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Abstract

Background: The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted
viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that
induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated
virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1)
need to be explored.

Methodology/Principal Findings: In the current study we show that a WIV vaccine, through induction of cross-protective
cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion
of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown
that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the
membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of
the virus, while inactivation with b-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of
mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By
contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against
development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated
WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the
lungs upon H1N1 virus challenge.

Conclusion/Significance: The results underline the potential use of WIV as a cross-protective influenza vaccine candidate.
However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full
immunogenicity of the vaccine.
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Introduction

Influenza represents one of the major health burdens worldwide

[1]. Although vaccination is the cornerstone of protection against

influenza, currently used seasonal vaccines elicit a narrow strain-

specific antibody response that neutralizes antigenically matched

virus strains, but fails to protect against antigenically drifted strains

or newly emerging pandemics viruses [2,3]. Protection against

different influenza virus subtypes and variants requires the

development of vaccines that are capable of inducing hetero-

subtypic immunity [4]. Such vaccines should target not only the

variable surface antigen of the virus, hemagglutinin (HA), but also

more conserved internal antigens, such as the nucleoprotein (NP)

and/or matrix protein (M1) [5,6].

One strategy to induce heterosubtypic immunity is vaccination

with a formulation that has the capacity to induce cross-reactive

CD8+ cytotoxic T lymphocyte (CTL) responses against conserved

antigens shared by different influenza virus subtypes [5,7,8]. CTL-

mediated heterosubtypic immunity, although unable to neutralize

the virus and prevent infection, could facilitate clearance of the

virus, thereby controlling the course of infection [5,9].

Previously, we reported that vaccination of mice with whole

inactivated virus (WIV) induces activation of naive and primed

CTLs specific for NP [10]. Importantly, the activation of such

CTLs, especially the priming of naive cells, was influenced by the

way in which the virus was inactivated. This was most likely due to

differential effects of the inactivation procedure on viral mem-

brane fusion properties. It has been suggested that inactivation of
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some viruses, such as Rift Valley Fever virus or Respiratory

Syncytial Virus, using formalin (FA) or b-propiolactone (BPL) can

induce distortion of antibody epitopes or suppress antigen

processing [11,12]. Interestingly, we showed that inactivation of

influenza virus using FA severely compromises the membrane

fusion activity of WIV. In contrast, inactivation using BPL largely

preserves viral membrane fusion activity. Moreover, vaccination

with FA-inactivated WIV (FA-WIV) primes naive CD8+ T cells

less effectively than vaccination with BPL-inactivated WIV (BPL-

WIV). After receptor-mediated endocytosis of WIV particles by

antigen-presenting cells (APC), membrane fusion activity most

likely facilitates the ‘‘escape’’ of viral antigens from endosomes into

the cytosol. Here influenza antigens can be processed and cross-

presented to CD8+ T cells in an MHC class I-restricted manner

[13,14,15].

In the current study, we investigate whether immunization of

mice with WIV (H5N1) protects against lethal heterologous

challenge (H1N1). We specifically investigated the extent to which

such protection might depend on the inactivation procedure used

in the production of WIV and, consequently, membrane fusion

activity. The cross-protective capacity of WIV was compared

directly with standard inactivated influenza vaccines, both subunit

and split.

Mice vaccinated with BPL-WIV were protected against lethal

heterologous challenge and the development of disease symptoms.

This cross-protection was mediated by CD8+ cytotoxic T cells. By

contrast, vaccination with FA-WIV, although protecting from

virus-induced death, failed to prevent severe body weight loss

associated with decrease in daily activity. Mice vaccinated with

subunit or split vaccine did not survive lethal challenge with

heterologous virus. These data demonstrate that vaccination with

WIV, but not subunit or split vaccine, induces cross-protection

against lethal heterologous infection. Importantly, our findings

highlight the impact of virus inactivation protocols on the overall

immunogenicity of the vaccine formulation and indicate that the

preservation of membrane fusion activity is critical for optimal

efficacy.

Results

Heterosubtypic cross-protection induced by vaccination
with WIV

To investigate the capacity of influenza WIV vaccine to induce

cross-protective immunity, we vaccinated mice with WIV derived

from NIBRG-14 virus, a reassortant containing the surface

antigens of A/Vietnam/1194/2004 (H5N1) virus and the internal

core of A/PR/8/34 (H1N1) virus, and subsequently challenged

the animals with PR/8 virus. The extent to which cross-protection

depends on the mode of virus inactivation was assessed by

comparing FA-WIV with BPL-WIV. FA-WIV was produced by

incubation of NIBRG-14 influenza virus with 0.01% FA for 7 days

at 4uC [16]. BPL-WIV was produced by incubation of NIBRG-14

virus with 0.1% BPL for 24 hr at 4uC. After either inactivation

protocol, viral replicative capacity was completely destroyed (Fig.

S1).

C57Bl/6 mice were immunized twice with FA-WIV or BPL-

WIV subcutaneously (s.c.) at a dose equivalent to 6 mg of viral HA.

Two other groups of mice were vaccinated with subunit or split

vaccine, and a control group was mock-vaccinated with vehicle

buffer. After the second immunization, animals were exposed to a

lethal total respiratory tract challenge with 100 PFU (correspond-

ing to 26102 TCID50) of live PR/8 virus. All mice were monitored

for body weight change, and euthanized when their body weight

loss exceeded 20%.

Over the course of 14 days post-challenge, only mice vaccinated

with BPL-WIV survived lethal heterosubtypic challenge without

body weight loss or apparent symptoms of disease (Fig. 1a and 1b).

By contrast, in the group of mice vaccinated with FA-WIV, 5 out

of 12 animals developed severe disease symptoms combined with

more than 15% body weight loss. By the end of the follow-up

period, these mice slowly recovered and regained their normal

body weight. This difference in the quality of protection induced

by vaccination with BPL-WIV or FA-WIV was statistically

significant by Fisher’s exact test (Fig. 1a). Mice vaccinated with

subunit or split vaccine were not protected from heterosubtypic

challenge. Similar to mock-vaccinated mice, these animals lost

more than 20% of their body weight within 7 days post-challenge,

and all of them were euthanized on the basis of pre-established

criteria by day 8 (Fig. 1a and 1b).

Next, we assessed the capacity of BPL-WIV or FA-WIV to

induce clearance of influenza virus from the lungs of challenged

mice. Although both vaccines led to improved virus clearance, the

dynamics of clearance were significantly different for the two

vaccination groups. On day 4 post-challenge, mice immunized

with BPL-WIV had lower virus titers in the lungs compared to

mice immunized with FA-WIV. By day 6, mice in both

vaccination groups had lower virus titers compared to those

measured on day 4. Again, the titers in mice vaccinated with BPL-

WIV were significantly lower compared to the titers in mice

vaccinated with FA-WIV. Virus titers in the lungs of mock-

vaccinated mice and mice vaccinated with either split or subunit

vaccines remained high on both days (Fig. 2).

Role of antibodies in cross-protection induced by
vaccination with WIV

The results presented above show that vaccination of mice with

BPL-WIV derived from H5N1 virus induced better protection

from disease symptoms and more rapid clearance of hetero-

subtypic H1N1 virus than vaccination with FA-WIV, split or

subunit vaccine derived from the same H5N1 virus. To rule out

the possibility that this difference was due to the more efficient

induction of antibodies against HA by BPL-WIV, we determined

the hemagglutination-inhibition (HI) titers against the vaccine

(H5N1) and challenge (H1N1) viruses induced by these vaccine

formulations. Pre-challenge sera of immunized mice were

collected and tested for the level of HI antibodies. BPL-WIV

and FA-WIV induced similar levels of HI antibodies against the

vaccine (H5N1) strain, which were significantly higher compared

to titers induced by split and subunit vaccine. In contrast, neither

of the vaccines induced detectable levels of HI antibodies cross-

reactive with the challenge (H1N1) strain (Fig. 3). This finding

implies that antibodies detectable by HI assay most likely did not

contribute significantly to the observed cross-protection (Fig. 3).

Cross-protection observed after vaccination with BPL-WIV

could be due to the activity of neutralizing antibodies that are

incapable of inhibiting hemagglutination but are capable of

binding to, for example, the stem region and/or fusion peptide of

HA, thus preventing HA-mediated membrane fusion and

infection. We therefore performed PR/8 microneutralization

assay to screen for the existence of possible cross-neutralizing

antibodies in pre-challenge sera of mice vaccinated with H5N1

BPL-WIV. Figure 4 shows that sera from mice immunized with

H5N1 BPL-WIV have only a minimal capacity to neutralize PR/8

virus when compared to sera from mice immunized with PR/8-

derived vaccine and challenged with PR/8 virus. This suggests

that cross-reactive antibodies do not play a major role in the

observed protection induced by vaccination with BPL-WIV.

Cross-Protective Influenza Vaccine
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Role of CD8+ T cells in cross-protection induced by
vaccination with WIV

To investigate whether the observed cross-protection induced

by immunization with BPL-WIV was mediated by CD8+ CTLs,

we depleted CD8+ cells from mice immunized with BPL-WIV by

intraperitoneal (i.p) administration of CD8+ cell depletion

antibody on three consecutive days immediately prior to

challenge, with two additional doses administered post-challenge.

In peripheral blood (Fig. S2) and spleen (data not shown), .98%

of CD8+ cells were depleted. Comparable to mock-vaccinated

mice, BPL-WIV-vaccinated mice were not protected against lethal

heterosubtypic challenge after depletion of CD8+ T cells (Fig. 5a).

By day 9 post-challenge, most of these mice exhibited more than

20% body weight loss and had to be euthanized. Virus titers

measured in the lungs of these animals were high and did not differ

from the titers observed in the lungs of mock-vaccinated mice

(Fig. 5b). These data indicate that the cross-protection induced by

vaccination with WIV is mediated primarily by CD8+ CTLs.

Induction of CTL responses by BPL-WIV and FA-WIV: the
role of membrane fusion activity

Previously, we showed that FA-treatment abolishes the

membrane fusion activity of WIV and that such a formulation

has a decreased capacity to prime CTL activity in mice [10]. Here,

we first confirmed that the FA-WIV used in the present study

completely lacked membrane fusion activity as assessed on the

basis of hemolysis activity (Fig. 6). By contrast, up to 80% of the

membrane fusion activity was preserved in the BPL-WIV

preparation (Fig. 6). Importantly, the difference in hemolysis

induced by BPL-WIV or FA-WIV was not due to a difference in

erythrocyte binding, as determined by hemagglutination assay

(data not shown).

Next, we compared the levels of influenza-specific CTLs

induced by FA-WIV and BPL-WIV in peripheral blood and

spleen. In PBMCs from immunized mice, pre-challenge, CTLs

specific for influenza NP366–374 were detected with cognate MHC

class I tetramers in both groups of mice (Fig. 7a). However, the

Figure 1. Body weight change and survival of vaccinated mice after heterologous challenge. Mice were vaccinated twice with vaccines
derived from H5N1 virus (BPL-WIV, FA-WIV, split, subunit) or mock-vaccinated with HNE, and then challenged with H1N1 virus. (A) After challenge,
animals were monitored daily for body weight change. Body weight loss of more than 15% (solid line) associated with decline in daily activity was
considered to represent severe symptoms. Body weight loss of more than 20% was an indication for euthanasia (dashed line). Each group contained
12 animals, 6 of which were followed up for 6 days and then sacrificed for the measurement of immune response parameters; the other 6 mice were
monitored for 14 days. A higher proportion of animals vaccinated with FA-WIV exhibited significant body weight loss and severe disease symptoms
compared to animals vaccinated with BPL-WIV (p,0.05; Fisher’s exact test). (B) All mice vaccinated with either FA-WIV or BPL-WIV survived the
heterologous challenge based on a body weight loss of less than 20%, as indicated above. In contrast, mock-vaccinated mice or mice that received
either the split or subunit vaccines did not survive the challenge.
doi:10.1371/journal.pone.0030898.g001

Cross-Protective Influenza Vaccine
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level of NP-specific CTLs was significantly higher in mice

vaccinated with fusion-active BPL-WIV compared to mice

vaccinated with fusion-inactive FA-WIV. Notably, an early

accumulation of NP-specific CTLs in the spleen was observed 4

days post-challenge in mice vaccinated with fusion-active BPL-

WIV, but not in mice receiving fusion-inactive FA-WIV (Fig. 7b).

By day 6 post-challenge, this population decreased slightly.

Influx of specific CTLs into the lungs of WIV-vaccinated
mice after infection

Finally, we investigated whether the superior protection induced

by fusion-active BPL-WIV, compared to fusion-inactive FA-WIV,

was associated with a higher influx of cytotoxic CD8+ T cells into

the lungs as the site of infection. Lung-associated lymphocytes

were isolated from mice euthanized on day 4 or 6 post-challenge

and influenza NP366–374-specific CTLs were enumerated by

tetramer staining. Additionally, bronchoalveolar lavages (BALs)

were collected to measure the level of locally produced granzyme

B as an indicator of cytotoxic effector activity. On day 4 and 6

post-challenge, higher levels of NP-specific CTLs were detected in

the lungs of mice vaccinated with fusion-active BPL-WIV

compared to mice vaccinated with fusion-inactive FA-WIV

(Fig. 8a). At the same time, local granzyme B levels were

significantly higher in mice vaccinated with fusion-active BPL-

WIV compared to the levels observed in mice vaccinated with

fusion-inactive FA-WIV (Fig. 8b). Thus, the influx of NP-specific

CTLs in the lungs and local production of granzyme B correlated

with early clearance of influenza virus from the lungs of mice

vaccinated with fusion-active BPL-WIV.

Discussion

In this study, we show that vaccination of mice with a whole

inactivated influenza virus vaccine induces cross-protection against

heterosubtypic challenge, in contrast to vaccination with either

subunit or split vaccines. Importantly, we demonstrate that the

procedure used for virus inactivation in the production of WIV

Figure 2. Virus titers in the lungs of vaccinated mice after
heterologous challenge. Virus titers in the lungs of mice vaccinated
with the indicated formulations were measured at days 4 and 6 after
challenge. Bars represent mean titer6SEM of three mice. Mice
vaccinated with either BPL-WIV or FA-WIV had lower virus titers in
the lungs at both days 4 and 6 compared to the titers in mice
vaccinated with split vaccine, subunit vaccine or HNE buffer (p,0.05 for
all comparisons; Mann-Whitney U test). Furthermore, in mice vaccinated
with WIV, virus titers were lower at day 6 compared to titers at day 4
post-challenge (p,0.05; Mann-Whitney U test). Finally, significantly
lower titers were observed in mice vaccinated with BPL-WIV compared
to titers in mice vaccinated with FA-WIV, both at day 4 and day 6
(p,0.05; Mann-Whitney U test). No virus was detected in surviving mice
at day 14 after challenge (n.d., not detectable).
doi:10.1371/journal.pone.0030898.g002

Figure 3. H5N1- and H1N1-specific HI antibodies measured in
pre-challenge sera of vaccinated mice. Bars indicate the geometric
mean titers6SEM of 9 mice per vaccination group. HI antibodies
specific for H5N1 were detected in all vaccination groups (BPL-WIV, FA-
WIV, subunit and split), with significantly higher titers measured in mice
vaccinated with BPL- and FA-WIV. In contrast, HI antibodies against PR/8
(H1N1) were not observed in any of the mice (n.d., not detectable).
doi:10.1371/journal.pone.0030898.g003

Figure 4. H1N1-neutralization antibodies measured in pre-
challenge sera of mice vaccinated with H5N1 BPL-WIV. Bars
indicate the geometric mean titers6SEM of 6 mice in the H5N1 BPL-WIV
vaccination group or the titer measured in the pooled sera from 10
mice vaccinated with H1N1 PR/8-derived vaccine and challenged with
PR/8 virus. Sera from mice vaccinated with H5N1 BPL-WIV showed very
low neutralization activity against H1N1 PR/8.
doi:10.1371/journal.pone.0030898.g004
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influences the magnitude of the immune response, and conse-

quently the extent of cross-protection. Subunit and split vaccines

proved unable to induce influenza-specific CTL activity. In

contrast, vaccination with BPL-WIV induced a strong CTL

response associated with rapid clearance of virus from the lungs of

challenged mice and an apparent absence of disease symptoms. In

comparison, vaccination with FA-WIV induced lower levels of

CTLs associated with a slower rate of virus clearance and the

development of disease symptoms that gradually regressed by the

end of the follow-up period. These differences in the magnitude of

the CTL response and the efficacy of cross-protection observed

after vaccination with the different WIV preparations were linked

to the effects of the inactivation procedures on viral membrane

fusion activity.

The observed cross-protection induced by vaccination with

WIV appears to be mediated primarily by influenza-specific CTL

activity. Indeed, depletion of CD8+ cells in vaccinated mice

abrogated cross-protection against heterosubtypic challenge. This

rules out the possibility that anti-HA antibodies play a major role.

Accordingly, cross-reactive HI antibodies specific for the challenge

(H1N1) virus were undetectable in the H5N1-vaccinated mice.

Recent reports have shown that antibodies against the conserved

stem region of HA or against neuraminidase (NA) display cross-

reactivity among different influenza subtypes [17,18,19], and these

antibodies would not be detected in standard HI assays.

Microneutralization assays could, however, identify these antibod-

ies. In our hands sera of mice immunized with H5N1 WIV showed

minimal A/PR/8/34 virus-neutralizing capacity in vitro. Although

low levels of cross-reactive antibodies and, possibly cross-protective

CD4+ T cells [20], may thus be elicited by vaccination with WIV,

these effector mechanisms apparently are not strong enough in

isolation to substantially suppress viral replication, as shown in

vaccinated mice with depleted CD8+ cells. Thus, specific CTLs

appear to mediate the observed cross-protection of WIV-

vaccinated mice against heterosubtypic challenge.

The difference in cross-protection induced by WIV on one

hand, and by subunit and split vaccines on the other, is correlated

to the (in)ability of these vaccines to prime specific CTL activity. A

major requirement for the induction of influenza-specific CTLs is

the presence of conserved viral antigens in the vaccine, as CTL

responses are mainly directed against internal conserved proteins

[21,22,23]. Additional characteristics that may contribute to the

induction of CTL activity by WIV include the particulate structure

of the vaccine, which enables efficient uptake of vaccine antigens

by dendritic cells (DCs) through the process of receptor-mediated

endocytosis [24]. Finally, WIV contains viral genomic ssRNA,

which acts as an intrinsic adjuvant, activating TLR7-signaling in

DCs [25]. This ssRNA-induced TLR7-signaling has been shown

to contribute to superior activation of the humoral immune

Figure 5. Survival and reduction in lung virus titers after heterologous challenge depends on the presence of CD8+ cells. Mice were
vaccinated with H5N1-derived BPL-WIV or mock-vaccinated with HNE. Before heterologous lethal challenge, half of the animals (n = 6) from each
vaccination group were randomly selected and received CD8+ cell depletion antibody treatment, as described in the Materials and Methods. (A) All
mice vaccinated with BPL-WIV survived the heterologous challenge, based on a body weight loss of less than 20%. In contrast, protection was lost in
CD8+ cell-depleted mice and survival rates were comparable to those of non-immune mice. (B) At the time of sacrifice, high levels of virus were
detected in the lungs of vaccinated CD8+ cell-depleted mice, similar to those observed in non-immune mice. At the same time point post-challenge,
virus could not be detected in the lungs of mice vaccinated with BPL-WIV in the absence of CD8+ cell depletion (n.d., not detectable).
doi:10.1371/journal.pone.0030898.g005

Figure 6. Effect of virus inactivation treatments on the
membrane fusion activity of WIV formulations. Guinea pig
erythrocytes were incubated with BPL-WIV or FA-WIV at different pH
values for measurement of pH-dependent viral membrane fusion. The
amount of released hemoglobin was measured by spectrophotometry
at 540 nm. Release of hemoglobin expressed relative to maximal
release of hemoglobin in water was used as a measure of fusion. Only
BPL-WIV showed the capacity to fuse to erythrocyte membranes when
incubated at low pH (4.6–5.6), as shown by the amount of released
hemoglobin. In contrast, in the same pH range, no fusion of FA-WIV
with erythrocyte membranes was detected.
doi:10.1371/journal.pone.0030898.g006

Cross-Protective Influenza Vaccine
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response by WIV [26]. Likewise, we have experimental evidence

indicating that priming of CTL activity by WIV critically depends

on TLR7-signaling (Budimir et al., manuscript in preparation).

The inability to induce cross-protective CTL activity is not

surprising for the subunit vaccine. Indeed, being composed of

isolated viral surface antigens, the subunit vaccine does not contain

internal CTL antigens. On the other hand, the split vaccine does

contain all the protein components of the influenza virus, yet in

our studies it failed to induce cross-protective CTL activity. Being

composed of non-particulate antigen, split vaccine may not be

taken up and processed efficiently by DCs [27]. Wagner et al.

showed that the induction of cross-priming required insertion of

split vaccine antigens into microspheres, facilitating targeting of

the antigens to the endosomes of DCs [26]. Also, the split vaccine

lacks intact immunostimulatory viral ssRNA [26], which, as

indicated above, contributes to the ability of WIV to prime CTLs.

It has been shown that coupling of split influenza vaccine antigen

to an alternative immunostimulatory TLR-ligand, CpG, boosts the

priming of CTL activity [28]. Thus, it appears that the specific

intrinsic properties of the vaccine formulation, such as composition

and structure, determine its capacity to induce cross-protective

CTL responses.

WIV as a non-replicating vaccine presumably activates target

CTLs through cross-priming, mediated by professional APCs,

particularly DCs [29–32]. After being taken up by DCs, vaccine

antigens end up in the endosomal compartment. From there, these

antigens have to ‘‘escape’’ to the cytosol where they can enter the

MHC class I antigen presentation pathway. Indeed, Bender et al.

have demonstrated that the delivery of WIV-derived antigen to the

cytosol of APCs is essential for successful priming of CTLs [33].

Figure 7. BPL-WIV induces higher levels of NP-specific CD8+ T cells compared to FA-WIV. (A) Numbers of influenza NP366–374-specific
CD8+ T cells were determined before challenge in the peripheral blood of mock-vaccinated mice and mice vaccinated with either BPL-WIV or FA-WIV.
Bars indicate the mean percentage6SEM of 9 mice per group. Vaccination of mice with BPL-WIV induced significantly higher levels of NP366–374-
specific CD8+ T cells compared to levels induced by FA-WIV (p,0.05; Mann-Whitney U test). (B) Four days after challenge, the mean percentage of
influenza NP366–374-specific CD8+ T-cells in the spleen was significantly higher in mice vaccinated with BPL-WIV compared to mice vaccinated with
FA-WIV (p,0.05; Mann-Whitney U test, n = 3).
doi:10.1371/journal.pone.0030898.g007

Figure 8. BPL-WIV vaccination results in a higher post-challenge influx of cytotoxic CD8+ T cells into the lungs. (A) The accumulation
of NP366–374-specific CD8+ T cells in the lungs of mice vaccinated with BPL-WIV or FA-WIV was measured on days 4 and 6 post-challenge. Bars indicate
the mean percentage6SEM of 3 mice per group. On days 4 and 6 post-challenge, significantly higher percentages of NP366–374-specific CD8+ T cells
were observed in mice vaccinated with BPL-WIV compared to mice vaccinated with FA-WIV (p,0.05; Mann-Whitney U test). (B) The higher influx of
NP366–374-specific CD8+ T cells in BPL-WIV vaccinated mice was accompanied by a higher local production of granzyme B compared to levels
measured in mice vaccinated with FA-WIV (p,0.05; Mann-Whitney U test). In both the BPL-WIV and FA-WIV vaccinated groups, levels of granzyme-B
were significantly enhanced on day 6 compared to levels measured on day 4 (p,0.05; Mann-Whitney U test).
doi:10.1371/journal.pone.0030898.g008
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Intact membrane fusion activity of WIV most likely facilitates

‘‘escape’’ of internal viral antigen from the endosome to the APC

cytosol, where it can be processed and presented to CD8+
cytotoxic T cells through the MHC class I pathway. Previously, we

observed that inactivation of membrane fusion activity of WIV

diminishes its capacity to prime specific CTL activity [10]. Here,

we show that fusion-active WIV induces superior heterosubtypic

cross-protection in mice compared to fusion-inactive WIV. This

indicates that activation of CTLs through cross-presentation of

WIV-derived antigens depends on the fusogenic properties of the

vaccine.

Some procedures used for virus inactivation can severely impair

the membrane fusion properties of the virus, thereby affecting the

capacity of the vaccine to induce CTL activity. In this study, we

have shown that an inactivation protocol, relying on treatment of

influenza virus with formaldehyde (FA), completely abolishes

membrane fusion activity of the virus. This protocol is commonly

used by vaccine manufacturers to generate WIV [16]. In contrast,

virus inactivation based on treatment with b-propiolactone (BPL)

largely preserves membrane fusion activity. In our studies, only

vaccination with BPL-WIV prevented severe body weight loss and

the development of disease symptoms by inducing optimal CTL

activity in the lungs and rapid clearance of the virus (Ref [10];

Fig 1a, 2, 7a). By contrast, vaccination with FA-WIV gave only

partial protection, with 5 of 12 vaccinated mice showing severe

body weight loss and disease symptoms. This suboptimal cross-

protection was associated with a comparatively low CTL response.

Our findings therefore imply that preservation of virus membrane

fusion activity should be taken into account when WIV vaccines

are generated.

The important role of CTLs specific for conserved influenza

antigens, such as NP, in protection against influenza infection in

humans and mice has been recognized and reported earlier [5,34].

In the present study, we show that vaccination with WIV induces

high levels of specific CTLs in blood and spleen. After

heterologous challenge, these CTLs infiltrate the lungs, where

they are already detectable by day 4 post-infection. These findings

are in line with those of Fonteneau et al., who showed that WIV

can induce in vitro proliferation of influenza-specific CD8+ T cells

in humans [29]. Critically, we also show that CTLs induced by

vaccination with WIV protect mice from lethal heterosubtypic

challenge. In a recent study, Furuya et al. showed that

immunization of mice with WIV produced using a different

inactivation method (c-irradiation) also protects mice against lethal

infection with heterologous virus [35]. By contrast, Bodewes et al.

reported that immunization with WIV induced poor activation of

CTLs and a low level of cross-protection [36]. The discrepancy

between our results and those of Bodewes et al. could be explained

on two levels. First, Bodewes et al. used an FA-based protocol for

inactivation of the virus, which interferes with optimal priming of

CTL activity, as discussed above. Second, the difference in the

route of administration used by us and Bodewes et al. could be an

explanation for the different observations. In our experiments, the

vaccine was administered through the s.c. route, while Bodewes et

al. used i.m. injection. Several studies have demonstrated that the

route of antigen administration can affect the magnitude of CTL

activation as well as the diversity of the induced CTL response

[37,38]. For example, Combadiere et al. showed that transcuta-

neous application of influenza vaccine to humans induced better

CD8+ T cell responses, in terms of both magnitude and quality,

than injection though the i.m. route [37].

The inability of seasonal influenza vaccines to protect against

drifted or newly emerging, potentially pandemic, viruses under-

lines the need for broadly cross-protective influenza vaccines.

Clearly, induction of immunity against conserved viral antigens is

crucial for-cross protection [6,39,40]. In this respect, there are

specific lessons to be learned from the recent swine-origin H1N1

pandemic. Unexpectedly, the virus induced relatively mild disease

[41]. Although cross-reactive antibodies may have contributed to

the protection against the pandemic virus [18,39], recent studies

have suggested that the development of severe disease and

mortality were largely prevented by existing memory CD8+
cytotoxic T cells specific for highly conserved virus proteins, such

as NP and M1, induced by a prior infection with epidemic H1N1

virus [42]. In addition, other studies showed that human memory

CD8+ T cells cross-react to a high extent with conserved NP and

M1 epitopes from the highly pathogenic avian influenza H5N1

virus [43,44]. In the present study, we demonstrated the cross-

protective potential of properly inactivated influenza WIV, using a

combination of NIBRG-14 (H5N1) vaccine and A/PR/8/34

(H1N1) challenge virus, which share internal antigens, including

NP. Although this may favor an optimal response to challenge

with the heterosubtypic virus, published data point to the high

degree of internal antigen conservation, not only among different

human influenza virus strains or subtypes but also between human

and zoonotic viruses. In addition, it has been demonstrated that

CTLs against internal viral antigens display a certain level of cross-

reactivity to non-identical antigens [42–44]. Although not capable

of preventing the viral infection itself, such CTL-mediated

immunity can control the course of the disease by keeping the

viral load suppressed [5,6].

Although a renewed interest for WIV as a candidate cross-

protective influenza vaccine has emerged, concerns about its

reactogenicity remain. It is of interest to note, however, that this

reactogenicity is not a uniform finding for all previously tested

WIV vaccines and, additionally, also appears to relate to other

factors such as vaccine mass and HA content [45]. With respect to

the latter, the use of HA content for dosing of WIV vaccines gave a

better correlate for reactogenicity than did chicken-cell agglutina-

tion, an older test for standardizing antigenic content of influenza

vaccines [45]. Thus, improved analysis and standardization of

WIV vaccines could reduce its reactogenicity.

In summary, we show here that one of the oldest influenza

vaccines, WIV, induces heterosubtypic cross-protection that is

closely dependent on specific CTL activity. Importantly, the

capacity of WIV to induce an optimal CTL response, and

consequently cross-protection, is strongly influenced by the

procedure used for virus inactivation. WIV is therefore a

promising candidate cross-protective influenza vaccine provided

that suitable inactivation procedures, which retain viral fusion

activity, are employed.

Materials and Methods

Ethics statement
All mouse experiments were performed in strict accordance

with Dutch legislation on animal experiments (‘‘Wet op de

dierproeven’’, 1977; modified in 1996 with implementation of the

European guidelines 86/609/EEG and ‘‘Dierproevenbesluit

1985’’) and approved by the Ethics Committee on Animal

Research of the University Medical Center Groningen (Permit

number: 5101).

Virus strains and vaccines
H5N1 virus (NIBRG-14, a 6:2 reassortant strain of A/PR/8/34

and A/Vietnam/1194/2004) cultured on Madine-Darby Kidney

(MDCK) cells and egg-derived H1N1 virus (PR/8/34) were a kind

gift from Solvay Biologicals (Weesp, The Netherlands). NIBRG-14
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virus was inactivated and processed to different vaccine formula-

tions: WIV, split and subunit. WIV vaccine was prepared either by

24 hr inactivation of the virus with 0.1% BPL (Acros Organics,

Geel, Belgium) at room temperature, followed by dialysis for 24 hr

against HNE buffer (5 mM HEPES, 150 mM NaCl, 0.1 mM

EDTA, pH 7.4), or by incubation for 7 days in presence of 0.01%

FA, with constant, mild stirring, followed by dialysis for 24 hr

against HNE.

Inactivation of the vaccines was tested by performing serial

passages on eggs, according to the protocol published in the

European Pharmacopeia [46]. Specifically, one vaccine dose

(20 mg of total viral protein) was inoculated into the allantoic cavity

of each of 20 fertilized eggs and incubated at 33uC for 3 days. As a

replication-positive control, 1 hemagglutination unit (HAU) of live

NIBRG-14 virus was injected into the eggs. Portions of 1 ml of

allantoic fluid from all the eggs were pooled, and 200 ml was

inoculated into new eggs. This passage procedure was repeated

one more time. Finally, after the last passage, allantoic fluid was

harvested and tested for the presence of replicative virus by a

hemagglutination test, as described elsewhere [47].

Fusion activity of WIV preparations was assessed using a

hemolysis assay, as described previously [10].

BPL-WIV was processed to split vaccine according to a

published protocol [48]. Subunit vaccine was prepared by

processing BPL-WIV as described previously [49].

The protein content of all vaccine preparations was determined

using the Bio-Rad protein assay kit (Bio-Rad Laboratories,

Veenendaal, The Netherlands).

Vaccination and challenge
Female C57Bl/6 mice, aged 6–8 weeks, were purchased from

Harlan, The Netherlands. Every vaccination group contained 18

mice and was randomly divided into 3 subgroups that were

analyzed for viral titers and immune response parameters at days

4, 6 and 14 post-challenge, respectively. Mice were vaccinated

twice subcutaneously (s.c.) on days 0 and 21. Animals from all

vaccination groups received an equal amount of 266.7 mg HA per

vaccine dose, corresponding to 2620 mg of total protein in the case

of the split and WIV vaccines [50]. One week after the booster

immunization, mice were anesthetized and inoculated intranasally

with 100 PFU (corresponding to 26102 TCID50) of PR/8 (H1N1)

in 40 ml HNE. A dose of 100 PFU was used because this was the

minimal dose which reproducibly induced lethal infection in 100%

mice. Following challenge, mice were monitored daily for body

weight change. Body weight loss of more than 15% associated with

decline in daily activity was considered to represent severe

symptoms. Body weight loss of more than 20% was considered

an indication for euthanasia. On day 4 and 6 post-challenge, 6

mice from each vaccination group were euthanized and blood,

spleen, lungs and bronchoalveolar lavage (BAL) were collected.

Mice that did not undergo more than 20% body weight loss were

euthanized on day 14 post-challenge for analysis of virus titers and

different immunological parameters.

Vaccination, blood sampling, challenge and euthanasia were

performed under isoflurane anesthesia.

Depletion of CD8+ cells
Depletion of CD8+ cells was performed by administration of

purified CD8-specific depleting monoclonal antibody (clone

YTS169). On days 22, 23 and 24 after the start of the experiment,

mice were injected i.p. with 200 mg of the depletion antibody.

Further, starting from day 1 post-challenge, mice received a single

i.p. injection of the depletion antibody every 7 days. The efficacy

of CD8+ cell depletion throughout the experiment was determined

by staining of PBMCs with anti-mouse CD8a antibody (Im-

munosource, Zoersel, Belgium) and flow cytometry analysis. Blood

samples were taken, and PBMCs isolated each time before

injection of the depletion antibody dose.

Lung virus titer measurements
On days 4, 6 and 14 post-challenge, the lungs of mice were

dissected and collected in 1 ml phosphate buffered saline (PBS) on

ice, homogenized mechanically and centrifuged for 10 min at

3506g. Supernatants were collected, snap-frozen and stored at

280uC until further processing.

For viral titrations, MDCK cells were seeded in flat-bottom 96-

wells plates and incubated in serum-free Episerf medium

(Invitrogen, Leek, The Netherlands) for 2 days in a CO2 incubator

(37uC, 5% CO2). Two-fold dilutions of lung supernatants were

then prepared in duplicate and 100 ml of each dilution was added

to the MDCK cells, followed by a 1 h incubation at 37uC, 5%

CO2. After incubation, the culture medium was replaced by

medium supplemented with 6 mg/ml TPCK trypsine (Sigma-

Aldrich, Zwijndrecht, The Netherlands) per well, and cells were

incubated for additional 72 hr. On day 7, cell supernatants were

harvested and transferred to V-bottom 96-wells plates. The

presence of virus was detected using the hemagglutination assay

[47].

Tetramer staining of blood, spleen and lung lymphocytes
Pre-challenge blood samples were collected on the day of

challenge by performing orbital puncture under isoflurane

anesthesia. Samples were collected in tubes previously coated

with heparin and incubated for 5 min with ACK buffer (0.15 M

NH4Cl, 10 mM KHCO3, 0.1 mM EDTA) to induce lysis of

erythrocytes. After 3 washes with FACS buffer (1% BSA, 5 mM

EDTA in PBS), cells were stained with anti-mouse CD8a-APC

antibody and influenza NP366–374-tetramer-PE. Soluble, biotiny-

lated AM9/H-2Db monomeric protein was produced and

tetramerized at a 4:1 molar ratio with PE-conjugated streptavidin

as described previously [51]. Dead cells were excluded using

7AAD viability solution (Immunosource). Flow cytometric analysis

was performed using a FACSCalibur flow cytometer (BD

Biosciences).

Spleens were dissected and collected on ice in Iscove’s Modified

Dulbeco’s Modified Eagle’s (IMDM) medium (Invitrogen) supple-

mented with 10% fetal bovine serum (FBS), 1% antibiotics and

0.1% b-mercaptoethanol. Splenocytes were isolated by homoge-

nizing spleens though cell strainers (BD Bioscinece, Breda, The

Netherlands) and resuspended in medium. After 10 min centrifu-

gation (3506g) at 4uC, erythrocytes were removed by lysis using

ACK buffer (0.15 M NH4Cl, 10 mM KHC03, 0.1 mM

Na2EDTA, pH 7.2). Finally, after an additional round of washing

in medium, cells were washed 3 times in FACS buffer and stained

according to the procedure described above.

Tetramer staining on lung derived lymphocytes was performed

as follows. Mice were anesthetized and lungs were perfused

through the heart with a total of 20 ml of PBS with heparin. After

perfusion, lungs were dissected and cut into small pieces using a

sterile scalpel, while cooled on ice. The pieces of lung tissue were

incubated at 37uC in presence of 1 mg/ml collagenase D (Roche,

Woerden, The Netherlands) for 3 hours. Next, lung homogenates

were forced through cell strainers (BD Biosciences) and washed 3

times with Dulbeco’s Modified Eagle’s medium (DMEM; PAA,

Colbe, Germany) supplemented with 2% FBS. Finally, lympho-

cytes were isolated using lympholyte density gradients (Sanbio,

Uden, The Netherlands) according to the manufacturer’s protocol.
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After washing in FACS buffer, cells were stained as described

above.

Granzyme B ELISA
Granzyme B production in the lungs of mice was measured in

BAL samples by ELISA (R&D Systems, Abingdon, United

Kingdom). Before testing, samples were centrifuged at 3506g

for 10 min and supernatants were harvested. Five different

dilutions were then prepared: a non-diluted sample, and 1:10,

1:50, 1:100 and 1:1000 diluted samples. The assay was performed

according to the manufacturer’s protocol.

Hemagglutination inhibition (HI) assay
Serial two-fold dilutions of NIBRG-14 and PR/8 virus stocks

were prepared in duplicates in V-bottom 96-wells plates. A

suspension of 1% guinea pig erythrocytes was added and gently

mixed with diluted virus. After incubation for 2 hr at room

temperature, 1 HAU was scored as the highest virus dilution at

which total hemagglutination was obtained. For determination of

the HI titer, pre-challenge sera of vaccinated mice were

complement-inactivated by incubating 75 ml aliquots for 30 min

at 56uC. Next, sera were mixed with 3 volumes (225 ml) of 25%

kaolin solution, incubated for 20 min at room temperature and

centrifuged for 2 min at 4006g. Supernatants were collected and

serially diluted two-fold in duplicate in V-bottom 96-wells plates.

The virus suspension containing 4 HAU (determined as described

above) and 1% guinea pig erythrocytes were then gently mixed

with the serum supernatants. Hemagglutination was allowed to

develop for 2 hr, and the highest dilution at which hemaggluti-

nation was inhibited was scored and used to calculate titers.

Microneutralization assay
MDCK cells were seeded in 96-wells flat-bottom plates and

cultured overnight in serum-free Episerf medium. The next day,

two-fold serial dilutions of sera, with starting dilution 1:10, were

prepared in 96-wells plates in quadruplicate. To each well, with

the exception of negative controls, 50 TCID50 of the challenge

PR/8 virus was added and plates were incubated for 2 hours at

37uC. Next, MDCK cells were washed once with Episerf medium,

and mixtures of serum and virus were added to the cells. Further

on, cells were incubated for 1 hr at 37uC. After the 1 hr

incubation, the culture supernatants were replaced by medium

supplemented with 6 mg/ml of TPCK trypsine and cells were

incubated for an additional 72 hr. On day 5, cell supernatants

were harvested and transferred to V-bottom 96-wells plates. The

presence of virus was detected using a hemagglutination assay

[47].

Statistical methods
Differences between vaccination groups with regard to the levels

of tetramer-positive cells, granzyme B production, HI and lung

virus titers were analyzed using the Mann-Whitney U test with a

confidence interval 95%. To enumerate the difference between

groups based on severe body weight loss, a Fisher’s exact test was

used. A value of p,0.05 was considered as statistically significant

and is indicated in the figures with an asterisk. Double and triple

asterisks indicate p values of ,0.01 and ,0.001, respectively.

Supporting Information

Figure S1 Assessment of viral inactivation status in the
FA-WIV and BPL-WIV vaccines. Influenza virus inactivation

was tested by performing serial passages on eggs. After the last

passage, allantoic fluids were tested for the presence of replicative

virus using the hemagglutination test. Virus titers measured in FA-

WIV and BPL-WIV samples were below the detection limit (n.d.,

not detectable). Results are presented mean6SEM (n = 20 eggs).

(TIF)

Figure S2 Efficacy of CD8+ cell depletion in peripheral
blood of mice after injection of YTS169 antibody. On days

22, 23 and 24 after the start of experiment, mice were injected i.p.

with a single dose of the depletion antibody. Subsequently, starting

from day 1 post challenge, mice were injected with a single dose of

the depletion antibody every 7 days. To monitor the efficacy of

CD8+ cell depletion, blood samples were collected from mice on

day 24 and then immediately prior to each subsequent antibody

injection. As a control, blood was also sampled from mice that did

not receive the depletion antibody. Isolated PBMCs were surface

stained for CD8. To avoid multiple blood sampling from

individual animals, samples were taken only from two mice per

group at each time point. Representative flow cytometry plots are

shown demonstrating the efficacy of CD8 cell depletion. Data is

presented as the percentage of CD8+ cells within the total PBMC

population.

(TIF)
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