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Abstract Recently, prediction models for type 2 diabetes

mellitus (T2DM) in older adults (aged C55 year) were

developed in the KORA S4/F4 study, Augsburg, Germany.

We aimed to externally validate the KORA models in a

Dutch population. We used data on both older adults

(n = 2,050; aged C55 year) and total non-diabetic popu-

lation (n = 6,317; aged 28–75 year) for this validation. We

assessed performance of base model (model 1: age, sex,

BMI, smoking, parental diabetes and hypertension) and two

clinical models: model 1 plus fasting glucose (model 2); and

model 2 plus uric acid (model 3). For 7-year risk of T2DM,

we calculated C-statistic, Hosmer–Lemeshow v2-statistic,

and integrated discrimination improvement (IDI) as mea-

sures of discrimination, calibration and reclassification,

respectively. After a median follow-up of 7.7 years, 199

(9.7%) and 374 (5.9%) incident cases of T2DM were

ascertained in the older and total population, respectively.

In the older adults, C-statistic was 0.66 for model 1. This

was improved for model 2 and model 3 (C-statistic = 0.81)

with significant IDI. In the total population, these respective

C-statistics were 0.77, 0.85 and 0.85. All models showed

poor calibration (P \ 0.001). After adjustment for the

intercept and slope of each model, we observed good cali-

bration for most models in both older and total populations.

We validated the KORA clinical models for prediction of

T2DM in an older Dutch population, with discrimination

similar to the development cohort. However, the models

need to be corrected for intercept and slope to acquire good

calibration for application in a different setting.

Keywords Type 2 diabetes � Prediction model � External

validation � Update � Older adults

Abbreviations

ARICA Atherosclerosis risk in communities

BMI Body mass index

DESIR Data from the epidemiological study on the

insulin resistance syndrome

FINDRISC Finnish diabetes risk score

HbA1c Glycosylated hemoglobin

IDI Integrated discrimination improvement

KORA Cooperative health research in the region of

Augsburg

PREVEND Prevention of renal and vascular end stage

disease
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Introduction

Type 2 diabetes is one of the major concerns in public

health, becoming more prevalent worldwide in parallel with

increasing rate of obesity and ageing [1]. There is evidence

suggesting that diabetes can be prevented by diet and life-

style modifications [2]. For this, individuals at risk of

developing diabetes need to be accurately identified [3, 4].

In the rapidly growing group of older subjects, prediction

and primary prevention of chronic complex diseases such as

diabetes are important to aid in healthy aging [5].

Risk for development of diabetes is appreciably higher

in older subjects than in younger subjects. Several pre-

diction models, including the Finnish (FINDRISC), the

Atherosclerosis Risk in Communities (ARIC), the Fra-

mingham, Data from the Epidemiological Study on the

Insulin Resistance Syndrome (DESIR) and Cambridge

diabetes risk scores, have been developed in middle-aged

populations and validated in other populations [4, 6–11].

As there are indications of ‘reverse epidemiology’ in older

populations [12, 13], it is questionable whether risk scores

developed in middle-aged populations can be extrapolated

to older subjects. Moreover, it has been shown that pre-

dictive value of common risk factors declines with ageing

[14]. Recently, the Cooperative Health Research in the

Region of Augsburg (KORA) S4/F4 models have been

developed to specifically predict the risk of type 2 diabetes

in older subjects [15]. Because some risk scores that

showed less performance when external validation was

attempted, it is important that risk scores are validated in an

independent population before they are brought into clini-

cal practice [15, 16].

Therefore, we aimed to investigate the performance of

the KORA models to predict incident type 2 diabetes in a

large sample of non-diabetic Dutch adults, in particular

older adults. We assessed performance of the model in

terms of discrimination, calibration, recalibration and

reclassification.

Methods

Population and design of the derivation study

The KORA S4/F4 study is a community-based cohort of

2,656 individuals (aged 55–74 years) living in the area of

Augsburg, Germany in 1999. Details of the study design,

recruitment, and procedures have been published elsewhere

[17]. Among 887 individuals who participated for a median

follow-up of 7-years, 91 (10.5%) incident cases of type 2

diabetes were observed in the KORA cohort [15, 17]. The

KORA data set was used to compare baseline character-

istics with those of the validation cohort.

Population and design of the validation study

We used data from the Prevention of Renal and Vascular

Endstage Disease (PREVEND) study. The PREVEND

study is a community-based prospective cohort of 8,592

inhabitants (aged 28–75 years) of the city of Groningen,

The Netherlands who were screened for baseline mea-

surements between 1997 and 1998. Details of the study

design, recruitment, and measurements have been pub-

lished elsewhere [18]. From the baseline cohort, we

excluded 295 participants who had diabetes and 1,980 with

missing data on clinical characteristics or data on follow-

up, leaving 6,317 non-diabetic total population and a

sample of 2,050 older adults (aged C55 years old) for this

prospective validation analysis. The latter was used for

primary validation while the former was used for second-

ary validation in a population with a much larger age range.

All participants gave written informed consent prior to

study inclusion. The PREVEND cohort complied with the

Declaration of Helsinki and was approved by the medical

ethics committee in The Netherlands.

Outcome, predictors and measurements

The main outcome was incidence of type 2 diabetes which

was classified if one or more of the following criteria were

met: fasting plasma glucose C7.0 mmol/l (126 mg/dl);

non-fasting sample plasma glucose C11.1 mmol/l

(200 mg/dl); self-report of a physician diagnosis of type 2

diabetes; pharmacy-registered use of glucose-lowering

agents [19]. To estimate the predicted 7-year risk for type 2

diabetes in our cohort, we calculated the linear predictors

of the KORA prediction models [15]. The base model

(model 1) included data on age, sex, parental diabetes,

body mass index (BMI), smoking status and hypertension.

The clinical KORA models included additional data on

fasting glucose, serum uric acid and HbA1c [15]. As data

on HbA1c was unavailable, we validated a reported clinical

model with data on fasting glucose (model 2) [15]. More-

over, the authors were asked to provide a clinical model

with data on fasting glucose and uric acid (model 3), pre-

sented in Supplementary Table 1.

Data analysis

To externally validate these models, we assessed the dis-

crimination and calibration performances in our cohort

[20]. The discrimination performance denotes to what

extent the model distinguishes between individuals with

and without the outcome. Discrimination was expressed as

the C-statistic with 95% confidence interval, where a value

of 1 implies a perfect discrimination and a value of 0.5

implies performance no better than chance. We compared
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the C-statistics of the clinical models to that of the base

model as reference. The calibration compares predicted

risks with observed risks. We applied the Hosmer–Leme-

show v2 test to evaluate the calibration performance. A

lower v2 value with a non-significant P value represents

good calibration. Also, calibration was visually checked by

comparing the predicted probabilities versus observed

incident cases of diabetes in each decile of predictions [20].

To recalibrate the prediction models, we used the original

KORA models and applied logistic regression to derive the

intercept and the calibration slope of each model in the

total and older populations, and separately for women and

men (Supplementary method part 1) [21]. We used these

intercepts and slopes by fitting a model with the original

linear predictor as the only covariate in the PREVEND data

set. We multiplied each linear predictor by the calibration

slope and added the calibration intercept to each original

model [21]. Thereafter, we added data on waist circum-

ference, a non-invasive risk factor for diabetes [11], to the

re-calibrated models and assessed if this could improve

predictive ability. We examined improvement of diabetes

prediction in terms of discrimination, calibration and

integrated discrimination improvement (IDI), a measure of

reclassification (Supplementary method part 2) [20]. The

analyses were performed separately in the older adults and

in total PREVEND population. All the statistical analyses

were carried out using Statistical Package for Social Sci-

ences version 18 (SPSS Inc, Chicago, Illinois, USA), Stata

software version 10.0 (Stata-Corp LP, College Station, TX,

USA) and R-2.11.0 for Windows (http://cran.r-project.org/).

Results

In the older adults, we observed 199 (9.7%) incident cases of

type 2 diabetes during follow-up for a median of 7.7 years.

In the total population, we observed 374 (5.9%) cases during

this follow-up. Baseline participants’ characteristics of the

KORA and PREVEND cohorts (aged C55 years) are shown

in Supplementary Table 2. Participants of PREVEND were

more likely to be male, older, more likely to be smoker and

to have hypertension, but had lower BMI, lower parental

history of diabetes and had lower fasting glucose and serum

uric acid than participants of KORA.

Table 1 depicts the performance of the KORA models in

terms of discrimination and calibration. In the older adults, a

relatively low discriminative ability was observed for the

base model (C-statistic = 0.66), being lower than the ori-

ginal C-statistic of 0.76 [15]. This was significantly

improved for both models 2 and 3 (C-statistic = 0.81),

being comparable with the original C-statistic of 0.81 [15].

The discriminative ability was not significantly different

between these clinical models (P = 0.78). The base and

both clinical models did not show good calibration

(P \ 0.001 for 7-year risk). When we tested the perfor-

mance of each model in the total population, we observed a

better discriminative ability for the base (C-statistic of 0.77;

P \ 0.001) and both clinical models (both C-statis-

tics = 0.85; P \ 0.001). Similarly, the base and both clin-

ical models did not show good calibration (P \ 0.001 for

7-year risk) in the total population. After adjustment for the

calibration intercept and the calibration slope of each model,

good calibration was observed for the clinical models

(P [ 0.05 for 7-year risk, Table 1), but not for the base

model. Figure 1 (A, B) depicts the agreement between the

predicted 7-year risk and observed risk of type 2 diabetes in

each decile of predictions before and after recalibration. Of

note, the predictive probability of model 3 was deviated

from the ideal line in the older adults above 15% risk (Fig-

ure 1 A); indeed, the 7-year risk was underestimated for this

risk category. The IDIs were significant when we compared

the prediction performance of the clinical models to that of

the base model (P \ 0.001). In a subsequent analysis, we

stratified total population by gender. We observed that all

KORA models showed better discrimination performance in

women than in men (Table 1). Addition of waist circum-

ference improved predictive ability of the base model in the

total population (C-statistic = 0.79; P \ 0.001), but not in

the older population separately (C-statistic = 0.67;

P = 0.30). Addition of waist circumference did not improve

predictive ability of model 3, neither in the total population

(C-statistic = 0.85; P = 0.11) nor in the older population

separately (C-statistic = 0.81; P = 0.41).

Discussion

In this external validation study, we prospectively assessed

performance of the KORA models to predict the risk of

developing type 2 diabetes in an independent Dutch pop-

ulation. We found that the prediction models with clinical

data on glucose with or without uric acid performed well

and this was much better than the base model in terms of

discrimination and reclassification in the older adults.

Moreover, we observed a similar pattern but with higher

discriminative abilities in the total population. All models

showed poor calibration performance. The calibration was

good after adjustment for the intercept and the slope of

clinical models, but not for the base model.

To our best of knowledge, there are few studies that

derive and validate prediction models for of the risk of

developing type 2 diabetes in the older adults. The main

strengths of our study were including a large population-

based cohort, available data on blood sampling in each

screening visit and pharmacy registry, and applying the

latest standards of prediction research. Some limitations

External validation of KORA S4/F4 prediction models 49
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should be addressed. First, we excluded the individuals

with missing data at baseline or during follow-up. How-

ever, the baseline characteristics of excluded participants

were similar to those who were included in our analysis.

Therefore, it is less likely that this might have led to

selection bias. Moreover, both derivation and validation

data sets were gathered among Whites and our findings

need to be further evaluated in other populations.

Our findings were consistent with previous validation

studies in which performance of other prediction models

for type 2 diabetes were tested in independent populations

[22, 23]. Of note, predictive performance of models is often

decreased in the validation sample. Several differences

between derivation and validation samples might explain

this change of performance. These include differences in

healthcare systems, methods of measurement, and patients’

characteristics [22]. Our protocol to measure the predictors

and incident cases of type 2 diabetes was very comparable

with the KORA study during similar follow-up time and

period. Regardless possible differences in healthcare sys-

tems, characteristics of the participants of PREVEND were

remarkably different from the participants of KORA.

When we calculated the C-statistic as a discrimination

measure, we observed good ability (C-statistic C 0.81) of

clinical KORA models to distinguish between incident

cases of type 2 diabetes and those who remained free of

diabetes in both older and total populations. This was

comparable for both clinical models and much higher than

the base model. This cannot be explained by differences in

the incidence of type 2 diabetes, as the C-statistic is hardly

affected by different incidences of the outcome. A better

discriminative ability of KORA models in the total popu-

lation than in the older adults might be explained by a

difference in case mix between KORA and PREVEND

cohorts, less heterogeneity among the older adults of

PREVEND, effect of predictors and difference in regres-

sion coefficients of KORA models [23]. For example,

variables like age, BMI, or hypertension discriminate better

between cases and non-cases in the total population [14]

because low BMI or hypertension is more frequent in the

younger adults who develop diabetes less often.

Both base and clinical KORA models showed poor

calibration both in the older and total populations. In other

words, the mean predicted risk by the KORA models were

significantly different from the observed risk of type 2

diabetes in the PREVEND cohort. One explanation for this

is different incidence of type 2 diabetes between KORA

and PREVEND cohorts. To further assess the calibration

performance of each models, we used logistic recalibra-

tion of the original prediction models [21]. After this

adjustment, both KORA clinical models showed good

calibration.

In conclusion, addition of fasting glucose improved

performance of KORA base model in both older and total

populations in terms of discrimination and reclassification.

Further addition of uric acid did not matter much. Both

base and clinical models showed poor calibration. After

correction for the intercept and the slope, most KORA

models showed good calibration, indicating that there is

often a need to adapt prediction models before application

in a different setting.
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Fig. 1 Comparison between predicted risk versus observed diabetes

frequency in the PREVEND cohort according to the KORA model 3,

Model 3, included data on the base KORA model plus glucose and

uric acid for the risk prediction of diabetes in the PREVEND cohort.

A depicts calibration plots in the older adults, aged C55 years

(n = 2,050). B depicts calibration plots in the total population

(n = 6,317). The dashed line represents an ideal calibration (with

intercept 0 and slope 1); the dotted line is for the not-recalibrated

model and the solid line is after adjustment for the intercept and slope
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