Climate change, breeding date and nestling diet

Burger, Claudia; Belskii, Eugen; Eeva, Tapio; Laaksonen, Toni; Maegi, Marko; Maend, Raivo; Qvarnstrom, Anna; Slagsvold, Tore; Veen, Thor; Visser, Marcel

Published in:
Journal of Animal Ecology

DOI:
10.1111/j.1365-2656.2012.01968.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Burger, C., Belskii, E., Eeva, T., Laaksonen, T., Maegi, M., Maend, R., ... Griffith, S. (Ed.) (2012). Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation. Journal of Animal Ecology, 81(4), 926-936. DOI: 10.1111/j.1365-2656.2012.01968.x

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Area	Sampling method	Number of food items per nest	Mean \% Caterpillars per habitat	Other important prey types (in \%)	\% of unidentified items
Hoge Veluwe, NL	Videos	$\begin{aligned} & \text { Range }=25-249, \\ & \text { mean }=95.4 \end{aligned}$	Oak: 34.7 Other: 23.3	NA	NA
Drenthe, NL	Photos	$\begin{aligned} & \text { Range: } 26-141, \\ & \text { mean }=71.5 \end{aligned}$	Oak: 37.5 Other: 28.9	Coleoptera: 18.4 Arachnida: 14.4	33
Öland, S	Videos	$\begin{aligned} & \text { Range=7-123, } \\ & \text { mean }=35.9 \\ & \hline \end{aligned}$	Oak: 35.3 Other: 13.1	Winged insects: 52.5	NA
North Wales, UK	Videos	$\begin{aligned} & \text { Range= 7-600, } \\ & \text { mean }=112.3 \end{aligned}$	Oak: 40.4	NA	NA
Kilingi- Nõmme, EST	Videos	Range: 14-98, mean $=44.3$	Other: 38.0	Coleoptera: 19.5, Adult Lep.: 9.0	34
Oslo, N	Videos	$\begin{aligned} & \text { Range=7-40, } \\ & \text { mean }=25.1 \end{aligned}$	Other: 31.2	Diptera: 60 Arachnida: 8.0	NA
Harjavalta, FIN	Videos	$\begin{aligned} & \text { Range=8-149, } \\ & \text { mean }=41.9 \end{aligned}$	Other: 23.5	Adult Lep.: 20.0 Arachnida: 14.3	NA
Turku, FIN	Photos	$\begin{aligned} & \text { Range }=49-262, \\ & \text { mean }=116.9 \end{aligned}$	Oak: 40.6 Other: 12.8	Adult Lep.: 16.9 Arachnida: 12.5	39
Revda, RUS	Neckcollars	$\begin{aligned} & \text { Range= } 7-91 \\ & \text { mean }=22.7 \end{aligned}$	Other: 10.6	Arachnida: 21 Diptera: 17	0

Table S1: Additional information on method of diet collection, number of food items per nest, percentage caterpillars in the diet, other important prey types and percentage of unidentified items for the different areas. NA's indicate that data on this feature was not available. 'Adult Lep.' is adult Lepidoptera.

We analysed data on 67 nests from one area, Hoge Veluwe, Netherlands, of which we

Linear mixed models (Imer)	AIC
Model 1: y^{\sim} Deviation from median hatch date, random= 1\|year	497.2
Model 2: y^{\sim} Deviation from peak date, random $=1$ year	488.8

Table S2: Model comparison using AIC, with proportion of caterpillars as dependent and deviations from either hatch date (model 1) or peak date (model2) as covariate.
had information on the date of the caterpillar peak of oak trees (Visser, Holleman \& Gienapp 2006), in order to confirm that a decline of caterpillars in the diet corresponds with an decline in the environment.

We compared two models with proportion of caterpillars in the diet as dependent (y) and either deviation (in days) from median hatching date (model 1) or deviation from the caterpillar peak (model 2) as covariates. We used function lmer (package lme4) in $\mathrm{R}(\mathrm{R}$ Development Core Team 2010) with binomial error distribution and year as a random intercept (5 years were available).

Model 2 had a clearly lower AIC value $(\Delta \mathrm{AIC}=8.4)$, suggesting that proportions of caterpillars in the diet closely reflect timing of caterpillars in the environment.

5

Figure S1: Relationship between proportion of caterpillars in the nestling diet and the deviation from median hatch date (in days, panel A) or the deviation from peak date of caterpillars (in days, panel B). Raw data points (per nest) and predicted curves from two GLM's are shown.

References:

R Development Core Team (2010) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna. http://www.Rproject.org.

Visser, M.E., Holleman, L.J.M., \& Gienapp, P. (2006) Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia, 147, 164-172.

