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A key promise of synthetic biology is the possibility 
to customize the metabolic system of microorgan-
isms for the commercial production of a wide range of 
high-value biofuels1,2 or natural products3–5. Pathways 
for the production of alcohols, biodiesels, polyketides 
and terpenoids have successfully been constructed by 
introducing combinations of parts from various ori-
gins into a bacterial host that is easy to cultivate1,6–10. 
Potentially, entire metabolic pathways can be (re)
designed in silico and implemented in specialized host 
organisms11–15. Successes obtained in pioneering work 
on the antimalarial drug artemisinin16–18 suggest that 
such approaches can be very fruitful. A biosynthetic 
pathway towards this compound was successfully engi-
neered in Saccharomyces cerevisiae and Escherichia coli 
(BOX 1), and this pathway has the potential to enable 
much more cost-effective production of this important 
drug compared to the costly and laborious process of 
harvesting it from the source plant Artemisia annua.

The experimental work involved in engineering a 
synthetic pathway is considerable, and even systemati-
cally planned experiments are usually accompanied by 
much trial and error. When conceiving the design of a 
novel biosynthetic pathway (FIG. 1), the synthetic biolo-
gist has to find optimal solutions for selecting path-
ways, enzymes or host organisms from an abundance 
of possibilities. In this Review, we explore how the use of  
powerful computational tools (TABLE 1) can lead to 
better-informed and more rapid design and imple-
mentation of novel pathways, and we propose ways in 
which tools from different fields of computation can 
be linked together effectively. We discuss the different 

methodologies for identifying all possible metabolic 
pathways that can lead to the synthesis of a compound 
of choice, and how to rank these pathways based on 
various criteria. Subsequently, we consider how flux 
balance analysis of pathways can be applied to identify 
the most suitable candidate host organisms. We also 
examine how to effectively search sequence databases 
to obtain a list of candidate parts (such as genes and 
operons) for the execution of each step in the pro-
posed pathway. Finally, we discuss how computational  
methods can aid in refactoring these parts and integrat-
ing them into well-designed transcriptional units that 
are optimized for a specific host organism.

For specific case studies and more detailed expla-
nations on the inner workings of each of the com-
putational methods, we refer the reader to a range of 
excellent specialist reviews that have been published 
recently15,19–21.

Prediction and prioritization of possible pathways
For compounds of biotechnological value, often only a 
single specific biosynthetic pathway has been character-
ized. The key promise of the synthetic biology approach 
to pathway design is, however, that one does not remain 
limited to biosynthetic routes that already exist in nature. 
Instead, realistic biosynthetic pathways can, for instance, 
be constructed from first principles to optimize their 
thermodynamic efficiency.

During the past decade, a range of computational 
pathway prediction algorithms has been generated 
that can aid in pathway (re)design. Some predictors 
focus on changing existing pathways through making 
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Parts
Basic building blocks that can 
be incorporated into a design 
in synthetic biology; for 
example, a ribosome binding 
site, promoter or enzyme 
coding sequence.

Biosynthetic pathway
Sequence of enzymatically 
catalysed reactions that 
convert one or more source 
metabolites into a product 
compound.

Computational tools for the synthetic 
design of biochemical pathways
Marnix H. Medema1,2, Renske van Raaphorst1,2, Eriko Takano1 and Rainer Breitling2,3

Abstract | As the field of synthetic biology is developing, the prospects for de novo design of 
biosynthetic pathways are becoming more and more realistic. Hence, there is an increasing 
need for computational tools that can support these efforts. A range of algorithms has  
been developed that can be used to identify all possible metabolic pathways and their 
corresponding enzymatic parts. These can then be ranked according to various properties 
and modelled in an organism-specific context. Finally, design software can aid the biologist 
in the integration of a selected pathway into smartly regulated transcriptional units. Here, we 
review key existing tools and offer suggestions for how informatics can help to shape the 
future of synthetic microbiology.

R E V I E W S

NATURE REVIEWS | MICROBIOLOGY	  VOLUME 10 | MARCH 2012 | 191

© 2012 Macmillan Publishers Limited. All rights reserved

mailto:e.takano@rug.nl


Flux balance analysis
Computational method for 
analysing a metabolic system 
under the assumption of 
metabolic steady state.

KEGG
The Kyoto Encyclopedia of 
Genes and Genomes, a portal 
of web databases on genomes, 
metabolic pathways and 
enzymes. The KEGG PATHWAY 
database contains biochemical 
pathways in the context of the 
rest of the metabolic network, 
and the KEGG LIGAND 
database contains chemical 
substances and the 
biochemical reactions that 
interconvert them.

Enzyme Commission 
classification
Hierarchical numerical 
classification of enzymes 
standardized by the Enzyme 
Commission; the complete 
Enzyme Commission number 
of an enzyme consists of four 
numbers, separated by dots, 
that define with increasing 
detail the enzyme class and 
subclasses that it belongs to.

knockouts or adding novel enzymes22. Other predictors 
have been built to identify possible metabolic pathways 
from first principles23,24 on the basis of possible bio-
transformations between chemical structures. More 
recently, several algorithms have been constructed that 
use more complex search heuristics to find and rank all 
possible pathways that lead to a desired end compound 
(FIG. 1; TABLE 1).

Software for metabolic pathway identification and 
ranking. One accessible and user-friendly system for 
pathway identification is From Metabolite to Metabolite 
(FMM), a freely available web service through which 
one can search possible pathways between known input  
and output compounds25. It combines the KEGG maps and  
KEGG LIGAND information to form combined path-
way maps, identifies the corresponding genes and 
organisms and gives an output in which different path-
ways can be compared. The drawbacks of this system 
are that it is limited to characterized pathways that are 
present in the (often incomplete) KEGG framework and 
that it does not give further insight into the practical or 

thermodynamic feasibility of the pathway. However, the 
fact that it can quickly give a clear overview of different 
possible metabolic routes towards a product of inter-
est can make it a convenient starting point for many 
investigations.

A more advanced method, BNICE26, predicts novel 
pathways on the basis of the somewhat broader reac-
tion rules of the Enzyme Commission classification system. 
Because BNICE is not restricted to entries from a spe-
cific database, it can also predict unknown pathways 
that are potentially chemically feasible. In its search for 
pathways, it takes into account the starting compound 
and/or product, the requested length of the pathway and  
the range of reactions searched over. The last criterion 
means that one can choose to only search for a path-
way using enzyme reactions out of one known pathway,  
a combination of multiple pathways or the whole 
metabolic network. This makes it easy to perform a 
more targeted search for shorter, more efficient path-
ways. BNICE can be a good first step in finding pos-
sible pathways, but a lot of subsequent analysis of the 
results is needed to obtain a useful outcome. This is a 

Box 1 | Experimental successes in synthetic pathway engineering

Several pioneering experimental efforts in the construction of synthetic pathways have highlighted the potential of the 
field. Arguably the most famous example is that of artemisinin, a potent antimalaria drug that is naturally produced by 
the plant Artemisia annua. As large-scale production of the compound from plant biomass is very difficult, synthetic 
biologists instigated a project to engineer its biosynthetic pathway in the bacterium Escherichia coli. In 2003, researchers 
succeeded in introducing a yeast-derived pathway for the production of the isoprenoid precursors of artemisinin in 
E. coli16. Later, they also succeeded in developing a synthetic pathway consisting of plant- and microorganism-derived 
enzymes that was capable of producing artemisinic acid (which can be converted into artemisinin in just two chemical 
steps) at high titres in E. coli and Saccharomyces cerevisiae17,18,100. In a largely similar fashion, others have successfully 
introduced a plant-derived pathway to produce taxadiene, the first committed intermediate for the anticancer drug 
taxol, in E. coli10. After carefully balancing the expression of the heterologous pathway and the native pathway producing 
the necessary isoprenoid precursors, production levels were increased by more than 10,000‑fold.

Another elegant early example of synthetic engineering of biosynthetic pathways is displayed in the work of Müller 
et al.101, who engineered a pathway for the biosynthesis of d‑hydroxyphenylglycine, an important building block for the 
side chain of semi-synthetic penicillins and cephalosporins. They combined a hydroxymandelate synthase and a 
hydroxymandelate oxidase from Streptomyces coelicolor and Amycolatopsis orientalis with a stereo-inverting hydroxy-
phenylglycine aminotransferase from Pseudomonas putida. Although the yields that were obtained initially were not very 
high, the results highlighted the potential of combining enzymes from various biological sources into a novel pathway.

Regarding biofuel production, synthetic pathways for re‑routing bacterial native metabolism towards the production  
of isopropanol and higher alcohols were introduced into E. coli in a similar fashion by testing enzymes from a range of 
different organisms (including engineered versions of native enzymes) and finally expressing the combination that had 
been tested to result in the highest yields6,7. More elaborate synthetic approaches, which also entailed the redesign of 
specific transcriptional units and simple regulatory circuits in combination with introducing enzymes from other 
microorganisms, later led to the production of biodiesels and waxes in E. coli directly from simple sugars1.

Perhaps even more intriguingly, Bayer et al.102 engineered an efficient pathway for the synthesis of methyl halides in a 
fully fledged synthetic manner. They selected all 89 putative homologues of the enzyme methyl halide transferase from 
bacteria, plants, fungi and archaea that were identified by a BLAST search on the entire NCBI sequence database. 
Subsequently, they designed codon-optimized versions of all of them using Gene Designer. Finally, they used these to 
chemically synthesize a synthetic gene library that could be tested to find the enzyme that performed the desired 
function most effectively in the host strain, which resulted in production titres of up to 190 mg l–1 h–1.

Dunlop et al.103 engineered microbial biofuel export and tolerance by creating a similar synthetic library of hydrophobe/
amphiphile efflux transporters. In addition to a simple BLAST homology search, they used substrate specificity 
predictions based on the specificity-determining regions of the transporters to generate a subset of 43 homologues that 
represented a uniform distribution across all candidates. In this study, the genes in the synthetic library were not 
codon-optimized, and this could be the reason that the native E. coli gene still ranked highest in a large number of assays 
performed. An additional codon optimization step could have led to even more impressive results.

Generally, as the engineering aims become more ambitious in the more recent of these examples, a trend towards 
more prominent application of computational tools is noticeable; as this trend continues, it is likely to lead to a rapid 
increase in the ease and speed with which efficient synthetic pathways of unprecedented complexity are designed and 
constructed.
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Pathway
predictions

Examples of software 
tools at each stage

BNICE
DESHARKY
FMM
RetroPath

DESHARKY
RetroPath

COBRA toolbox
SurreyFBA
CycSim
BioMet toolbox
iPATH2
GLAMM

RBS Calculator
Gene Designer
GeneDesign
DNAWorks
Clotho
TinkerCell
GenoCAD
SynBioSS

Pathway
prioritization

Metabolic
modelling
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and integration

Product
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Genetic construct
Host chassis
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H3C COOH

Target 
compound

3

Predicted maximum 
fluxes in desired 
genomic context

CH3H3C

H3C COOH

CH3H3C
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conscious choice of the developers: because the BNICE 
framework is restricted to the first analysis steps, it 
can be applied to various different kinds of investi-
gations, including not only the engineering of novel 
pathways but also the analysis and retrosynthesis of  
metabolic pathways27.

In some searches, BNICE predicts more than 10,000 
different pathways for the biosynthesis or degradation 
of a certain compound owing to the few criteria the 
system relies on. Therefore, it is of paramount impor-
tance to not only predict possible pathways but also to 
rank them based on discriminative criteria. Recently, 
Henry et al.28 have pioneered a prioritization approach 
in the BNICE framework by ranking novel 3‑hydroxy-
propanoate biosynthesis pathways by thermodynamic 
feasibility, pathway length, maximum achievable 
yield and maximum achievable activity. In this man-
ner, they could obtain an informative ranking of the 
otherwise randomly ordered list of thousands of pre-
dicted pathways. Interestingly, the currently commer-
cially used pathway was among the top four pathways 
in the ranked list, but it was matched (and in some 
aspects exceeded) by three novel pathways that could 
provide interesting alternative designs for industrial 
implementation.

Another prediction system, DESHARKY, is based on 
enzymatic reactions, but approaches the search for novel 
pathways quite differently29. The major difference con-
cerns the choice of host organism for the pathway, which 
for DESHARKY is the first step of the pathway predic-
tion after compound design. The algorithm searches for 
all possible pathways that connect the metabolic network 
of the organism to a target compound, after which the 
thermodynamic favourability and the energy loss in 
transcription and translation are calculated. The tool is 
most useful if the host organism of choice has already 
been determined and one needs to search for the path-
way that will work most efficiently in that organism for 
generating a certain compound.

Cho et al.30 have constructed a unified system that 
both predicts and ranks pathways. Starting with a data-
base of reactions categorized by type and a database of 
reaction rules describing different reactions, the system 
first predicts a wide range of possible pathways. A rank-
ing algorithm then prioritizes the pathways based on 
binding site covalence (similarity of reactions in terms 
of chemical structure changes), chemical similarity, 
thermodynamic favourability, pathway distance and 
organism specificity.

However, rankings only address the symptoms, not 
the cause of the explosion of possibilities — devising a 
method to flexibly constrain the search space would be  
a major breakthrough. The recently published web 
server RetroPath31 offers such a principled way to 
manually determine the strictness of the initial search 
for reactions. It searches based on molecular signatures 
of the compounds and reactions involved. Each signa-
ture has different ‘heights’ that correspond to levels of 
structural detail. By varying the height, one can retrieve 
numbers of reactions varying from the large numbers 
of reactions found using BNICE to the small number 

Figure 1 | Generalized workflow for de novo engineering of biosynthetic 
pathways, from initial idea to final product.  First, a large number of possible 
pathways is predicted based on chemical reaction rules and/or metabolic maps. 
Subsequently, the resulting pathways are prioritized based on a number of criteria. 
Comparative modelling is then performed to predict theoretical production capacities 
of candidate host organisms for the compounds using the different pathways in the 
context of the topology of their metabolic network. Finally, one or a few suitable 
pathways are selected for which synthetic expression constructs can be designed. A 
diversity of computational tools is essential for all steps, as indicated schematically at the 
right side of the figure. The order of the steps is not necessarily linear; various iterations 
and feedback loops between the steps may be necessary for optimization, as sometimes 
information obtained in a ‘later’ stage suggests revision of an ‘earlier’ decision.
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Table 1 | Key computational tools currently available for pathway construction

System Description Refs

Pathway prediction

BNICE Biochemical Network Integrated Computational Explorer; framework for 
identification and thermodynamic assessment of all possible pathways for the 
degradation or production of a given compound

26

System of Cho et al. Framework for identification and prioritization of biosynthetic pathways for the 
synthesis of a user-specified chemical

30

DESHARKY Pathway identification algorithm. Identifies pathways that best match up to the 
native metabolic network of a specific host and provides the user with amino 
acid sequences of corresponding enzymes from phylogenetically closely related 
organisms

29

RetroPath Web server hosting a unified framework for retrosynthetic pathway design, 
integrating pathway prediction and ranking, prediction of compatibility with host 
genes, toxicity prediction and metabolic modelling

31

FMM From Metabolite to Metabolite; web server that finds biosynthetic routes between 
two metabolites within the KEGG database

25

CarbonSearch Algorithm that identifies pathways within existing metabolic networks by tracking 
the conservation of atoms moving through them

109

OptStrain Computational framework that advises on optimization of the host’s metabolic 
network to add a particular metabolic pathway by adding or deleting reactions

22

Parts identification

Registry of Standard 
Biological Parts

Massachusetts Institute of Technology parts registry, containing various types of 
biological parts such as promoters, RBSs, transcriptional terminators and plasmids; 
the registry mostly contains parts collected during iGEM competitions

Standard Biological 
Parts knowledgebase

Knowledgebase with parts (including all parts from the Registry of Standard 
Biological Parts) that have been transformed into Synthetic Biology Open Language 
to make the information computable

60

IMG Integrated Microbial Genomes; environment for the comparative and  
evolutionary analysis of microbial genomes, including gene neighbourhood 
orthology searches

71

antiSMASH Identification, annotation and comparative analysis of secondary metabolite 
biosynthesis gene clusters

72

KEGG Key collection of metabolite and metabolic pathway databases; includes 
organism-specific and general maps of metabolic pathways and networks, gene–
enzyme associations, orthology information and more

110

ASC Active Site Classification; uses a protein structure to find residues near the active 
site of enzymes, which it uses to construct support vector machines that classify 
subclasses (for example, substrate specificities) of enzymes within an enzyme family

69

Parts refactoring and synthesis

RBS Calculator Automated design of RBSs based on a thermodynamic model of transcription 
initiation

81

RBSDesigner Algorithm for prediction of mRNA translation efficiencies, as well as design of RBSs 
for a desired protein expression level

83

Gene Designer 2.0 Software package for gene, operon and vector design, codon optimization and 
primer design

75

GeneDesign Web server with algorithms ranging from codon optimization and codon bias 
graphing to insertion of restriction sites into a protein-coding nucleotide sequence 
and designing building blocks based on restriction site overlaps

74

Gene Composer Commercial software suite for genetic construct design, codon optimization and 
gene assembly

Optimizer Web server that performs codon optimization on an input protein-coding DNA 
sequence using a codon usage table

73

DNAWorks Web server for oligonucleotide design for PCR-based gene synthesis, with 
integrated codon optimization

84

TmPrime Web server for oligonucleotide design for PCR-based gene synthesis, with 
integrated codon optimization

85

CloneQC Web application for controlling the quality of sequenced clones by detecting errors 
in DNA synthesis

111
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of original reactions that are present in the KEGG data-
base. RetroPath also hosts several interesting additional 
features for filtering and ranking, such as predictions 
of promiscuous activity of enzymes, predictions of the 
compatibility between host and heterologous genes, and 
compound toxicity predictions.

Once a pathway has been selected for introduction 
into a specific host bacterium, the consequences of this 
manipulation have to be predicted in the new meta-
bolic context. One system that aims to monitor the 
effects of the new pathway on the host is OptStrain22 — 
a method that uses flux analysis to give advice on how 
production could be optimized by altering the host’s 
gene expression. After constructing a hypothetical 
biosynthetic pathway towards the target compound, 
the OptStrain system changes the pathway in such a 
way that as many enzymes from the pathway as pos-
sible are native to the host organism. With the use of 
a purely stoichiometric model of the host’s metabolic 
network, OptStrain then predicts the effect of novel 
enzymes in the pathway, as well as which host genes 
should be up- or downregulated in order to increase 
the production yield.

Criteria for ranking pathways. In de novo pathway 
engineering, it may sometimes be desirable to search 
for pathways before choosing a suitable host. Therefore, 
the best pathways have to be chosen on the basis of 
a few theoretical criteria. Not everyone agrees on the 
criteria to be used for this process of prioritization 
(FIG. 1). As mentioned above, Cho et al.30 use five cri-
teria, including organism specificity and pathway dis-
tance. According to extreme pathway analysis by Papin 
et al.32, the length of the pathway does not influence 
production rate. Even so, the energetic costs of produc-
ing more enzymes should be taken into account when 
considering longer pathways, which still makes path-
way distance a relevant parameter. Organism specificity 
can only be an applicable criterion if a host has already 
been chosen. It can be disputed whether it is more 
desirable that the pathway consists of enzymes specific 
for one particular organism; testing multiple combina-
tions of enzymes from different organisms selected for 
experimentally tested activities is actually likely to yield 
more effective compound production, as the most cata-
lytically efficient combination of enzymes that is avail-
able can then be identified from these. Other criteria 

Table 1 (cont.) | Key computational tools currently available for pathway construction

System Description Refs

Pathway and circuit design software packages

Biojade Software tool for design and simulation of genetic circuits

Clotho Flexible interface for synthetic biological systems design; within the interface, a 
range of apps/plugins can be utilized to import, view, edit and share DNA parts and 
system designs

TinkerCell CAD software that allows drag-and-drop drawing and simulation of biological 
systems

112

Asmparts Computational tool that generates models of biological systems by assembling 
models of parts

113

GenoCAD CAD software for design of multigene DNA sequences, with the option to assist the 
user through interactive ‘grammar checking’ of the design drafts

76

WebGEC Web simulator from Microsoft for genetic circuit design and testing

SynBioSS Software suite for designing, modelling and simulating synthetic genetic constructs; 
the SynBioSS Designer can be used to transform a sequence of BioBricks (from 
the Registry of Standard Biological Parts) or other parts into a model that can be 
simulated in the SynBioSS Desktop Simulator

79

CellDesigner Editor for graphical drawing of regulatory and biochemical networks that can be 
stored in Systems Biology Markup Language (SBML)

BioNetCAD CellDesigner plug‑in for CAD and simulation of biochemical networks

Metabolic modelling/flux balance analysis

COBRA Toolbox Standard toolbox for metabolic modelling and FBA 51

SurreyFBA Command-line tool and graphical user interface for constraint-based modelling of 
genome-scale networks

52

CycSim Web server for analysing genome-scale metabolic models; includes enzyme 
knockout simulations

53

BioMet Toolbox Web toolbox for analysing genome-scale metabolic models; includes gene knockout 
analysis, flux optimization and more

54

iPATH2 Interactive visualization of data on metabolic pathways; items on KEGG-based 
metabolic maps can be coloured based on the user’s preferences

58

GLAMM Interactive visualization of data on metabolic pathways; can use host-specific 
metabolic networks and allows detection of pathways within a network

59

CAD, computer-aided design; RBS, ribosome binding site.
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Metabolic flux
Flow of metabolites through a 
metabolic system.

Genome-scale metabolic 
models
Models of all of the enzymatic 
reactions encoded in a 
genome, based on the genome 
annotation.

can be the theoretically achievable yield and the achiev-
able activity, which are both difficult to predict without 
analysis of the metabolic network of the host.

One of the few factors that can be determined inde-
pendently is the theoretical thermodynamic favourabil-
ity. In most methods, the thermodynamic favourability 
is measured by a group contribution method, which 
measures the Gibbs free energy of formation of groups 
of atoms of the products and intermediates33. These 
groups are added up to a total Gibbs energy of every 
reaction in the pathway. When the Gibbs energy of 
formation adds up to a negative value, the reaction is 
defined as thermodynamically favourable. Cho et al.30 
went beyond only using Gibbs free energy of forma-
tion by also taking into account the fluctuation of Gibbs 
energy between the reactions in the pathway: the less 
fluctuation, the more thermodynamically favourable 
the pathway, as a product of each reaction in the path-
way is a reactant for the next. Less fluctuation of Gibbs 
free energy along the pathway also reduces the accumu-
lation of intermediates, thus avoiding potential adverse 
effects on the host organism.

All in all, the algorithms and tools described provide 
a useful toolbox for the synthetic biologist. By smartly 
combining the advantages of several tools, the predic-
tions have the potential to make possible the explora-
tion of pathways that are chemically more versatile and 
hopefully at least as effective as those found in nature.

Metabolic modelling in candidate host organisms
One cannot predict, construct and investigate a new 
metabolic pathway without taking the host organism 
into account, as every new pathway has to take its place 
in the overall topology of a large native metabolic net-
work34. Competition with native pathways and metabo-
lites, unpredicted side products and feedback loops are 
only some of the possible effects that the context of the 
host organism can have on the new pathway.

One approach for finding a suitable host organism 
for a pathway is to look for an organism that already has 
most of the enzymes from the designed pathway pre-
sent in its native metabolic network. In this way, fewer 
enzymes would have to be introduced into the organism 
and thereby the metabolic network would be disturbed 
less. This idea has been incorporated into a ranking 
system designed by Cho et al.30 that prefers pathways 
that consist of many enzymes originating from the same 
organism. However, there are also reasons why using a 
host with many usable native enzymes may not be the 
best option. For example, it would then also be more 
likely that in the given organism, more pathways exist 
that compete with the pathway that is to be introduced. 
Partially knocking out such native pathways can be a 
solution to this problem if they are not essential to the 
host. Algorithms such as OptKnock and OptFlux35,36 are 
available to supply the researcher with suggestions on 
which pathway to knock out on the basis of metabolic flux  
simulations. More ambitiously, orthogonal synthetic 
systems — for example, for transcription or transla-
tion — can be used to insulate the synthetic pathways 
even more. Unnatural DNA and amino acids are now 

available to keep the production machinery of the 
desired compound separate from the host at many 
levels37–41, although the fundamental metabolic link will 
still need to be maintained.

Genome-scale metabolic modelling. One of the most 
important computational developments that is likely 
to facilitate true de novo pathway engineering in the 
future is the development of genome-scale metabolic 
models19,42–44. Such models allow in silico prediction of 
the behaviour of a pathway in a candidate host organ-
ism using constraint-based flux balance analysis45,46. 
In this approach, a steady-state flux distribution of the 
metabolic network is predicted based on the stoichi-
ometry of each reaction, mass–balance constraints and 
an objective function that specifies for which goal the 
fluxes are optimized. In traditional studies, the objective 
function is often the maximization of biomass produc-
tion, whereas in the analysis of genetically engineered 
microorganisms, a common alternative objective is the 
‘minimization of metabolic adjustments’ (MOMA): 
that is, finding the flux distribution in the engineered 
strain that is closest to the wild-type situation, but still 
feasible for engineering47. Flux balance analysis is often 
used effectively to increase product titres. For example, 
vanillin production in baker’s yeast was increased two-
fold by selecting genes for knockout constructs on the 
basis of flux balance analysis simulations48. In a similar 
fashion, Asadollahi et al.49 achieved 85% titre improve-
ment after constructing model-guided knockouts. The 
more recently developed Thermodynamic Metabolic 
Flux Analysis (TMFA)50 adds further thermodynamic 
constraints — which are based on the Gibbs free 
energy change of each reaction and the concentrations 
of metabolites — to identify only thermodynamically 
feasible flux distributions and thereby increase the 
predictive power.

The MATLAB-based COBRA Toolbox51, which 
has become a near-standard in the field, can be used 
to perform TMFA, but it can also be performed with 
user-friendly web servers or graphical user interfaces 
(GUIs), such as SurreyFBA52, CycSim53 and the BioMet 
Toolbox54. The advantage of CycSim and BioMet is that 
they are web-based and therefore require no installation, 
but they are limited to the analysis of a small number 
of model organisms. The stand-alone tool SurreyFBA 
may have a somewhat steeper learning curve, but it is 
more complete and can be accessed both through a GUI 
and through (scripting from) the command line. One of 
the major bottlenecks in the use of metabolic models  
is the low level of standardization of the SBML files 
that are used to store genome-scale models, sometimes  
making models incompatible between tools.

As essential as it might be, computational prediction 
of the effects of introducing a pathway into a host is a 
procedure that is still in the pioneering stage. In one 
early example, the previously discussed pathway predic-
tion system BNICE was used to find novel pathways for 
biodegradation of the pollutant 1,2,4–trichlorobenzene 
by Pseudomonas putida, which is a known pollutant 
degrader55. To predict which pathway was most effective 
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and what would be the growth rate of the host with the 
implemented pathway, TMFA was applied to a genome-
scale model of the metabolic network of the host. By 
implementing thermodynamic constraints in the model-
ling, the number of candidate pathways was reduced by 
around 200‑fold. This approach seems to be most use-
ful when testing not-yet-existing pathways generated by 
pathway prediction algorithms.

Around 40 manually curated genome-scale metabolic 
reconstructions of different bacteria have been published 
so far19. Interestingly, a new approach has recently been 
published that can automatically generate metabolic 
models on the basis of genome sequences by annotating 
them in a uniform fashion, linking predicted enzymes 
to reactions and filling in gaps56. Although the models 
require subsequent manual curation, this methodology 
now provides the intriguing option of reconstructing 
multiple models in parallel and performing comparative 
analyses between them57. The fact that the reconstruc-
tion method is uniform removes the large annotator bias 
that otherwise makes manually constructed models dif-
ficult to compare. Such models can be used to predict 
the suitability of the metabolic network topologies of 
multiple candidate hosts for the production of a speci-
fied compound in silico by introducing the pathway into 
these models, performing TMFA with a dual objective 
consisting of the biomass and the production of the com-
pound, and comparing the predicted maximized fluxes 
to the target compound.

The outputs of in silico TMFA experiments are often 
complex and difficult to interpret in the context of the 
whole metabolic map of an organism. Fortunately, 
powerful visualization tools have recently been made 
available that can be used to colour pathways according 
to predicted fluxes. For example, iPATH2 (REF. 58) can 
generate coloured KEGG-based metabolic maps on the 
basis of simple tables of Enzyme Commission numbers 
and corresponding colours. Interestingly, GLAMM59, a 
similar web service, offers the additional possibility to 
automatically highlight routes between two compounds 
in the metabolic map. Such visualization tools are indis-
pensable for gaining a rapid understanding of the large 
output tables that are usually obtained through model-
ling. Combined with the user-friendly TMFA simula-
tion tools mentioned above, they make this complex 
technique accessible to the non-specialist experimental 
microbiologist.

Strategies for parts identification
In order to construct a pathway, one will of course need 
to find the parts — in the form of gene domains, genes 
and operons — that can carry out the proposed enzy-
matic and regulatory steps (FIG. 2). A range of parts is 
already available in online parts registries60, and several 
major efforts are under way to systematically character-
ize and standardize large numbers of biological parts in 
a consistent manner61. However, these parts registries 
are currently much more suitable for finding regula-
tory elements than for finding coding sequences of 
biosynthetic enzymes, as these parts are much more 
unique and specified. Therefore, effective genome 

Figure 2 | Scheme showing the steps involved in the identification of various 
parts, their refactoring and their integration into transcriptional units.  At the 
top, three strategies are shown for the identification of libraries of variants of 
pathway-specific genetic parts on the basis of genetic and biochemical knowledge. The 
left panel shows how operons or gene clusters that are homologous to a characterized 
operon or gene cluster can be detected using neighbourhood orthology analysis (as in 
Integrated Microbial Genomes (IMG)71) or MultiGeneBlast analysis (as in antiSMASH72). 
The middle panel shows the well-accepted procedure for the identification of 
orthologues of a characterized gene by homology search, multiple sequence alignment 
and phylogenetic tree construction. The right panel shows the method recently 
pioneered by Röttig et al.69 for identifying enzymes with identical substrate specificity to 
a model enzyme if this enzyme is part of an enzyme family that contains multiple 
specificities. The method proceeds by automatic extraction of active site residues on the 
basis of a crystal structure, training of a support vector machine to distinguish between 
the different substrate specificity variants in the enzyme family, and classification of all 
homologues to identify those enzymes that have the desired specificity. Coding 
sequences (CDSs) of the identified pathway-specific parts are codon-optimized using, 
for example, Optimizer73, GeneDesign74 or Gene Designer75. Libraries of generic parts are 
then acquired. Host-specific promoters are collected, and ribosome binding sites (RBSs) 
are obtained with the aid of, for example, RBS Calculator81,82 and/or RBSDesigner83. Both 
generic and pathway-specific parts are then used in computer-aided design of genetic 
constructs encoding the target biochemical pathway. After extensive in silico and in vivo 
testing and debugging, oligonucleotides are designed (for example, using TmPrime85 or 
DNAWorks84) to synthesize the final design.
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mining of enzymatic parts is a crucial step in the con-
struction and optimization of biosynthetic pathways. 
To optimize metabolic fluxes through the candidate 
pathways, one needs to find the optimal combination 
of enzymatic parts in terms of individual catalytic effi-
ciency as well as overall pathway reaction stoichiom-
etry. Importantly, these parts do not necessarily have 
to originate from one existing natural system in one 
particular organism; instead, one could select a range 
of candidate parts from many different sources, char-
acterize them (if possible, using some high-throughput 
assay) and integrate the codon-optimized versions of 
the most optimal combination of parts into a new 
pathway (BOX 1). To find combinations of enzymes that 
cooperate effectively, full exploitation of the genomic 
databases to make an optimal selection of all available 
parts is probably necessary.

The optimal computational strategies for harvest-
ing potential parts from the genomic databases differ 
according to the nature of the parts: that is, whether they 
are domains, genes or operons.

Identification of genes and domains. Usually, gene 
domains can most easily be identified by traditional 
searching for the encoded protein domains with 
curated-profile hidden Markov models from the 
PFAM62, SMART63 or TIGRFAM databases. This can 
be done manually using the HMMer package64 or using 
the SMART or PFAM architecture searches available  
on the Internet. After detection of the total set of domains, 
a high-priority subset can be identified by generating a  
phylogenetic tree and identifying the branches that spe-
cifically contain curated entries of domains with the 
desired enzymatic activity. If certain active site residues 
are known to be essential for this activity, their presence 
can be verified for the entries in multiple-sequence 
alignments of the selected branches. Alternatively, 
active sites can first be predicted ab initio on the basis 
of sequence conservation and/or structural informa-
tion65,66. If the desired parts are individual genes, can-
didates can be identified by a simple BLAST search and 
analysed according to their phylogeny and active site 
residues in the same fashion as described above. As an 
additional criterion, the genomic context of candidate 
parts may be studied to verify the likelihood of the gene 
having the desired function in the context of the whole 
operon in which it is located. Finally, databases such 
as KEGG can be used to find isoenzymes that might 
catalyse the same reaction, even if they have no sub-
stantial sequence homology. To increase the number of 
potential parts that can be tested even further, the set  
of identified genes can be further supplemented by pre-
dicted evolutionary intermediates or ancestor genes or 
domains67,68 of different taxonomic branches that have 
a high potential of encoding the desired parts.

In some cases, a manual inspection of active site resi-
dues of candidate gene or domain parts may not be suf-
ficient to reliably predict their enzymatic activity. This is 
especially the case if the desired enzyme is a member of a 
broader enzyme family that encompasses multiple sub-
strate specificities. More elaborate in silico approaches 

for finding enzymes with the right substrate specific-
ity or for identifying the right mutations to get those 
enzymes will then be needed. Recently, an automated 
method was developed for classifying active sites from 
enzymes throughout an enzyme family using support 
vector machines trained on sets of residues around the 
active site of enzymes with known substrate specifici-
ties from within the family69. The approach has already 
been successfully implemented to predict the extremely 
variable substrate specificities of non-ribosomal peptide 
synthetases70.

Identification of multigene modules. Often, the desired 
parts are not single domains or genes but complete 
operons, such as the biosynthetic operon for a pre-
cursor needed to produce the compound of choice. 
In these cases, one will want to avoid having to com-
bine the results of a large number of individual BLAST 
searches manually to find the homologous genomic 
regions. One currently available means of identify-
ing genomic regions that are homologous to a certain 
model operon is the ‘identify homologous regions’ tool 
in the Integrated Microbial Genomes (IMG) system 
of the Joint Genome Institute71. However, an impor-
tant disadvantage of this tool is that it does not cover 
all information stored in genomic databases such as 
GenBank. Additionally, it is difficult to specifically 
look for overall homologues of genetic elements at the 
operon or gene cluster levels, as the search is always 
performed on the neighbourhoods of a single gene. 
If the biosynthetic operon is always part of a specific 
type of secondary metabolite biosynthetic gene clus-
ter, the comparative gene cluster analysis module from 
antiSMASH72 can be used to find gene clusters that 
have the same operon. Additionally, to be able to very 
specifically look for all genomic regions homologous 
to a given query operon or gene cluster, a new tool, 
MultiGeneBlast, is currently under development in our 
group. This tool effectively combines the individual 
BLAST results of the various genes in the query gene 
cluster to rank all genomic regions from GenBank on 
the basis of the number of BLAST hits from the query 
gene cluster, the conservation of gene order and the 
cumulative BLAST bit score.

Designing transcriptional units
When raw candidate parts have been screened and an 
optimal combination has been selected, one will still 
need to optimize the sequences for the targeted host 
organisms and combine them into transcriptional 
units with a well-designed regulatory circuitry (FIG. 2). 
Several algorithms have been developed to aid in these 
processes. Additionally, the development of drag-and-
drop computer-aided design (CAD) approaches21 makes 
the life of the biological designer much easier.

Computer-aided design software. When trying to 
heterologously express a genetic construct that con-
sists of non-native parts, a crucial factor in obtaining 
high protein expression rates is optimizing the codon 
usage in the coding regions by matching it to the more 
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abundant tRNA species in the host. A range of tools has 
been developed that can use a codon frequency table of 
the target host organism to optimize the codon usage 
of a given protein coding sequence (CDS). Arguably 
the most straightforward to use is Optimizer73, a sim-
ple web tool that does exactly this. Another web server, 
GeneDesign74, offers several further options such as 
the addition of restriction sites. For advanced users, 
there is Gene Designer 2.0 (REF. 75), which offers a 
comprehensive drag-and-drop user interface for the 
construction of genetic constructs that also include 
regulatory parts such as promoters, ribosome binding 
sites (RBSs) and transcriptional terminators. Another 
CAD tool is GenoCAD76, which is less comprehensive 
but generally easier to handle and provides an addi-
tional interesting feature: it assists the user in correctly 
designing genetic constructs by interactively checking 
them against a user-specified set of grammatical rules 
(for example, a transcription unit is always composed 
according to the following pattern: promoter–[RBS–
CDS]n–terminator). For example, to design a simple 
E. coli three-gene operon construct with GenoCAD, 
one would first select the E. coli grammar with the 
parts libraries that contain parts matching this gram-
mar. Then one would arrange the desired architecture 
in a way that complies with the grammar (promoter–
RBS–CDS–RBS–CDS–RBS–CDS–terminator), and 
finally select the specific parts for each entry from the 
libraries.

Regulatory circuits are crucial for designing well-
balanced genetically engineered machines, and many 
synthetic biology efforts have focused on developing 
these77,78. Several CAD tools are available that have inte-
grated simulation capacities that can be used to predict 
whether the envisioned regulatory mechanisms will 
function as intended. SynBioSS79, for example, simu-
lates regulatory circuits by creating network models of 
reactions that represent transcription, translation, cis 
and trans regulatory effects, and degradation. Of spe-
cific interest for pathway design is BioNetCad80, which 
allows a similar kind of simulation of the logic inher-
ent in biochemical networks consisting of enzymes and 
metabolites.

Designing regulatory parts. Optimized regulatory 
parts for use in genetic circuits and constructs are 
unlikely to be already available and will usually have 
to be designed for the intended usage. Synthesizing 
and characterizing host-specific libraries of character-
ized RBSs and sigma-factor binding sites (SFBSs) will 
be useful in many cases, as regulatory parts with the 
correct binding strength can then be selected from 
these for incorporation into the genetic construct. 
However, even if this is done, the strength of an RBS 
(and probably of an SFBS as well) partially depends 
on its DNA sequence context81. Therefore, some RBSs 
may not function as expected in their new context. To 
find a suitable RBS in such cases — or in cases when 
no RBS library is available — the online tools RBS 
Calculator81,82 or RBSDesigner83 can be used to sug-
gest an RBS sequence for a given desired translation 

initiation rate. These algorithms are based on thermo-
dynamic models of the molecular interactions between 
the ribosome complex and mRNA transcripts, and use 
these to predict a translation initiation rate. Although 
RBS Calculator does not necessarily succeed in reach-
ing a global optimum, it enables rapid design of RBS 
sequences that are sufficient for most purposes. It 
would be helpful if a similar tool could be generated 
for SFBS design in the near future.

DNA synthesis and integration. When an adequate 
design has been obtained, the next step will be the syn-
thesis of the DNA parts. Online algorithms — notably 
DNAWorks84 and TmPrime85 — are available for design-
ing oligonucleotides for PCR-based gene synthesis, and 
such algorithms also include integrated codon optimi-
zation functionalities. Optimization can be important 
for the efficient heterologous expression of a gene; for 
example, in terpenoid-producing E. coli strains, Chang 
et al.18 reported a 2.5‑fold increase in production titres 
after codon optimization. Several recent developments 
in DNA synthesis86–88 now allow DNA synthesis in a 
throughput that is sufficient even to construct thou-
sands of variants of any DNA parts, which can then 
be tested to pinpoint the ones that function most effi-
ciently. These developments provide new opportuni-
ties for computational tools: for example, software 
could be designed to construct libraries containing 
part variants that optimally cover the relevant areas of 
sequence space.

In order to arrive at a functional design for the DNA 
construct encoding a biosynthetic pathway, important 
lessons can be learned from programming. For example, 
‘unit testing’ — the functional testing and debugging of 
every individual component before putting everything 
together — is crucial for keeping the complexity of the 
debugging process manageable. Fluorescent or other 
biological signals may be introduced into the construct 
to mimic the ‘print statement’ that is often used in com-
puter software debugging to test the successful execu-
tion of a programmatic unit. When one has arrived at 
a functional design, it can be inserted into the chromo-
some of a specified plug-and-play host4 or in a multigene 
expression plasmid89.

Future perspectives
In general, the ability to computationally predict 
pathways, identify variants of the necessary parts and 
model them in genome-scale metabolic networks of 
candidate host organisms offers great promise for 
accelerating the developing field of synthetic pathway 
engineering. In this area, systems biology can inform 
and complement synthetic biology approaches, which 
could lead to important breakthroughs in the near 
future (TIMELINE).

The ambition of synthetic biology is to design bio-
logical systems on the basis of first principles, irrespec-
tive of which combinations of parts happen to be used 
in nature. The algorithms that have been developed in 
recent years are likely to facilitate reaching this goal. 
However, owing to the immense challenge of biological 
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complexity90, the development of additional algorithms 
specifically focused on the needs of synthetic biology 
projects will be crucial to allow the field to mature.

In all key aspects of synthetic microbiology, the 
speed of progress will largely depend on the headway 
made in software development and data systemati-
zation. Fortunately, there are great opportunities for 
computational breakthroughs all around.

In the field of metabolic modelling, the advances 
in high-throughput generation of genome-scale mod-
els56 are likely to inaugurate a whole new era. A field 
of comparative modelling57 will develop in which the 
metabolic network topologies from a range of genome-
scale models can be compared rapidly. After algorithms 
have been developed to automatically add one or a few 
enzymes to each model to simulate growth on a certain 
growth medium, the approach will be a useful way to 
compare organisms across a range of medium types in 
terms of the suitability of their network topologies for 
growth and productivity. Also, when a specific host 
organism has already been chosen, the same algo-
rithm could be implemented to aid in medium design. 
Ideally, the design of synthetic pathways and growth 
media would be an integrated process in which the 
pathways are supplemented with the enzymes neces-
sary to arrive at an optimal combination of medium 
and pathway. The field of metabolomics, which has its 
own crucial branch of software development91, will be 
key in coupling the predictions to actual experimental 
measurements.

The available pathway prediction tools will need to 
be made more user-friendly (with GUIs or web servers) 
and linked to well-curated databases of experimentally 
characterized enzymatic parts in an integrated frame-
work. Over the past decades, an enormous number of 
enzymes have been characterized that are involved in 
the synthesis or tailoring of small molecule scaffolds5, 
but little systematic data archiving has been performed 
thus far. For such purposes, databases such as KEGG 
provide sparse information, being largely focused on 

primary metabolism. Besides enzymes, it would be 
helpful if transporters for small molecules and resist-
ance genes against toxins or antibiotics were also cat-
egorized systematically in a database and linked to the 
chemical structure of the corresponding small mole-
cule. Algorithms for chemical (sub)structure similarity 
searching92,93 could then be used to rapidly search for 
enzymes or transporters that are likely to synthesize or 
transport a compound of choice, or that would other-
wise have a functionality that is related closely enough 
to be modified successfully using, for example, directed 
evolution.

It is also crucial that computational develop-
ments go hand‑in‑hand with developing experimen-
tal approaches. High-throughput transcription factor 
binding affinity characterization using protein binding 
microarrays94 or microfluidics95 could, for example, be 
perfectly linked up to algorithms for the design of tran-
scription factor binding sites and SFBSs96. Alternatively, 
when a close homologue of a desired transcription fac-
tor has already been characterized in a related species, 
phylogenetic footprinting approaches97 could be used to 
automatically predict species-specific binding motifs of 
the orthologue that one wants to use. Yet when a synthetic 
transcription factor is heterologously expressed, algo-
rithms would probably still be necessary to correct for 
the difference in GC content between the species, which 
is likely to influence the heterologous binding dynam-
ics on a chromosome that is foreign to those for which 
experimental data have been obtained. Finally, with the 
expected advances in synthetic genomics, the develop-
ment of algorithms for the optimal integration of genetic 
constructs into a chromosomal design will be important 
for arranging both operon-level genetic organization98 
and higher-level organization99 to achieve optimal gene 
expression levels.

When computational and experimental break-
throughs thus go hand‑in‑hand in an integrated manner, 
synthetic pathway engineering may well become one of 
the major drivers of applied synthetic biology.

Timeline | Important events in the development of de novo pathway engineering

1983	 1990	 1992	 1995	 2000	 2006	 2010	 2011	 2015	 2020	 2025

Invention of the 
polymerase chain 
reaction104

BLAST algorithms 
to compare protein 
sequences105

First algorithm- 
predicting 
biochemical 
pathways106

Large-scale online 
metabolic databases108

High-throughput 
generation of 
genome-scale 
metabolic models56

High-throughput 
computer-aided 
design and DNA 
printing of any 
possible pathway

First completed 
bacterial genome 
project107

+7,500 microbial 
genomes 
sequenced, one 
genome 
synthesized

First drug 
produced by 
synthetic 
pathway 
(artemisinin)17

Industrial production 
of antibiotics and 
biofuels through 
synthetic pathways

Large-scale synthesis 
of custom-designed 
genomes

Computational milestones are highlighted in blue, experimental milestones in red, and all future milestones have a dashed box.
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