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ABSTRACT
Dark matter substructures around nearby galaxies provide an interesting opportunity for
confusion-free indirect detection of dark matter. We calculate the boost over a smooth back-
ground distribution of dark matter for gamma-ray emission from dark matter self-annihilations
in tidal structures in M31, assuming a cross-section inversely proportional to the relative ve-
locities of the dark matter particles as proposed by the Sommerfeld effect. The low velocity of
the material in the structure results in a significant increase in gamma-ray emission compared
to both the background halo and the predicted emission for a velocity-independent cross-
section. We also calculate the expected signal for Fermi, for reasonable choices of the dark
matter parameters. We find that for a cross-section proportional to v−2, the enhancement to
the annihilation rate is sufficient to test the velocity dependence of the cross-section by spatial
correlation with the stellar component of the M31 Giant Stream, given sufficient detector
sensitivity.

Key words: astroparticle physics – galaxies: individual: M31 – galaxies: kinematics and
dynamics – dark matter – gamma-rays: galaxies.

1 IN T RO D U C T I O N

Like our own Galaxy, the nearby Andromeda galaxy (M31) ex-
hibits a wealth of stellar features with an accretion origin, including
dwarf galaxies, tidal streams, and a complex outer halo structure
(McConnachie et al. 2009). Unlike our Galaxy, however, we view
M31 from the outside, which in some cases facilitates the study of
these substructures. Many of these tidal features are potential trac-
ers of collisionless dark matter associated with their progenitors,
which undergoes similar dynamics to stars. These features usually
have distinctive, asymmetric shapes at large radii from the centre
of their host. This paper considers whether dark matter in tidal
structures in M31 could provide a possible indirect detection by
ultrasensitive gamma-ray observations in a confusion-free region
around this nearby galaxy.

One particularly prominent feature around Andromeda is a giant
tidal stream that extends nearly radially away from the centre of
M31, commonly known as the ‘Giant Stream’. This feature was first
observed by Ibata et al. (2001) and has since been studied in great
detail. An N-body model of the stream by Fardal et al. (2006) has
tentatively connected this stream with two other tidal features closer
to M31’s disc, known as the west and north-east ‘shelves’ because of
a relatively abrupt drop in surface brightness at their edges (Fig. 1,
left-hand panel and top right-hand panel). If the three features were
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all indeed produced in the same minor merger, the extremely high
eccentricity required for the orbit of the progenitor implies that the
‘shelves’ are in fact radial fold catastrophes, otherwise known as
caustics. This theory explains the sharp edges of the shells as the
point where infalling and outgoing streams of material stripped from
the progenitor pass each other near the outer radial turning point of
their orbits. Since the motion is nearly radial, the projection of phase
space into the r–vr plane (Fig. 1, bottom right-hand panel) contains
nearly all the information about the dynamics of material in the
stream and shells. A caustic occurs at each point where the phase-
space stream becomes vertical in this projection, and the various
features can thus be placed in chronological order of formation.
This theory also predicts that near the edge of each shelf, the density
will be significantly enhanced, as particles ‘pile up’ near the radial
turning points of their orbits.

Inferring the phase-space distribution of the material in the shells
and stream from this N-body model also reveals that the relative
velocity of material in the features is extremely low, especially in
the tidal stream and the very edges of the two caustics (Fig. 2).
At the caustic surface and in the stream, the local relative veloc-
ities can be less than 10 km s−1 (Table 1). This is a result of the
increasing thinness of the stream in phase space as time passes, an
effect sometimes known as ‘gravitational cooling’ (Mohayaee &
Shandarin 2006).

Features of this type, though expected to be fairly common, are as
difficult to detect in the Milky Way as they are straightforward to find
in sufficiently deep images of external galaxies. The sharp-edged
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2446 R. E. Sanderson, R. Mohayaee and J. Silk

Figure 1. Two tidal features noted around the Andromeda galaxy (left-hand panels, green and red points; top right-hand panel, green and red dashed lines)
correspond to fold catastrophes, or caustics, in individual phase wraps of material from a dissolved satellite galaxy on a nearly radial orbit (bottom right-hand
panel). For this reason, we refer to the shells in this work as Caustic 1 (green) and Caustic 2 (red), in the order in which they were formed. Another prominent
tidal feature, the Giant Stream shown in orange, is the first structure to form in the merger, and hence is labelled ‘0’.

Figure 2. Projected phase-space plot of the tidal debris with σ < 200
km s−1, colour-coded by the local velocity dispersion estimated from the N-
body model (estimation method described in Section 2). The cut in velocity
dispersion excludes mainly material near the centre of the halo. The coldest
material is found at the edges of the shells and in the tidal tail. For display
purposes, a random selection of one-tenth of the particles are plotted here.

shells seen in the star-count map of M31 would, when viewed from
within Andromeda, look instead like large amorphous clouds spread
over a huge fraction of the sky (Fig. 3). From this vantage point,
much more information about the phase-space structure of the debris
would be necessary to determine that the shells existed, whereas

Table 1. Mean and minimum estimated velocity dispersions in
the features shown in Fig. 1.

〈E(σ )〉 min(E(σ )) Np

Feature (colour in Fig. 1) (km s−1) (km s−1)

Giant Stream 0 (orange) 24 3.6 41 842
Caustic 1 (green) 70 7.3 29 547
Caustic 2 (red) 84 18 12 263

Figure 3. The N-body model of the tidal shells in M31, now viewed in
Aitoff projection from a viewpoint at M31’s centre. From this perspective,
the shells’ sharp edges are virtually indistinguishable.

when viewed externally in a suitable projection the sharp edges
immediately imply a nearly radial orbit for the progenitor. Thus, the
existence of such a structure in M31 represents a unique opportunity
to study a system with well-constrained dynamics, thanks to its
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Dark matter interactions in tidal streams 2447

distinctive morphology as viewed from outside, at the closest range
possible without full six-dimensional phase-space information for
stars in the shells.

The existence of cold, high-density regions at large radii from
M31’s centre makes the tidal features an interesting candidate for
indirect detection of dark matter in the Sommerfeld enhancement
framework, where the interaction probability is boosted at low ve-
locities. The Sommerfeld effect was first introduced to boost the
dark matter annihilation signal in order to account for the PAMELA
observations of positrons and HESS and Fermi observations of
an unpredicted high-energy lepton component in the cosmic rays
(Arkani-Hamed et al. 2009; Lattanzi & Silk 2009; March-Russell &
West 2009; Cirelli & Cline 2010). The annihilations of a TeV super-
symmetric weakly interacting massive particle can be boosted by a
factor of the order of 1000, as needed to account for the observed
signal. This interpretation has been criticized on several grounds.
Excessive gamma-rays (inverse Compton) and high-energy antipro-
tons would be produced in the inner Galaxy and excessive radio
synchrotron emission in the outer Galaxy if the local cold substruc-
ture persists at all Galactic radii (Borriello, Cuoco & Miele 2009).
The weakness in this critique is that the substructure is likely to
be a strong function of Galactic radius. Decrease in substructure
concentration factor at large Galactic radii and the effectiveness
of tidal disruption at small Galactic radii weaken these constraints
significantly. Slatyer, Toro & Weiner (2011) have systematically
explored this effect, and conclude that our uncertainty about the
radial dependence of the substructure contribution means that no
strong constraints can be drawn from comparing signals at different
Galactic radii. Any additional information about the expected size
of this contribution is therefore quite important for determining the
viability of the Sommerfeld model.

The strongest constraint on Sommerfeld boosting has come from
considerations of delayed recombination of the Universe following
the last scatterings of the cosmic microwave background radiation
at z ∼ 1000. The survival of the model appears marginal for WMAP
constraints, and Planck will soon greatly improve these limits (Galli
et al. 2009). However, if the contribution of substructures to the local
signal dominates, then these constraints are significantly weakened
(Slatyer et al. 2011). Additionally, this line of argument assumes
that Sommerfeld boosting, quenched at the local value required to
account for PAMELA, HESS and Fermi observations, applies in a
regime where the dark matter is much colder (β ≡ v/c ∼ 10−12)
than in the local halo substructure where β ∼ 10−4. This is a huge
extrapolation that may not necessarily be justifiable in terms of
general particle physics models. We believe it is important to test
Sommerfeld boosting in a regime much closer to the local environ-
ment, for example, in our Galaxy, in ultrafaint dwarf galaxies, and
in M31.

Substructures in M31 can provide precisely such a test if we
use old stars as dark matter tracers. The proposed test involves
Fermi imaging of very similar substructures (at least in terms of ve-
locity dispersion) to those invoked locally for the PAMELA excess.
Without the Sommerfeld enhancement, the material is insufficiently
dense to produce a detectable signal (Sanderson & Bertschinger
2010), but with the enhancement signals can be boosted by a factor
of up to 104–105 at velocities comparable to those achieved in the
tidal debris in this example. These boost factors are similar to those
expected from local dwarf galaxies (Robertson & Zentner 2009).
With this in mind, we calculate in this work the boost and signal
in the Fermi band from this tidal substructure assuming that a dark
matter component of the unbound substructure follows the stellar
component, as an example of the kind of result one might expect

from tidal debris for this class of dark matter models. This particular
example has then the additional advantage of a distinctive morphol-
ogy that could allow it to be easily differentiated from a smooth dark
matter halo. It also occupies an interesting niche between the bound
substructures thought to dominate the signal in the Milky Way’s
outer halo and the more diffuse tidally disrupted substructure that
Slatyer et al. propose contributes to the extragalactic gamma-ray
background. In Section 2, we describe the method by which the
phase-space distribution in M31’s halo and tidal substructure was
modelled, and the results of tests for possible bias in our numerical
methods. In Section 3, we present results for the boost factor over
the smooth halo as a result of the tidal substructure for different
regimes of Sommerfeld boosting. In Section 4, we present maps of
the flux in the Fermi band for two choices of dark matter model and
show how those results may be scaled to other parameter choices.
In Sections 5 and 6, we discuss the results and indicate paths for
future work.

2 MO D E L L I N G

The rate � at which dark matter self-annihilations occur is propor-
tional to the volume integral of the total squared number density
of dark matter n2

tot, weighted by some function S(v) of the relative
velocity of particles whose form depends on the class of theo-
ries being considered. In our model, there are two distinct density
distributions that contribute to the total density: the smooth halo
distribution nh and the tidal structure ns. The total rate can thus be
separated into three different contributions for ease of calculation:
one from interactions between dark matter particles in the smooth
halo (denoted by a subscript ‘hh’), one from dark matter in the tidal
structure interacting with dark matter in the smooth halo (denoted
by a subscript ‘hs’), and one from dark matter particles in the tidal
structure interacting with each other (denoted by a subscript ‘ss’):

�tot =
∫

n2
totS(v)dV ,

=
∫

n2
hS(σh)dV + 2

∫
nhnsS(vs)dV +

∫
n2

s S(σs)dV ,

≡ �hh + �hs + �ss.

(1)

Here we have suppressed the position dependence of the arguments
for brevity, and denoted the volume element by dV . The argument
to S(v) varies for these three terms. For �hh, the correct relative
velocity is the velocity dispersion σ h of the halo. For �hs, the halo
is assumed to have zero mean velocity relative to the debris, so the
mean velocity vs of shell particles is used. For �ss, the velocity
dispersion of particles in the tidal debris, σ s, is used. The shells
and tail have such a low velocity dispersion that this last term is
anticipated to dominate.

To represent the phase-space distribution of the material in the
tidal shells, we used the N-body model constructed by Fardal et al.
(2006, 2007) to match the stellar component of the tidal debris.
We assumed that the dark component tracks the stellar component
and is of equal mass. These assumptions are admittedly an over-
simplification but provide a good starting point for two reasons.
First, the dark matter components of dwarf galaxies are thought
to be more extended and less concentrated than the stellar compo-
nent (Peñarrubia, Navarro & McConnachie 2008b) but the starting
conditions for the N-body model locate the satellite deep in the po-
tential of M31, by which point this extended dark halo would have
been tidally stripped already, leaving only the dark matter within a
tidal radius consistent with the stellar extent of the satellite. Within
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Figure 4. A recent simulation of a satellite falling into a Milky Way type
galaxy (see Peñarrubia et al. 2008c, for details of the simulation), showing
the creation of shells of both stars (green) and dark matter (red) in a minor
merger with a nearly radial initial orbit. The figure shows that star shells
trace very closely the dark matter shells and despite the difference in initial
distribution, the dark matter and star shells are at similar radii. The inset is
a zoom on the satellite which is extremely resilient to the tides.

this radius, the dark matter is thought to contribute roughly equally
with the stellar component to the potential of dwarf galaxies, pro-
viding some support for assuming comparable masses for the two
components. This particular N-body model admits a dark matter
component up to two to three times the total stellar mass (Fardal,
private communication). Secondly, given the similar initial condi-
tions of the stars and dark matter, the stellar shells can provide a
visible starting point and template for searches because the radii
of the shells, though perhaps not identical, will be similar. A jus-
tification for this is seen in simulations that follow both dark and
stellar components of a nearly radial merger, as shown in Fig. 4

(see Peñarrubia, Navarro & McConnachie 2008a,c, for full details
of the simulations). The star shells, although formed well after the
formation of the dark matter shells, clearly trace the dark matter
shells and form at similar radii.

2.1 Smooth halo background

The halo used to model the tidal structure was also used to calculate
both the smooth background signal and the signal from interaction
between dark matter in the halo and putative dark matter in the tidal
shells. To make the N-body model, only the density profile ρ(r)
was necessary (Geehan et al. 2006); it is represented by the NFW
relation (Navarro, Frenk & White 1996) with scale radius rh and
scale density ρh,0, with the addition of a small core radius rcore to
produce a finite central density:

ρh(r) = ρh,0

[(r + rcore)/rh][1 + (r + rcore)/rh]2
, (2)

as shown in the left-hand panel of Fig. 5. Note that this halo, used
consistently for both the dark matter annihilation background and
the N-body model, has a concentration of c = 25.5. This value is
significantly higher than the concentration of a typical simulated,
M31-sized dark halo grown from cosmological initial conditions,
which in most cases is in the range 8–16 (Navarro et al. 2010).
This high concentration is a byproduct of the dynamical model and
relates to the uncertainty in the mass of M31’s disc (the so-called
‘disc–halo degeneracy’); in this work, it has the additional effect of
producing a larger than usual background signal from the smooth
halo density distribution in the innermost regions of the halo.

The velocity dispersion σ (r) of the halo was inferred by analogy
with the high-resolution numerical studies of the phase-space struc-
ture of cosmological haloes by Navarro et al. (2010). These studies
confirmed the pseudo-phase-space-density scaling relation ρ/σ 3 ∝
r−15/8, proposed by Bertschinger (1985) as a universal relation for
cosmological dark matter haloes, over more than four orders of
magnitude in radius. The density profile of the halo was used to
determine the radial profile of the velocity dispersion in the halo,
scaled to a maximum velocity dispersion determined by rescaling
one of the haloes studied in Navarro et al. The average mean veloc-
ity of particles in the halo is assumed to be zero, and the resulting

Figure 5. Left-hand panel: density profile of the smooth dark matter halo used in this work. The grey solid lines highlight regions where the power-law index
is −3 (at large radius), −1 (at intermediate radius) and 0 (at small radius). The long-dashed lines indicate rcore, the short-dashed lines indicate rh, and the
dot–dashed (green online) and dotted (red online) solid lines are the approximate radii of Caustics 1 and 2, respectively. Right-hand panel: velocity dispersion
profile of the halo used in this work (solid black line). The profile peaks at rmax (long-dashed line), which is just less than the scale radius rh (short-dashed
line). The velocity dispersion of halo material in the region of the two caustics (noted as in the left-hand panel) is more than 10 times larger than the velocity
dispersion of material in the caustics.
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velocity dispersion profile is

σh(r) = σmax

(
ρ(r)

ρmax

)1/3 (
r

rmax

)5/8

, (3)

where it can be shown that

rmax = 7

9
rh and ρmax = 729

1792
ρh ≈ 0.41ρh. (4)

The velocity dispersion profile is shown in the right-hand panel of
Fig. 5.

Using the analytic expressions for ρ and σ , we then compute the
quantity �hh analytically:

�hh = 1

m2
p

∫
dV ρ2

hS(σh) (5)

with ρh given by equation (2) and σ h given by equation (3). For
consistency with the N-body model, we normalize the expression
to the number density of N-body particles by dividing by m2

p. The
integral in equation (5) could be taken over the entire volume of
the simulation to estimate the total halo flux, but this value depends
very strongly on the choice of a core radius for the halo, which is not
constrained by the dynamical model. This sensitivity, however, is
confined to a tiny region right at the centre of the halo, equivalent to
the central 4 pixels or so for Fermi. To avoid the strong dependence
on a parameter that is so ill-constrained, we instead compare the
signal from the halo to that from the tidal structure pixel by pixel over
the field. Equation (5) is evaluated for each pixel separately over the
entire line of sight (z) and an area on the sky (�x, �y) corresponding
to the resolution of Fermi (about 0.◦1, or about 1.4 kpc at the distance
of M31). The boost is calculated by comparing the signal in each
pixel from the halo and tidal structure. The uncertainty about the
core radius leads to unreliable estimates of the boost only for the
central few pixels, while the region of interest is at larger radii
where the mass profile is somewhat better constrained, and where
the boost factor does not depend so strongly on the slope of the
mass profile.

2.2 Tidal structure

The tidal structure, including two shells and the Giant Stream, is rep-
resented by an N-body realization based on the model constructed
by Fardal et al. (2007). Although this model is by no means the
single best fit to the available data, it is at least a local best fit that
provides a plausible dynamical origin for the debris and a valuable
tool for inferring the phase-space structure. Numerical methods are
necessary to estimate the signal from the tidal structure; here, we
describe these methods and their limitations.

The integrated squared density, weighted by a factor of either
1/v or 1/v2, was estimated using the optimal procedure identified
in Sanderson & Bertschinger (2010), with the addition of estimates
for the mean velocity (used to account for interactions between
shell and halo dark matter particles) and the velocity dispersion for
material in the shell.

Moments of the velocity are calculated as follows. First, the mean
velocity v at the centre of the current Riemann volume, located at
position x, is estimated using

v̂(x) = 1

Ns

Ns∑
n=1

vn. (6)

Here and in the following, the hat symbol indicates an estimator that
recovers a smoothed field from the discrete N-body representation.

The average relative speed vs(x) is then calculated by taking the
magnitude of the mean velocity vector:

v̂s(x) =
√

v̂ · v̂. (7)

The quantity vs(x) represents the relative velocity between material
in the shell and material in the halo at point x.

The mean velocity at point x is used to compute the nine-
component, symmetric velocity dispersion tensor σ ij , for the or-
thogonal directions {i, j} ∈ {x, y, z}, at the same position x:

σ̂ ij (x) = 1

Ns − 1

Ns∑
n=1

[
vi

n − v̂i(x)
] [

vj
n − v̂j (x)

]
. (8)

The average one-dimensional velocity dispersion σ 2
s (x) is calcu-

lated by summing the three eigenvalues σ̂ 2
k of the velocity dispersion

tensor estimated with σ̂ ij (x) (the lengths of the orthogonal axes of
the velocity ellipsoid):

σ̂ 2
s =

3∑
k=1

σ̂ 2
k . (9)

We determine σ̂s by simply taking the square root. This quantity
represents the relative velocity between particles in the shell at
point x.

Finally, the two components of � involving the N-body model
are computed using the estimators

�̂hs = 1

mp

∑
Vi∈V

Vi n̂s,iρh(xi)S(v̂s) (10)

and

�̂ss =
∑
Vi∈V

Vi n̂2
s,i S(σ̂s), (11)

where the Riemann sum is over the volumes Vi making up the
target volume V , and n̂i and n̂2

i are estimated at the centre xi of
each Riemann volume as in Sanderson & Bertschinger (2010). The
halo density ρh is evaluated at the centre of each Riemann volume
for consistency with the positional accuracy of the density estimates.
Because the Riemann volumes are generally small compared to the
gradient of the halo density profile in the regions of interest, the
difference between this method of evaluating ρh and the analytic
integral over each pixel used to calculate �hh should likewise be
small.

Recovery of smooth fields from a discrete representation can be
sensitive to various discreteness effects, including the choice of
smoothing number Ns and resolution Np and the local gradient of
the density, especially the existence of sharp edges in the distribu-
tion. Because of the complexity of the method for determining the
velocity dispersion, we used numerical experiments to calculate the
bias, variance and rms error of σ s for several different values of Ns,
and Np over a range of velocity dispersions. We looked for varia-
tions with these parameters, as well as those due to edge effects or
density gradient (which is high near the caustic).

For the purposes of the numerical experiments, we define the ex-
pectation value of the estimator, E(σ̂s), as the mean of the estimated
values of σ s over a given region of the sample:

E(σ̂s) ≡ 1

Nsub

∑
i=1

Nsubσ̂s(xi), (12)

where Nsub is the number of particles falling in that region of the
realization and xi is the position of the ith particle, with σ̂s defined
as described above. A ‘region’ could be the entire sample, in which
case Nsub = Np, but we also compared subsets that included and
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2450 R. E. Sanderson, R. Mohayaee and J. Silk

Figure 6. Regions for testing possible edge and density gradient effects in the estimation of the velocity dispersion σ s. The test compared different regions
(edge and centre) in two test distributions: one with a caustic along the x direction (left-hand panel) and one with uniform density (right-hand panel). The edge
region in the caustic distribution spanned the caustic surface (red box), while the centre region avoided all the edges and had a small density gradient (orange
box). The edge region in the uniform distribution covered all the edges (half are shown in purple), while the central region avoided all of them (green).

excluded edges or caustics. We compared E(σ̂s) to the input value of
the velocity dispersion, σ in, by computing the bias B and variance
V of E(σ̂s), defined as

B ≡ E(σ̂s)

σin
− 1 and V ≡ 1

Nsubσ 2
in

Nsub∑
i=1

[σ̂s(xi) − E(σ̂s)]
2 .

(13)

With these definitions, B represents the average fractional system-
atic difference between the input and estimated values of σ s, and
similarly V measures the average fractional variation of the esti-
mates from their mean (the ‘noisiness’ of the estimator). The square
root of V , often referred to as the standard deviation, is a measure
of the spread of all the individual estimates of σ s.

One can further quantify the performance of the estimator by
combining B and V in the root-mean-squared (rmse) error defined
as

(rmse)2 ≡ B2 + V = 1

Nsubσ 2
in

Nsub∑
i=1

[σ̂s(xi) − σin]2 , (14)

which includes both error from a noisy estimator (in V) and error
from a biased one (in B). It is important to consider the relative
contributions of B and V to the rmse, however, so we will discuss
all three quantities below.

We calculated the bias, variance and rmse of the expectation
values from random realizations of three-dimensional distributions
with and without caustics. The realizations were generated at a range
of resolutions between Np = 104 and 105, with the number of par-
ticles in a given realization chosen from a Poisson distribution with
mean Np. We used a range of velocity dispersions between 10−3 and
10−4 and a time unit of 1 to create the caustics. The caustic width is
simply δx = σ t in our map, so this creates caustics with a thickness
of 10−3–10−4 relative to the units measuring box size as shown in
Fig. 6. The same velocity dispersion used in the caustic mapping
was also used to assign random velocities to each particle: the ve-
locities were reassigned to caustic particles for consistency with the
uniform case, and in order to isolate the effect of density gradients
on estimates of the velocity dispersion. The velocity dispersion was
calculated at the location of each particle in each sample at Ns =
10, 20 and 30.

We tested for edge effects by comparing the estimates of σ s for
two types of test distributions with a uniform velocity dispersion:
one with a caustic in it and one with uniform density. The estimator
described above was used to estimate σ s at the location of each
particle in a given sample. To test for possible effects of edges and
density gradients, we defined two regions in each sample: one near

the edge of the distribution and one at the centre of the sample
(Fig. 6). The edge region in the caustic distribution is aligned with
the caustic surface to probe possible bias from the high density
gradient in the caustic, and spans several times the scale width
of the caustic. The sizes of the regions are adjusted so they all
contain about the same number of particles. The velocity dispersion
was estimated at the locations of particles in a given region using all
particles in the realization. If the edges or density gradient affect the
estimation of the velocity dispersion, we expect to see a difference
in the bias and/or variance of the estimates for regions near the edges
or near the caustic compared to regions that exclude the edges.

To illustrate the effect of edges, we present results for Ns = 10
in a pair of realizations with Np = 105 (corresponding to Nsub ∼
104.5), since these values of Ns, Np and Nsub are appropriate for the
N-body realization of M31. We found that the rms error on estimates
produced by σ̂s was dominated by the large variance resulting from
the low value of Ns and was about 14 per cent in all cases. The bias,
which would indicate a systematic error in the estimator, was also
independent of the density gradient or the presence of edges in the
distribution (Fig. 7). This rms error corresponds to an uncertainty of
about 25 per cent in the Sommerfeld coefficient, which is compara-
ble to our uncertainty about the details of the phase-space structure

Figure 7. The bias (filled points) and rms error (error bars are one-tenth the
rmse) of E(σ̂s) do not appreciably differ between the various regions of the
sample, or between the samples as a whole. Print version: squares denote
the sample with the caustic; circles denote the uniform density sample.
Online: the colours in the figure correspond to the regions depicted in Fig. 6:
magenta indicates the entire sample with the caustic and blue indicates the
entire uniform density sample.
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Dark matter interactions in tidal streams 2451

Figure 8. The ability of the estimator to recover velocity dispersions is fairly insensitive to most numerical parameters. The average bias using Ns = (10, 20,
30) is shown in (darkest to lightest grey; blue, green, red, respectively, in the online version) in the left-hand panel, for various input values of σ true in kpc
Myr−1. Increasing the smoothing number Ns (left-hand panel) or the resolution Np (right-hand panel) slightly improves the bias and rms error, regardless of
whether the density distribution includes a caustic (solid lines) or is uniform (dashed lines). In the right-hand panel, Ns = 10 and Np is varied; above log10Np =
4.5 there is not an appreciable difference in the bias. In both panels, the error bars represent one-tenth of the rms error of the estimator.

in this tidal debris and certainly less than the uncertainty about the
particle physics model of the dark matter.

The N-body model of the debris uses about 1.3 × 105 particles
to represent the entire tidal structure, of which about 4 × 104 end
up in Caustic 1 and 2 × 104 end up in Caustic 2. This level of
resolution is sufficient to resolve the density distribution of the
material if a suitable estimator with a suitably small smoothing
number (Ns = 10) is used (Sanderson & Bertschinger 2010), but
this does not guarantee that the velocity structure of the material
is adequately resolved. To maximize the resolution of the velocity
structure, we would like to use the smallest possible smoothing
number to estimate moments of the velocity distribution as well.

In order to understand how the choice of smoothing number and
the resolution of the N-body representation affected the sensitivity
of the calculation to small velocity dispersions, we computed the
bias and variance for estimates of σ in uniform and caustic density
distributions with different input values of the dispersion σ true, at
different smoothing numbers Ns, and at varying resolutions Np. We
find that the estimator can reliably estimate velocity dispersions as
small as 10−4, with no indication that the bias is dependent on σ

(Fig. 8, left-hand panel). If the box size is rescaled to the approxi-
mate size of the caustics in the N-body simulation of M31, σ in =
10−4 corresponds to caustics of width ∼ 5 pc, and velocity disper-
sions of about 5 km s−1. The caustics in M31 have widths closer to
1 kpc, so their density gradient is always many times smaller than
those tested though the minimum velocity dispersions are compa-
rable to this limit (Table 1). Choosing a larger Ns does slightly
reduce both the bias and the rms error, but will make the estimator
less sensitive to small-scale changes in the velocity dispersion. In-
creasing the resolution also has only a small effect on the bias and
virtually none on the rms error (Fig. 8, right-hand panel), which is
again dominated by the variance. Based on these tests we conclude
that the current level of resolution of the N-body realization and the
choice of Ns = 10 will recover adequately unbiased estimates of
the velocity dispersion, sufficient for the required level of accuracy
in this work.

3 B O O S T FAC TO R

The boost factor is defined as the enhancement over the smooth
halo provided by the tidal structure:

B ≡ �hs + �ss

�hh
. (15)

The boost factor is independent of the normalization of S, the
branching ratio, and other quantities that are determined by the
particular particle physics model of the interaction. Thus, it usefully
isolates the effect of the different dependences of the cross-section
on velocity without introducing all the complexity of the parameter
space of dark matter models. We considered two different power
laws for S(v) motivated by previous studies of the Sommerfeld effect
(e.g. Arkani-Hamed et al. 2009; Bovy 2009; Lattanzi & Silk 2009;
Mardon et al. 2009): S(v) ∝ 1/v and S(v) ∝ 1/v2. For comparison,
we also consider the velocity-independent case S = 1.

Both velocity-dependent cases (Fig. 9, middle and right-hand
panels) provide a significant, position-dependent enhancement of
the tidal structure relative to the background and relative to the
velocity-independent case (Fig. 9, left-hand panel). As expected
from Fig. 2, the most significant enhancement is at the edges of
the two shells and in the stream, where the density is highest and
the velocity dispersion is lowest. The enhancement compared to the
velocity-independent case is highly non-linear (Fig. 10) because of
the correlation between the density and velocity dispersion, which
is a product of the phase-space streaming and the radial symmetry
of the system’s dynamics.

Surprisingly, the tidal stream produces an enhancement that rivals
or exceeds that of the shells. In retrospect, examination of the bottom
right-hand panel of Fig. 1 and the right-hand panel of Fig. 2 shows
that the tidal stream is just as cold as (and perhaps colder than) the
shells, its material falling radially inwards in a narrowly collimated
and fairly dense band. The tidal stream is fairly dense at radii even
larger than the edges of the shells, where the halo is of almost
negligible density, leading to an even larger boost factor.
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Figure 9. Log of the boost factor (ratio of shell emission to smooth halo emission) for no Sommerfeld enhancement (left-hand panel), S ∝ 1/v (middle panel)
and S ∝ 1/v2 (right-hand panel). The pixel size is chosen to approximate the resolution capability of the Fermi-LAT at high energy, as discussed in the text.

Figure 10. Ratio of the boost for velocity-dependent cross-sections to the boost for velocity-independent cross-sections. The left-hand panel shows the
enhancement for S ∝ 1/v (in other words, the middle panel of Fig. 9 divided by the left-hand panel) and the right-hand panel shows the enhancement for S ∝
1/v2 (right-hand panel of Fig. 9 divided by the left-hand panel).

Of particular interest is the prediction that if the cross-section to
dark matter self-annihilation is proportional to 1/v2, then the emis-
sion from this tidal structure should be as bright as the background
halo at the edges of the shells and in the densest part of the tidal
stream. This finding can be used to test the velocity dependence
of the dark matter cross-section if the halo of M31 is detected in
gamma-rays by Fermi. If the halo is detected, Fig. 9 predicts that
zeroth-order departures from a smooth emission distribution should
be observed if the cross-section depends on 1/v2 or higher order,

and that these departures should be correlated with the spatial distri-
bution of tidal structures around M31. Likewise, if the cross-section
depends on 1/v, departures should be observed at the 10 per cent
level, although this may be beyond the range of current instruments.
These predictions are independent of the specific model of the dark
matter particle, and are based solely on the assumption of a form
for the velocity dependence of the cross-section. If no such de-
partures are observed, the class of models with velocity-dependent
cross-sections of that form can be ruled out.
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Figure 11. Comparing the boost in different regions can reveal deviations
from spherical symmetry in the map, even if the signal from the substructure
itself is not fully resolved, for some interaction models. The inset shows the
regions over which the sum was calculated.

3.1 Spatial correlations

The particular morphology of the tidal features can significantly
improve the chances of a detection for a low signal rate, by correlat-
ing the stellar map with the gamma-ray map. Here we demonstrate
a coarse version of this by dividing the map into several regions,
three centred on a feature and one without significant tidal boost-
ing, and calculating the boost in each of these regions separately
(Fig. 11). This coarse contrast method can also allow for slight de-
viations between the dark matter and stellar distributions, though
our calculation assumes perfect tracking. In practice, the boosts
would be calculated by fitting a smooth, spherical halo profile to
the radially averaged observed distribution of gamma-rays, which
does not show much deviation for any of the interaction models we
considered, and comparing the observed and fitted signal in each
pie-shaped region inspired by the arrangement of the tidal debris,
which is highly asymmetric. Including a region assumed to have no
boost gives a built-in measurement of the sensitivity of the compar-
ison.

The most prominent feature appears to vary based on the inter-
action model that is used. For S ∝ 1/v2, the tidal tail is the most
prominent, deviating from spherical symmetry at the 1 per cent
level. For S ∝ 1/v, the edge-on shell appears at the 0.5 per cent level
but the tidal tail is indistinguishable. This is because the cross-term
�hs is larger than the shell–shell interaction �ss for this case, so that
the structure at the smallest radius (i.e. largest halo density) is the
brightest. Without a velocity-dependent cross-section, none of the
features is distinguishable from the background.

4 G A M M A - R AY S I G NA L

In order to determine whether the test described in the previous
section could be performed with Fermi, we estimated the gamma-
ray signal from the halo and tidal substructure for the two forms of
S(v) described above. In this section, we discuss the calculation of
the signal and its scaling with various parameters.

4.1 Calculation of the signal

We follow the notation of Fornengo, Pieri & Scopel (2004) as
adapted by Sanderson & Bertschinger (2010) to calculate the
gamma-ray signal, dNγ /dt, for Fermi. As in Fornengo et al. (2004),
we separate the dependence on the phase-space distribution of ma-
terial from most of the details of the dark matter particle model:


γ = 
C
∫ mχ

Emin

d
P

dEγ

A(Eγ )dEγ dEγ . (16)

The first term, 
C, depends only on the mass and velocity dis-
tribution of the dark matter and the velocity dependence of the
Sommerfeld effect. This term is independent of the energy Eγ of
the gamma-rays produced in the interaction:


C = 1

4πd2

∫
pixel

d3xρ2(x)S[v(x)] . (17)

The signal depends on the distance, d, from M31 and on the local
relative velocity v of the dark matter as well as the local mass
density ρ. Of course, the rate at which dark matter particles interact
with each other really depends on the number density, not the mass
density, but since the dark matter mass is model-dependent there
is a corresponding factor of 1/m2

χ in the second term, d
P/dEγ ,
which depends on the particular model of dark matter being used.
This term describes the spectrum of gamma-rays produced for a
given dark matter model:

d
P

dEγ

= 〈σv〉0

2m2
χ

dNγ

dEγ

. (18)

The cross-section 〈σv〉0 denotes the value of the cross-section with-
out Sommerfeld enhancement. dNγ /dEγ is the spectrum of gamma-
rays produced in a particular dark matter model.

The total signal in a given detector, dNγ /dt, is calculated by
integrating the spectrum of observed radiation over the energy range
of the detector, weighted by the effective area for the detector Aeff ;
the only other detector-dependent piece is the lower limit of the
integral Emin, the threshold energy for the detection of gamma-rays,
chosen to be 100 MeV for consistency with the Fermi sensitivity
range. (The upper limit of the integral is simply the dark matter mass,
as required by energy conservation.) For the Fermi-LAT, whose
effective area is roughly energy-independent above 1 GeV (Rando
2009), we can calculate the flux 
γ independent of the effective
area, since we are interested mainly in determining whether the
structure is above the detection threshold.

With this simplification, we find that 
P is simply proportional
to the total yield Nγ (Emin) above Emin, so that


P(Emin) = 〈σv〉0

2m2
χ

Nγ (Emin). (19)

4.1.1 Sommerfeld enhancement

Arkani-Hamed et al. (2009), Lattanzi & Silk (2009) and others have
shown that the Sommerfeld interaction can be easily modelled as
a Yukawa force with coupling constant α and a mediating particle
mass m1. In this analogy, the solution to the radial Schrodinger
equation with a Yukawa potential exhibits two characteristic be-
haviours of the cross-section enhancement S ≡ 〈σv〉/〈σv〉0. At very
low relative speeds, for resonant values of the mass ratio mχ /m1, S
is proportional to the inverse square of the relative speed:

Sres =
(

β∗

β

)2

, (20)
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where β = v/c is the relative velocity of dark matter particles. A
‘low’ relative speed is small compared to the characteristic velocity

β∗ =
√

αm1

mχ

. (21)

Previous work on the Sommerfeld effect has proposed values of
around 10−2 for the coupling constant α, and a wide range of mχ and
m1. We choose α = 1/30 for this work, noting that the enhancement
only depends on the quantity β∗ and may thereby be rescaled to
any combination of αm1/mχ . The first resonant peak occurs when
m1/mχ ∼ 0.2 (Lattanzi & Silk 2009).

The N-body realization gives velocities in units of kpc Myr−1

and hence introducing appropriate units and values leads to the
expression

Sres = Sres
0

(
v

kpc Myr−1

)−2 ( α

10−2

) (
m1/mχ

10−2

)
, (22)

where Sres
0 = 9.4.

Away from resonance, the enhancement takes on the form

Snr = πα

β
= Snr

0

(
v

kpc Myr−1

)−2 ( α

10−2

)
, (23)

where Snr
0 = 9.6. This form is also valid at intermediate values of

β between β∗ and α.

4.1.2 Phase-space distribution factor

With an N-body realization, the integral in equation (17) is calcu-
lated in terms of the number density n for N-body particles of mass
mp, so that


C = Sres
0 m2

p

4πd2

( α

10−2

) (
m1/mχ

10−2

) ∫
d3x n2(x)

[
v(x)

kpc Myr−1

]−2

(24)

for the resonant interaction and similarly for the non-resonant
regime. The number density n is likewise in units of kpc−3 and
the volume element d3x in units of kpc3 and hence the result of the
numerical integration returned by the density estimator is

�v2

kpc−5 Myr2 ≡
∫ (

d3x

kpc3

) [
n2(x)

kpc−6

] [
v(x)

kpc Myr−1

]−2

(25)

on resonance and

�v

kpc−4 Myr
≡

∫ (
d3x

kpc3

) [
n2(x)

kpc−6

] [
v(x)

kpc Myr−1

]−1

(26)

off resonance.
Using the distance d = 785 kpc from M31 and the particle mass

mp ∼ 104 M from the N-body simulation, and converting to stan-
dard units for the quantity 
C, we obtain the phase-space-dependent
factor


C,res = 
C,res
0

(
d

785 kpc

)−2 ( α

10−2

) (
m1/mχ

10−2

)
×

(
mp

104 M

)2
(

�v2

kpc−5 Myr2

)
, (27)

where 
C,res
0 = 1.75 × 10−13 GeV2 kpc cm−6, for the resonant in-

teraction and


C,nr = 
C,nr
0

(
d

785 kpc

)−2 ( α

10−2

)
×

(
mp

104 M

)2 (
�v

kpc−4 Myr

)
, (28)

where 
C,nr
0 = 1.79 × 10−13 GeV2 kpc cm−6, for the non-resonant

interaction.

4.1.3 Particle physics factor

The particle physics factor in the flux can be written as


P(Emin) = 
P
0Nγ (Emin)

( 〈σv〉0

3 × 10−26 cm3 s−1

) ( mχ

10 GeV

)−2
,

(29)

where 
P
0 = 4.63 × 10−7 cm4 kpc−1 GeV−2 s−1. The gamma-ray

yield Nγ is usually of the order of 1 per annihilation or less, de-
pending on the dark matter model (Mardon et al. 2009).

4.1.4 Complete expression

Combining equation (27) or (28) with equation (29) gives the master
equation for 
γ including all the scalings:


res
γ = 8.1 × 10−20Nγ cm−2 s−1

( mχ

10 GeV

)−2

×
(

m1/mχ

10−2

) ( α

10−2

) ( 〈σv〉0

3 × 10−26 cm3 s−1

)
×

(
mp

104 M

)2 (
d

785 kpc

)−2
(

E(�̂v2
)

kpc−5 Myr2

)
(30)

for the resonant process, and


nr
γ = 8.3 × 10−20Nγ cm−2 s−1

( mχ

10 GeV

)−2

×
( α

10−2

) ( 〈σv〉0

3 × 10−26 cm3 s−1

)
×

(
mp

104 M

)2 (
d

785 kpc

)−2
(

E(�̂v)

kpc−4 Myr

)
(31)

for the non-resonant process. The comparable expression without
the Sommerfeld boost is (Sanderson & Bertschinger 2010)


NS
γ = 9.6 × 10−22Nγ cm−2 s−1

×
( mχ

10 GeV

)−2
( 〈σv〉0

3 × 10−26 cm3 s−1

)
×

(
mp

104 M

)2 (
d

785 kpc

)−2
(

E(�̂NS)

kpc−3

)
. (32)

4.2 Results for the Fermi band

Using equations (30), (31) and (32), we produce maps of the total
flux 
γ in gamma-rays in the Fermi band, including both the halo
and the substructure, for several scenarios. Fig. 12 compares the
results for resonant, non-resonant and non-Sommerfeld cases for
two different choices of mχ : 10 GeV and 1 TeV. The former is opti-
mistic but realistic for models with no Sommerfeld boost; the latter
is characteristic for models with a Sommerfeld boost. We include
results at 10 GeV for Sommerfeld-like boosts for completeness,
although a particle model for such an enhancement at low mχ does
not exist to our knowledge. However, we do note that Slatyer et al.
(2011) point out that mediating particles with masses even lower
than a few GeV (the lowest considered here) cannot be ruled out by
current measurements, given the uncertainty about the distribution
of substructure in the Galaxy, so this panel may yet be relevant.
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Figure 12. Logarithmic map of predicted gamma-ray flux in the Fermi band (Eγ > 100 MeV) for various models of the dark matter interaction. The label
‘no Sommerfeld’ indicates direct annihilation to standard-model particles without an intermediate step. We consider the low-mass case mχ = 10 GeV with a
Sommerfeld-like boost for comparison, even though the standard mechanism for Sommerfeld enhancement is invalid for such a low dark matter mass. We also
take a typical case for Sommerfeld enhancement with mχ = 1 TeV.

The case S ∝ 1/v is brighter than S = 1, but only the halo is visible
in both cases: the tidal features are below the smooth emission by
several orders of magnitude. In Table 2, we see that the cross-
interaction signal 
hs is larger than the signal 
ss from interactions
within the debris, so that overall the signal from the substructure
scales only linearly with the substructure density at leading order.
However, the structure may still be marginally detectable using the
coarser test described in Section 3.1, given sufficient sensitivity to
detect the halo at appropriate radii.

In the case where S ∝ 1/v2, the enhancement is non-linear enough
in both ρ and σ that although the centre of the halo is still the bright-
est part of the structure, the tidal features stand out above the halo at
their radii. Table 2 shows that in this case 
ss > 
hs, indicating that
for this case the leading-order signal really scales with the square
of the substructure density. This structure is still at least an order
of magnitude below Fermi’s current sensitivity regime, but if such
a sensitivity were achieved, a search for deviations from spherical
symmetry in the gamma-ray emission would be able to test the
velocity dependence of the interaction cross-section.

We also note that the values of 
hh in the table depend primarily
on the inner slope of the mass profile as discussed in Section 2, so
the fact that they exceed the measured signal from M31 is merely a
reflection of the uncertainty of this parameter.

Table 2. Total flux from the halo and tidal structure,
compared to the recent Fermi detection of M31.


γ , mχ = 10 GeV 
γ , mχ = 1 TeV
Source (cm−2 s−1) (cm−2 s−1)


NS
hh 1.6 × 10−9 1.1 × 10−12


NS
hs 3.8 × 10−12 2.7 × 10−15


NS
ss 4.8 × 10−14 3.4 × 10−17


nr
hh 5.0 × 10−8 2.4 × 10−11


nr
hs 8.2 × 10−11 4.0 × 10−14


nr
ss 5.8 × 10−12 2.8 × 10−15


res
hh 2.9 × 10−7 1.4 × 10−10


res
hs 1.5 × 10−10 7.2 × 10−14


res
ss 2.8 × 10−10 1.4 × 10−13


M31
a 9 × 10−9

a Fermi LAT Collaboration (2010).

5 D I SCUSSI ON

Thanks to their low velocity dispersion and relatively high density,
cold tidal streams and young caustics can provide a significant boost
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to the dark matter self-annihilation rate if the cross-section is non-
linearly dependent on the relative velocity, as in the Sommerfeld
scenario. The particular morphology of tidal streams, their location
far from the centres of galaxies, and the apparent tracking of the
stellar and dark components also make these features an attractive
place to search for an annihilation signal, as the correlation with the
stellar shape makes it easier to differentiate such a signal from a
smooth halo distribution. In fact, at distances typical of tidal debris
30–50 per cent of the halo’s mass may be in streams (Maciejewski
et al. 2010; Wang et al. 2011).

In this work, we computed the boost to a smooth background
from tidal substructure observed in star-count maps of the An-
dromeda galaxy for two different velocity-dependent cross-sections
proposed for Sommerfeld-type annihilations between weakly inter-
acting, massive dark matter particles (in which a light helper particle
forms in an intermediate state between the dark matter annihilation
and the production of standard-model particles). We used an ex-
isting N-body model of the structure to estimate the density and
relative velocity of the material in the substructure with suitably un-
biased algorithms and a reasonable choice of numerical parameters.
We found that in both cases the emission from the tidal structure
could locally boost the annihilation emission by up to factors of
5. The case where the cross-section 〈σv〉 ∝ 1/v2 produced a boost
large enough for the signal from the tidal structure to outshine the
smooth halo at large radii, though the estimated signal is several or-
ders of magnitude below the current Fermi sensitivity for reasonable
choices of the dark matter parameters. However, if an instrument
with the required sensitivity existed, a search for emission from the
tidal substructure would constitute a test of the velocity dependence
of the dark matter cross-section, since only in the 1/v2 case is the
tidal structure visible.

6 FU T U R E WO R K

One intriguing result of this work is that tidal streams that are suffi-
ciently massive and collimated (i.e. young and/or cold) can produce
significant local boosts of the annihilation signal if the cross-section
is velocity-dependent. Such streams could be a significant contrib-
utor to the gamma-ray luminosity of the outer regions of haloes
in the Sommerfeld scenario, especially if cosmological simulations
accurately predict the percentage of streams. State-of-the-art cos-
mological simulations of individual galactic haloes can resolve this
coarse-grained phase-space structure, and could be used to estimate
this contribution.

Low-frequency radio observations could also be used to search
for signals from dark matter in tidal substructures, via channels that
produce high-energy electrons which then give rise to synchrotron
radiation through interactions with the galactic magnetic field. A
map of the polarization must be correlated with the observed stellar
stream, under the assumption that the dark matter and stars track

each other, to search for such a signal (Zaroubi, private commu-
nication). In future work, we will consider whether this channel
could produce a signal detectable with a low-frequency array such
as LOFAR, either in M31 or in high-latitude streams in our own
Galaxy.
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