
‘simulated’ is used to refer to the input maps and ‘reconstructed’
is used for the estimates resulting from FASTICA. The total input
signal is separated into reconstructed foregrounds and residuals. The
residuals are the difference between the total input signal (corrected
in the online version, 2012 May 25) and reconstructed foregrounds.

To evaluate the accuracy of the foreground fitting by FASTICA, we
calculated the foreground fitting error, equation (18), for each pixel:

fitting error = fgreconstructed − fgsimulated

fgsimulated
× 100.0. (18)
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Figure 11. The simulated Galactic synchrotron foregrounds at 150 MHz.

Figure 12. The simulated Galactic free–free foregrounds at 150 MHz.

In Fig. 13 we plot the Pearson correlation coefficient between
the foreground fitting errors and foregrounds (top) and between
the foreground fitting errors and the noise (bottom). The Pearson
correlation coefficient between two data sets a and b is defined as

r =
∑

i(ai − ā)(bi − b̄)[∑
i(ai − ā)2

∑
i(bi − b̄)2

] 1
2

, (19)

Figure 13. (a) The Pearson correlation coefficient between the foreground
maps and foreground fitting errors. (b) The Pearson correlation coefficient
between the noise maps and foreground fitting errors.

where ā is the mean of the data set ai, b̄ is the mean of the
data set bi and the measure is normalized such that r = ±1 for
correlation/anticorrelation.

We see that there is very little correlation between the foreground
maps and the foreground fitting errors, with around six magnitudes
more correlation between the noise maps and the foreground fitting
errors.

To get a representation of the foreground fitting error over an
entire map, the rms error of the fitted foregrounds was calculated,
Fig. 17. It should be noted that this error takes into account all scales
– including those with a disproportionate error as will be seen in
the power spectra. The rms difference between the simulated and
reconstructed foregrounds was calculated over all 5122 lines of sight
for each frequency. Also, an rms error for each map was calculated
using only 68 per cent of the pixels – with the pixels of lowest error
selected first. When the outlier pixels are discounted we find that the
rms error is below 10 mK for the majority of the frequency range.
This is still high enough to be of concern as the 21-cm signal is
itself of the order of tens of mK; however, the inclusion of all scales
means that this is a worst case scenario.

For a statistical detection of the EoR, LOFAR aims to detect a
non-zero variance after the noise and foregrounds have been ac-
counted for. We begin by combining the simulated noise and simu-
lated 21-cm signal and taking the variance of this signal. This can
then be compared to the variance of the FASTICA residuals – Fig. 14.
The residual variance is recovered at all but the smallest frequencies.
At frequencies below 120 MHz (or z > 10.8) the variance is signifi-
cantly underestimated, probably as a result of foreground overfitting
– the leakage of noise power into the estimated foreground power.
This failure at very low frequencies is hardly surprising considering
that this is where the noise and foregrounds are at their strongest.

We subtract the variance of the simulated noise directly from
the variance of these residuals: var(reconstructed 21-cm) =
var(residuals) − var(noise). This is a fair assumption as we should
be able to look at the data in narrow frequency bins and estimate
the statistics (e.g. variance and power spectrum) of the noise to a
very high accuracy.

We find that the recovered 21-cm variance, Fig. 15 (top-left), is
not robust to small-scale power in the original signal. By removing
the noise simulation maps manually from the residual maps in order
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Figure 14. The variance across the combined simulated cosmological signal
and noise (red, dashed), noise alone (black, dotted) and residuals (blue,
solid).

Figure 15. The variance across the simulated (red; dashed) and recon-
structed 21-cm maps (blue; solid) for the fiducial data, and data which have
had Fourier filtering of modes below 2, 3 and 5 PSF scales (in reading order).

to get crude maps of the recovered 21-cm signal, excess small-scale
power is evident, Fig. 16. We note that we do this direct noise
subtraction for a crude visual inspection only and not for any of the
analytical results. The excess power is most likely due to FASTICA not
being robust to the small-scale power (noise) in our data, allowing
it to leak into the reconstructed foregrounds. It was found that
by Fourier filtering the data to entirely remove k modes below a
threshold corresponding to a multiple of the PSF scale, the variance
recovery was significantly improved. A very good recovery occurs
with filtering below 5 PSF scales (Fig. 15, bottom-right).

At the extremes of the frequency range the reconstructed variance
increasingly diverges from that of the simulated 21-cm. Both the
noise and the foregrounds are at their largest at lower frequencies
meaning that both fitting errors and noise leakage are likely to be
largest here, leading to less accurate 21-cm reconstruction. Equally,
at the larger frequencies, the 21-cm signal is almost non-existent
making an accurate reconstruction difficult when swamped with
fitting errors and noise.

Figure 16. The reconstructed 21-cm signal at 150 MHz for dirty data. We
see that while there is a strong correlation between the large-scale struc-
ture in this image and the original signal (Fig. 2), there is also a large
amount of excess small-scale structure, probably due to noise leakage into
the foregrounds.

This variance calculation was also carried out on a data cube
where the residual and noise maps were smoothed from a 5122 grid
to a 2562 grid before the same variance calculation was carried out
above and compared to the variance of a smoothed simulated 21-cm
map. The curves are, as expected, slightly smoother; however, the
trend and conclusions remain the same.

4.2.1 Varying the number of ICs

The FASTICA algorithm requires specification of the number of ICs
to be used in the reconstructed foreground model. Though we have
modelled the various foreground contributions, it is not a trivial task
to determine how these depend on each other and to what degree.
To test the sensitivity of our results to the number of ICs chosen we
calculate the rms error and variance recovery for IC numbers of 2,
4 and 6 in Figs 17 and 18.

We see that small variations in the number of ICs do not endanger
the statistical recovery of the 21-cm signal. For the remainder of
this paper, four ICs are assumed.

4.3 Power spectra

Together with the variance, EoR experiments aim to recover the
power spectrum of the cosmological signal over a broad range of
frequencies.

Different effects are important for modes parallel and perpendic-
ular to the line of sight. For example, consider the scenario where
the foregrounds have been under-fitted by a constant over the fre-
quency range. This offset will not be evident in the 1D power spec-
trum of the residuals, however will be evident in the angular power
spectrum if that constant is dependent on line of sight. Thus it has
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Figure 17. The rms error of the four IC reconstructed foregrounds for when
all pixels are considered (blue; dashed) and when only the middle 68 per
cent of the error distribution is included (blue; solid). Also, the rms errors of
the reconstructed foregrounds for FASTICA applied according to models with
2 (red; dotted) and 6 (black; dash–dotted) ICs, with only the middle 68 per
cent of the error distribution included.

Figure 18. The variance across the simulated (red; dashed) and recon-
structed maps at each frequency, for the FASTICA algorithm run with the
assumption of 2 (black; dotted), 4 (blue; solid) and 6 (pink; dot–dashed)
ICs. The data have been Fourier filtered at the 5 PSF scale.

been argued by Harker et al. (2010) that for LOFAR data, the sep-
arate calculation of 1D and 2D power spectra has its advantages.
However, this does not consider modes either parallel or perpendic-
ular to the line of sight and as such we calculate 2D and 3D power
spectra. We note here that we performed only one simulation of the
cosmological signal so the power spectrum error bars relate to this
specific realization of the density field.

4.3.1 Angular power spectra

The angular power spectrum of a map at a single frequency is
calculated by 2D Fourier transforming that map and binning the
pixels according to Fourier scale, k. The power at any particular k,
〈δ(k)δ∗(k)〉, is the average power of all the uv cells in the bin centring
on k. The error on the point for a particular bin, ki, is calculated as
αi = 〈δ(ki )δ∗(ki )〉√

nki
, where nki

is the number of uv cells that reside in that

k bin. The power spectra are averaged over frequency bandwidths of
2.5 MHz and all frequencies quoted are the middle frequency of the
bandwidth. The power spectrum of the reconstructed cosmological
signal is calculated by subtraction of the noise power spectrum from
the FASTICA residual power spectrum. The error on the simulated
21-cm power spectrum is added in quadrature with the error on the
noise to reflect the error on the reconstructed 21-cm power spectrum.
Note that we assume Gaussianity whereas the 21-cm signal is not
Gaussian and also we calculate the error bars from the power of
a single realization rather than over an ensemble of simulations.
We ask the reader to bear in mind that these error bars might be
considered incomplete because of this.

The quantity actually plotted is 
2
2D(k) = Ak2〈δ(k)δ∗(k)〉

2π
, where A

is the area of the simulation map.
Fig. 19 shows the extent to which the FASTICA method can recover

the 21-cm angular power spectrum. Overall, the 21-cm power spec-
trum is convincingly recovered across the redshift range. Any points
where the power of the residuals is below the power of the noise are
omitted, as this leads to an unrealistic negative reconstructed 21-cm
power. As such, there is a lack of data at small scales indicative of
noise leakage into the foregrounds.

This noise leakage could be a resolution effect (i.e. artefacts
originating from correlated noise) or simply a result of FASTICA not
being robust to noise, most likely the latter.

4.3.2 3D power spectra

To calculate the 3D power spectra we divide the cube into sub-bands
of 8 MHz to avoid signal evolution effects. For each sub-band we
then carry out a 3D Fourier transform and calculate the 3D power
spectrum in spherical annuli in Fourier space. The frequencies at-
tached to the plots correspond to the centre of the sub-band plotted.
What we actually plot is the quantity 
2

3D(k) = V k3〈δ(k)δ∗(k)〉
2π2 , where

V is the volume.
We find the same accurate recovery on scales above a few multi-

ples of the PSF but with smaller errors due to the larger amount of
data evaluated, Fig. 20.

4.3.3 Cross-correlation power spectra

To try and retrieve a more robust reconstructed 21-cm power spec-
trum, the cross-correlation of two data cube realizations was carried
out. Two independent noise realizations were created and com-
bined with identical foregrounds and 21-cm signals to create two
data cubes with the only difference being the noise realization. FAS-
TICA was performed on both of these cubes separately, resulting
in two residual files. We carried out cross-correlations on the two
reconstructed cosmological signals, the two residual files and the
two 21-cm fitting error estimates (i.e. reconstructed 21-cm minus
the simulated 21-cm). By cross-correlating the two residual sig-
nals consisting of two different noise realizations, we increase the
amount of noise that will drop out in the noise cross terms, hopefully
resulting in a more accurate power spectrum recovery when applied
to real data. However, we do not expect a significant improvement
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Figure 19. 2D power spectrum of the simulated 21-cm signal (black; solid),
reconstructed 21-cm signal (red; points), residuals (blue; dashed) and noise
(pink; dotted) at 131 MHz, or z = 9.84, 151 MHz, or z = 8.40 and 171 MHz,
or z = 7.30 from top to bottom. Any error bars extending to below the x-axis
in linear space are shown extending to negative infinity in log space.

in comparison to our 2D autospectra here as we have already as-
sumed perfect knowledge of the noise spectrum. Instead, we do
this as an example of a more robust method of power spectrum
recovery for real data. Note that since correlations can be negative,
it is the absolute value that is plotted. The error bars on the cross-
spectra are calculated in the same way as for the autospectra, namely
αi = 〈δ(ki )δ∗(ki )〉√

nki
, where nki

is the number of pixels that reside in that

k bin. The power spectra recovered as a result of this process are
shown in Fig. 21.

The cross-correlations were also carried out on two noise realiza-
tions which were adjusted to have roughly 10 times the signal-to-
noise ratio of the LOFAR realizations (similar to what is hoped for
SKA), Fig. 22. We see that with a higher signal-to-noise ratio the
auto- and cross-correlation estimates are significantly improved.

4.4 Kurtosis and skewness

Skewness and, to a lesser extent, kurtosis have both been suggested
as alternative statistics for the 21-cm detection due to their increased
robustness to fitting errors compared to the variance (Wyithe &
Morales 2007; Harker et al. 2009a). We define skewness (γ 1) and

Figure 20. 3D power spectrum of the simulated 21-cm signal, reconstructed
21-cm signal, residuals and noise at 135 MHz, or z = 9.51, 151 MHz, or z =
8.40 and 175 MHz, or z = 7.11 over an 8 MHz sub-band. Any points where
the power of the residuals is below the power of the noise are omitted, as
this leads to an unrealistic negative reconstructed 21-cm power. The error
bars and line styles are as described in Fig. 19.

kurtosis (γ 2) in equations (20) and (21), respectively,

γ1 =
1
N

∑
i(Ti − T̄ )3(

1
N

∑
i(Ti − T̄ )2

) 3
2

(20)

γ2 =
1
N

∑
i(Ti − T̄ )4(

1
N

∑
i(Ti − T̄ )2

)2 − 3. (21)

Kurtosis is defined in such a way that a Gaussian distribution would
have a kurtosis of zero.

The structure of the 21-cm skewness and kurtosis for different
source models has been discussed by Harker et al. (2009a), Wyithe
& Morales (2007) and Iliev et al. (2011). There is expected to be
a skewness of the 21-cm signal as the signal becomes increasingly
non-Gaussian and the regions of ionized hydrogen become more
numerous. Simulations also show an increase in skewness at very
low redshift due to a high brightness temperature tail related to
regions with some remaining neutral hydrogen.

Harker et al. (2009a) employed a Wiener filter on the dirty resid-
ual data to denoise the images, recovering the general trends of the
21-cm skew. Kurtosis recovery proved more elusive. We present
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Figure 21. Cross-correlations of the two residuals (blue; cross), two re-
constructed 21-cm signals (red; square), two fitting error estimates (pink;
circle) and the autocorrelation of the simulated (black; solid) at 131, 151and
171 MHz. Only one set of error bars is shown for clarity.

Figure 22. Cross-correlations of the two residuals (blue; cross), two re-
constructed 21-cm signals (red; square), two fitting error estimates (pink;
circle) and the autocorrelation of the simulated (black; solid) and recon-
structed cosmological signal (for one realization) (red; circles) at 150 MHz.
The noise realizations involved have been adjusted to be 10 times smaller
than the LOFAR realizations.

Figure 23. The skewness of the simulated 21-cm signal plus noise (red),
noise alone (black dotted) and residual maps (blue dashed).

Figure 24. The kurtosis of the simulated 21-cm signal plus noise (red),
noise alone (black dotted) and residual maps (blue dashed).

the skewness and kurtosis of the residual cubes, Figs 23 and 24,
respectively.

The skewness and kurtosis in the residual images are recovered
very well, accurately matching the simulated noise plus 21-cm sig-
nal skewness and kurtosis across the frequency range.

We now manually subtract the noise cube from the residual cube
and plot the kurtosis/skewness of this reconstructed 21-cm signal,
Figs 25 and 26. This amounts to assuming that we know the noise
distribution perfectly which, though not viable for real data, allows
us to gain an insight into the recovered signal.

We see that the skewness dip at low frequencies is only con-
vincingly recovered with a high level of Fourier filtering. At high
frequencies, where the cosmological signal is very small, the skew-
ness is not recovered. The dip in kurtosis at frequency 165 MHz
is somewhat recovered for Fourier filtering below 2 PSF scales,
while it takes up to 5 PSF scales of k-space filtering before the peak
centred around 140 MHz is recovered. For both statistics there is a
divergence above frequencies of 180 MHz, where the cosmological
signal is very small.

All of the results presented in this section are for FASTICA being
implemented in real space. While an implementation was carried
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Figure 25. The skewness of the simulated 21-cm signal (red; solid) and
reconstructed 21-cm maps (blue; dashed) for the fiducial signal and for
different levels of Fourier filtering: 2, 3 and 5 PSF scales (in reading order).

Figure 26. The kurtosis of the simulated 21-cm signal (red; solid) and
reconstructed 21-cm maps (blue; dashed) for the fiducial signal and for
different levels of Fourier filtering: 2, 3 and 5 PSF scales (in reading order).

out in Fourier space, the general conclusions for all results remained
the same. Though there were small local variations in, for example,
the recovered power spectrum points or kurtosis values, the graphs
were for all intents and purposes duplications of the real-space
versions and are therefore not reproduced here.

5 SENSITIVITY OF FAS TI CA

So far in this paper we have assumed that the full field of view and
frequency bandwidth of the simulation are input to FASTICA but we
must also consider whether this method will be as successful under
more constrained observations.

5.1 Bandwidth of observation

First, we assess the sensitivity to bandwidth and split the dirty data
cube into two smaller cubes of bandwidth 42.5 MHz, one from 115
to 157 MHz and one from 157.5 to 199.5 MHz. We perform FASTICA

Figure 27. 2D power spectrum of the simulated 21-cm signal (black; solid),
reconstructed 21-cm signal (red; points), residuals (blue; dashed) and noise
(pink; dotted) at 151 MHz (top) and 171 MHz (bottom). The graphs are for
data cubes of bandwidth 42.5 MHz and ranges 115–157 MHz and 157.5–
199.5 MHz, respectively. Any error bars extending to below the x-axis in
linear space are shown extending to negative infinity in log space.

on each of these separately and measure the 2D power spectrum as
described previously, Fig. 27.

We can see that even for slices at the end of the cube frequency
range (i.e. Fig. 27, top, shows a slice 6 MHz from the end of that
cube) the 21-cm reconstruction is successful. The general degra-
dation is not unexpected as the more data a separation technique
has to fix the foregrounds, the better the reconstruction will be. We
conclude that the method is not sensitive to the point of endangering
the signal recovery, but larger bandwidths are preferable.

5.2 Noise

Despite the encouraging results so far, the evidence of noise leakage
in the recovered maps (Fig. 16) and the variance recovery (Fig. 15)
motivates us to consider the sensitivity of the 21-cm statistical
recovery when there is increased noise in the observation.

We have seen that by much reducing the expected LOFAR noise to
expected SKA levels, the 21-cm cross-correlation power spectrum
recovery is extremely accurate, Fig. 22. For completeness, here
we set up some ‘worst case’ scenarios, whereby we measure the
recovered power spectra in the presence of twice, three times and
five times the expected LOFAR noise, Fig. 28.

As expected, the more noise present, the less accurately the 21-cm
power spectrum is recovered. For twice the expected level of noise
we see the larger scales beginning to be overestimated, the extent
of which worsens for three times the expected noise. For five times
the expected amount of noise the power spectrum is significantly
overestimated across the scale range. However, we must stress
that the fact that the 21-cm power spectrum is recovered across a
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Figure 28. 2D power spectrum of the simulated 21-cm signal (black; solid),
reconstructed 21-cm signal (red; points), residuals (blue; dashed) and noise
(pink; dotted) at 151 MHz, or z = 7.30. From top to bottom, the noise
simulation is set at twice, three times and five times the expected LOFAR
noise, respectively. Any error bars extending to below the x-axis in linear
space are shown extending to negative infinity in log space.

wide-scale range, even in the presence of twice the noise levels
expected, can only be seen as extremely promising.

5.3 Field of view

In this paper we have assumed a 10◦ × 10◦ field of view, which is
at the upper limit of what we can expect for LOFAR observations.
To explore the sensitivity of the analysis to the field of view, we
now process a 2.◦5 × 2.◦5 data cube. If we had kept the noise and the
resolution the same, analysing such a data cube would be plagued
with noise as we would have reduced the number of pixels that we
are analysing. Hence, we can choose to analyse a smaller patch in the
sky with a higher resolution and same noise or decrease the noise
and have similar resolution in order to have similar constraining
power as the fiducial analysis and establish the effect of the sky area
coverage. In actual observations a decrease in field of view and an
increase in resolution would be related to the size of the stations
and distribution of the stations, respectively. If we had changed the
resolution we would no longer correspond, strictly speaking, to a
LOFAR case scenario. We therefore decide to decrease the field
of view by a factor of 4 and enhance the signal-to-noise ratio by
a factor of 16. We see that the residuals are actually lower than

Figure 29. 2D power spectrum of the simulated 21-cm signal (black; solid),
reconstructed 21-cm signal (red; points), residuals (blue; dashed) and noise
(pink; dotted) at 151 MHz, or z = 7.30, for a 2.◦5 × 2.◦5 field of view. Any
error bars extending to below the x-axis in linear space are shown extending
to negative infinity in log space.

the original 21-cm signal at the larger scales, Fig. 29; however, the
21-cm power spectrum is still well recovered at the smaller scales.
We interpret this as evidence that the 21-cm signal has been mixed
into the other signals by FASTICA, potentially because FASTICA did not
have as many lines of sight to remove the foregrounds, making the
reconstruction less accurate though still successful.

6 C O N C L U S I O N S

We have presented new implementation of a non-parametric fore-
ground cleaning method using the FASTICA algorithm. FASTICA is
an ICA technique which uses negentropy as a measure of non-
Gaussianity. By maximizing the non-Gaussianity of a signal mix-
ture, the ICs of the foregrounds can be separated. FASTICA can then
reconstruct the foregrounds, with any data not considered to be part
of the foregrounds forming the residuals. The residuals consist of
the 21-cm signal, system noise and fitting errors.

The success of using the FASTICA method to obtain an EoR signa-
ture was tested by attempting extraction of the two main statistical
markers of the EoR, the 21-cm power spectrum and variance. The
rms foreground fitting error is bounded below 10 mK across almost
all of the frequency range when pixels with disproportionate errors
due to unusually small foreground values are discarded.

Once the variance of the noise has been subtracted from the vari-
ance of the residuals, an excess variance is recovered. To accurately
recover the 21-cm variance it was necessary to Fourier filter the
data up to about five times the PSF scale. In this case the excess
variance accurately recovers the order and shape of the simulated
21-cm variance across the majority of the frequency range, failing
only where the signal-to-noise ratio is extremely low.

The 21-cm angular power spectrum and 3D power spectrum are
recovered very well across a wide frequency range.

Performing the ICA in Fourier space provides no particular ad-
vantages or disadvantages according to the statistical tests carried
out in this paper. This is in contrast to other methods which have
shown preference towards processing in Fourier space (Harker et al.
2009b).
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The FASTICA method has not proved to be robust in the presence
of large amount of noise. Though impressive results are obtained at
large scales even for twice the expected levels of noise, levels above
this endanger the recovery.

We have shown that FASTICA can be a competitive foreground
removal technique for EoR data, though for a full treatment of the
LOFAR-EoR data, the polarization of the simulated data and a more
accurate frequency-dependent PSF model needs to be considered in
future work.
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