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Introduction

Hypertension is present in approximately 85% of all 
chronic kidney disease (CKD) patients and can cause 
extensive vascular damage with subsequent interstitial and 
glomerular change.1 TGR(mRen2)27 (Ren2), a monoge-
netic rat model, is used to study hypertension-related renal 
and cardiac disease. The mechanism of hypertension in this 
model is related to the activation of the renin–angiotensin 
system.2 This ongoing systemic hypertension has an 
adverse effect on the vasodilated interstitial vascular com-
partment. This is accompanied by primary capillary injury 
and causes progressive obliteration of particular interstitial 
capillaries. This process then initiates chronic tubular 
ischemia ultimately leading to atrophy and ongoing inter-
stitial damage.3

Erythropoietin (EPO) has multiple non-haematopoietic 
effects such as cytoprotection and anti-apoptosis and also 
plays an important role in the response to acute and chronic 
ischaemia and inflammation.4,5 Tissue protection by EPO 
after ischaemia and injury has been found in the brain, heart 
and kidney.5–8 In the kidney, administration of recombinant 

human EPO at the time of ischaemic injury inhibits apopto-
sis and enhances tubular epithelial regeneration, thereby 
promoting renal functional recovery.6,9 These cytoprotec-
tive effects of EPO are caused by the binding of EPO to a 
heterodimeric complex, which exists of two EPO receptors 
and two beta common receptors (βcR). Binding to this 
receptor complex (EPOR2-βcR2) does not influence 
erythropoiesis.

We hypothesise that the long-acting EPO analogue dar-
bepoetin alpha (DA) has beneficial effects on renal 
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structural and functional damage, induced by angiotensin 
II-mediated hypertension in rats with high renin.

Materials and methods

Animals

Experiments were conducted in 6-week-old male homozy-
gous TGR(mRen2)27 rats. Age-matched SD rats served as 
controls. Ren2 rats and SD rats were purchased from the 
Max Delbrück Center for Molecular Medicine, Berlin–
Buch, Berlin, Germany. All animals were housed under 
standard conditions at the animal research facility with free 
access to drinking solution and rat chow. All procedures 
were approved by the Committee for Animal Experiments 
of the University of Groningen.

Experimental design

Rats were randomised to different treatment groups. Ren2 
rats received DA (n = 14) or vehicle (VEH) (n = 13) and the 
Ren2 controls received DA or VEH in combination with the 
ACE inhibitor Lisinopril (L6292; Sigma-Aldrich, St. Louis, 
MO, USA) (both n = 5). SD rats were also given DA or 
VEH (n = 12) and the SD controls received DA or VEH in 
combination with Lisinopril (both groups n = 4). After ran-
domisation blood was collected for baseline values. For 
EPO administration the long-acting EPO analogue darbe-
poetin alpha (Aranesp, Amgen, Inc., Thousand Oaks, 
California, USA) was used. DA or VEH was administered 
by intraperitoneal injection at baseline, 3 and 6 weeks under 
full anaesthesia. DA was administered at a dose of 40 µg/kg 
(equivalent to ~8000 units/kg) in 0.5 ml NaCl , the VEH 
group received 0.5 ml NaCl only. With every administra-
tion of DA or VEH, blood was sampled to determine haem-
atocrit and creatinine. Lisinopril was dissolved in the 
drinking water and provided at a dose of 10 µg/ml. After 2 
weeks of daily training, blood pressure was measured 
weekly in conscious animals using the tail-cuff method 
(Apollo 179; IITC Life Science, Woodland Hills, California, 
USA) as previously described.10 Body weight was deter-
mined weekly and 24-h urine was collected to measure pro-
teinuria at baseline, 3 and 6 weeks. At sacrifice, 6 weeks 
after the start of the experiment, rats were anaesthetised. 
The aorta was cannulated and blood samples were taken. 
Coronal kidney slices were fixed with 4% paraformalde-
hyde for paraffin embedding or immediately snap frozen in 
liquid nitrogen and stored at −80°C for molecular analyses.

Qualitative real-time PCR

Rat renal tissue containing cortex and medulla was homog-
enised in lysis buffer and total RNA was isolated using 
TRIzol Reagent (Invitrogen, Carlsbad, USA).11 RNA con-
centration was measured by nanodrop UV-detector 
(Nanodrop Technologies, Wilmington, Delaware, USA). 
cDNA was synthesised using Superscript II with Random 

hexamer primers (Invitrogen). Gene expression levels were 
measured by qualitative real-time PCR (qPCR) (Applied 
Biosystems, Foster City, California, USA) based on the 
Taqman methodology. Primers were obtained from Applied 
Biosystems gene expression assays. The gene expression 
assays IDs were: EPO (Rn01481376_m1), EPO-receptor 
(Rn00566533_m1), Coll3-α1 (Rn01437683_m1), KIM-1 
(Rn Rn00597703_m1), HPRT-F (GCC CTT GAC TAT 
AAT GAG CAC TTC A), HPRT-R (TCT TTT AGG CTT 
TGT ACT TGG CTT TT), HPRT-probe (ATT TGA ATC 
ATG TTT GTG TCA TCA GCG AAA GTG). The qPCR 
reaction mixture contained 20 ng cDNA template and 5 µl 
mastermix. Nuclease-free water was added to a total vol-
ume of 10 µl. Assays were performed in triplicate. The PCR 
plate was incubated for 15 min at 95°C, followed by 40 
cycles of 15 s at 95°C and 1 min at 60°C. The gene dosage 
was deducted by calculating the difference in Ct from the 
Ct of the reference gene HPRT. The average Ct values for 
target genes were subtracted from the average housekeep-
ing gene Ct values to yield the delta Ct. Results were 
expressed as 2−ΔCt which is an index of the relative amount 
of gene expression.

Immunohistochemistry

Deparaffinised sections were stained with periodic acid–
Schiff (PAS) to evaluate renal morphology. For immu-
nostaining, sections were subjected to heat-induced antigen 
retrieval by overnight incubation in 0.1 M Tris/HCl buffer 
(pH 9.0) at 80°C. Endogenous peroxidase was blocked with 
0.3% H2O2 in phosphate buffered saline (PBS, pH 7.4) for 
30 min. Macrophages (ED1) and the pre-fibrotic marker for 
myofibroblast transformation alpha-smooth muscle actin 
(α-SMA) were detected using murine monoclonal antibod-
ies (ED1; Serotec Ltd, Oxford, UK) (α-SMA; clone 1A4; 
Sigma). Binding was detected using sequential incubations 
with peroxidase-labelled rabbit anti-mouse (RAMpo) and 
peroxidase-labelled goat anti-rabbit (GARpo) antibodies 
(Dakopatts, Glostrup, Denmark) for 30 min. All antibody 
dilutions were made in PBS supplemented with 1% BSA, 
and 1% normal rat serum was added to the secondary anti-
bodies. Peroxidase activity was developed by using 
3,3′-diaminobenzidine tetrachloride (DAB) for 10 min con-
taining 0.03% H2O2. Counterstaining was performed using 
Mayer’s haematoxylin.

Analyses of histopathological changes

Focal glomerular sclerosis (FGS), interstitial and glomeru-
lar α-SMA expression and interstitial and glomerular mac-
rophages were measured as described previously.12

Statistical analysis

Results are reported as mean ± standard error of the mean. 
Statistical analysis among groups was performed with 
T-test if distributed normally or with Mann–Whitney U test 
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when skewed using non-parametric ANOVA (Kruskal–
Wallis). For correction of multiple comparisons a Dunn’s 
post-hoc analysis was performed. All p-values are two-
tailed and a p-value of less than 0.05 was considered sig-
nificant. All analyses were performed using SPSS version 
18.0 software (SPSS, Chicago, IL, USA).

Results

Physiological parameters

All clinical research parameters are presented in Table 1. 
Body weight was in the same range for Ren2 and SD rats. 
DA and ACEi, nor the combination had any effect on body 
weight. Ren2 rats had a higher systolic blood pressure 
(SBP) during the entire study compared with SD rats (data 
not shown). DA had no effect on systolic blood pressure in 
both Ren2 and SD rats. ACE inhibition resulted in a reduced 
SBP, both in Ren2 and in SD rats. Ren2 rats showed lower 
haematocrit (ht) values when compared with SD rats at sac-
rifice (p < 0.05). DA treatment significantly increased ht in 
SD rats (p < 0.01), but only marginally in Ren2 rats (NS). 
There were no effects of ACE inhibition on ht. There was 
no significant difference in hemoglobin (Hb) in Ren2-VEH 
rats compared with SD-VEH rats, although SD rats showed 
a tendency towards higher Hb levels. DA treatment signifi-
cantly increased Hb in SD rats (p < 0.05), but not in Ren2 
rats. ACEi treatment significantly decreased Hb in Ren2 
rats (p < 0.05). Serum creatinine was in the same range for 
Ren2 and SD rats. There were no effects of EPO DA or 
ACE inhibition on serum creatinine. Proteinuria was sig-
nificantly increased in Ren2 versus SD (p < 0.01) DA treat-
ment had no effect on proteinuria, while ACEi treatment 
significantly reduced proteinuria in Ren2 and Ren2-DA  
(p < 0.01).

Quantitative real-time PCR

Quantitative real-time PCR was performed for EPO,  
EPO-receptor, collagen-3α1 and KIM-1 relative to the 
housekeeping gene HPRT. DA treatment reduced EPO 
mRNA expression in both Ren2 rats (p < 0.05) and SD rats 
(p < 0.001) (Figure 1). EPO-receptor mRNA was signifi-
cantly higher in Ren2 in comparison with SD (p < 0.001) 
(Figure 2). There were no effects of DA or ACEi treatment 
on EPO-receptor mRNA expression. Collagen-3α1 mRNA 
expression is significantly increased in Ren2-VEH com-
pared with SD-VEH (p < 0.01). ACE inhibition in Ren2 
resulted in a significant decrease of collagen-3α1 mRNA 
expression (p < 0.05) (Figure 3). KIM-1 expression was 
significantly increased in Ren2-VEH when compared with 
SD-VEH (p < 0.01). The combination of DA and ACEi sig-
nificantly decreased KIM-1 expression in Ren2 rats versus 
Ren2-VEH (p < 0.05), while ACEi treatment alone did not 
(Figure 4). Ta
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Renal structural parameters

FGS was evident in Ren2-VEH and Ren2-DA rats. FGS was 
significantly higher in Ren2-VEH when compared with 
SD-VEH (p < 0.001). ACEi treatment, but not DA treatment, 
resulted in a significant decrease of FGS in all Ren2 rats  
(p < 0.001) (Figure 5a and b). There was a significant increase 
in renal interstitial damage in Ren2-VEH rats as evidenced by 
interstitial alpha smooth muscle actin (α-SMA) expression  
(p < 0.0001) (Figure 6). ACEi decreased the interstitial α-SMA 
expression in Ren2 (p < 0.01) and Ren2-DA (p < 0.01) 
when compared with Ren2-VEH, without ACEi treatment. 
Interstitial α-SMA expression was virtually absent in all SD 
groups. Glomerular α-SMA expression was significant 
increased in Ren2 rats in comparison with SD rats (p < 0.001) 
and decreased in Ren2-DA + ACEi when compared with 
Ren2-VEH (p < 0.05). ACEi treatment alone did not decrease 

glomerular α-SMA expression in Ren2 rats. Glomerular α-SMA 
expression was low in all SD groups (Figure 7). Interstitial 
macrophages were significantly increased in Ren2-VEH com-
pared with SD-VEH (p < 0.01), while glomerular macrophages 
were significantly reduced in Ren2 rats (p < 0.01). ACEi treat-
ment significantly reduced interstitial, but not glomerular, 
macrophages in Ren2 rats (p < 0.001). On neither of these 
parameters, DA treatment had any effects (Figures 8 and 9).

Discussion

The major finding of the present study is that long-term DA 
treatment has no beneficial effects on renal structural and 
functional changes induced by hypertension in TGR(mRen2)27 
rats in the time frame studied and the dose provided.

Figure 1. EPO mRNA expression in all groups at sacrifice. 
Data are presented as mean ± SEM. *Ren2-VEH vs. Ren2-DA  
(p < 0.05), *Ren2-VEH vs. Ren2-DA + ACEi (p < 0.05),  
###SD-VEH vs. SD-DA (p < 0.001).

Figure 2. EPO-receptor mRNA expression in all groups at 
sacrifice. Data are presented as mean ± SEM. ***Ren2-VEH vs. 
SD-VEH (p < 0.001).

Figure 3. Collagen-3α1 mRNA expression in all groups  
at sacrifice. Data are presented as mean ± SEM.  
*Ren2-VEH vs. Ren2-ACEi (p < 0.05), **Ren2-VEH  
vs SD-VEH (p < 0.01).

Figure 4. KIM-1 mRNA expression in all groups at sacrifice. 
Data are presented as mean ± SEM. *Ren2-VEH vs. Ren2-DA + 
ACEi (p < 0.05), **Ren2-VEH vs. SD-VEH (p < 0.01).
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Administration of DA in this model was effective as evi-
denced by a markedly reduced rat renal EPO mRNA 
expression both in Ren2 and SD. Despite similar treatment 
regiment in Ren2 and SD rats we noticed higher EPO-
receptor mRNA expression in Ren2 rats suggesting a higher 
demand for DA reactivity during ischemic damage.

De Borst et al. previously described that the renal inter-
stitial and glomerular changes in Ren2 rats are relatively 
mild.13,14 Surprisingly, glomerular macrophage influx was 
virtually absent in Ren2 rats. This lack of glomerular 
inflammation may be explained by a recent finding of our 
group showing a severe decrease in the number of burst 

forming units of the erythroid lineage (BFU-E) in the bone 
marrow of Ren2 rats compared to SD, which suggests a 
suppressing role for either renin or angiotensin II in the 
activation of blood cell lineages.15

There is a discrepancy in haematocrit values between 
SD and Ren2 DA treated rats. We previously found that DA 
does not correct the ongoing anaemia in Ren2 rats as evi-
denced by stable haematocrit values. This suggests that 
there must be another player which accounts for the anae-
mia in Ren2 rats.15 We previously showed that Ren2 rats 
suffer from severe hypertension and as a consequence 
develop heart failure. DA treatment did not lead to better 
heart function or a decrease in damage in Ren2 rats.15

The cytoprotective properties of EPO in tissue are 
related to its binding capacity to a heterodimeric receptor 
complex, the EPOR2-βcR2 receptor. Binding to this recep-
tor does not affect erythropoiesis. The tissue protective 
effects of EPO have been demonstrated pre- and post- 
perfusion in ischaemia/reperfusion models16–18. Numerous 
other studies in acute renal injury have revealed that EPO 
infusion preserves tissue and whole-organ function.9,19,20 
However, only few studies have found similar protective 
effects of EPO treatment in the chronic setting. In 5/6 
nephrectomy, chronic treatment with a haematologically 
non-effective dose of DA conferred renal vascular and tis-
sue protection and preserved renal function.21 The effect 
was associated by reduced apoptotic cell death. However, 
escalating doses of DA mitigates the protective effects on 
the remnant kidney tissue and even worsens microvascular 
renal injury,21,22 suggesting that the dose is critical. In our 
study, DA had no evident effects on haematocrit and hae-
moglobin in treated Ren2 rats, and we therefore assume 
that the dose used was at least haematologically non-effec-
tive, as Bahlmann et al. describe in their study.21 Another 

Figure 5. (a) FGS in all groups at sacrifice. Data are presented as mean ± SEM. ***Ren2-VEH vs. Ren2-ACEi (p < 0.001),  
***Ren2-VEH vs. Ren2-DA + ACEi (p < 0.001), ***Ren2-VEH vs. SD-VEH (p < 0.001). (b) Typical examples of PAS stained sections 
showing glomerular and interstitial damage in Ren2-rats and Ren2-DA. No damage was observable in SD controls. A.Ren2-VEH,  
B. Ren2-DA, C.SD-VEH, D.Ren2-DA + ACEi.

Figure 6. Interstitial α-SMA morphometry in all groups at 
sacrifice. Data are presented as mean ± SEM. **Ren2-VEH vs. 
Ren2-ACEi (p < 0.01), **Ren2-VEH vs. Ren2-DA + ACEi  
(p < 0.01), ***Ren2-VEH vs. SD-VEH (p < 0.001).
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difference is that in our study rats were treated once in 3 
weeks with DA, while Bahlmann et al. administered DA 
weekly.21 The treatment regiment used in this study was 
based on previous positive experience with DA treatment in 
the experimental setting in SD rats, where this dose of DA 
effectively raised haematocrit.23,24 It may well be that one 
dose of DA every 3 weeks is less effective than when DA is 
administered more frequently and plasma concentrations of 

DA are being kept at a more constant level during the entire 
experiment.

A possible limitation of our study is that it is not sure if 
the renal damage induced by the transgenic phenotype in 
Ren2 rats was severe enough for DA to exert its beneficial 
effects. DA may be more effective in conditions with 
extensive damage and thus more ischaemia. In our experi-
mental model the renal structural and functional changes 

Figure 7. Glomerular α-SMA expression at sacrifice. Data are presented as mean ± SEM. *Ren2-VEH vs. Ren2-DA + ACEi  
(p < 0.05), ***Ren2-VEH vs. SD-VEH (p < 0.001).

Figure 8. Number of interstitial macrophages in all groups. 
Data are presented as mean ± SEM. ***Ren2-VEH s. Ren2-ACEi 
(p < 0.001), ***Ren2-VEH vs. Ren2-DA + ACEi (p < 0.001), 
**Ren2-VEH vs. SD-VEH (p < 0.01).

Figure 9. Number of glomerular macrophages in all groups. 
Data are presented as mean ± SEM. **Ren2-VEH vs. SD-VEH  
(p < 0.01).
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were relatively mild. This is probably due to the compul-
sory sacrifice of the rats after 6 weeks of treatment. If the 
rats were not sacrificed at this time point, they would have 
died spontaneously at 14 weeks of age due to vascular 
complications.

Conclusion

From this study, we conclude that long-term DA treatment 
has no beneficial effects on renal structural and functional 
changes induced by hypertension in Ren2 rats in the time 
frame studied and the dose provided. However, this does 
not exclude a role for this growth factor in chronic renal 
disease, since the observed changes in our hypertensive 
model were relatively mild. Therefore, further studies are 
needed to elucidate a possible role for DA in renal disease.
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