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Abstract

We discuss some general properties of “defect branes”, i.e. branes of co-dimension two, in (toroidally
compactified) IIA/IIB string theory. In particular, we give a full classification of the supersymmetric de-
fect branes in dimensions 3 � D � 10 as well as their higher-dimensional string and M-theory origin as
branes and a set of “generalized” Kaluza–Klein monopoles. We point out a relation between the generalized
Kaluza–Klein monopole solutions and a particular type of mixed-symmetry tensors. These mixed-symmetry
tensors can be defined at the linearized level as duals of the supergravity potentials that describe propagating
degrees of freedom. It is noted that the number of supersymmetric defect branes is always twice the number
of corresponding central charges in the supersymmetry algebra.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Branes are a fundamental ingredient of string theory. Prime examples of their many applica-
tions are the calculation of the entropy of certain black holes [1] and the AdS/CFT correspon-
dence [2]. The properties of branes crucially depend on two quantities: the scaling of the brane
tension with the string coupling constant gs in the string frame and the number T of transverse
directions. The first quantity can be characterized by a number α such that
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Tension ∼ (gs)
α. (1)

It turns out that α is a non-positive number.1 Branes with α = 0,−1,−2, . . . are called Fun-
damental, Dirichlet, Solitonic, etc. The second quantity T naturally splits the branes into two
classes: the standard branes with T � 3 and the non-standard ones with T = 2,1,0. Only the
standard branes are asymptotically flat. The non-standard branes require special attention. For
instance, the non-standard branes with T = 0 are space-filling branes which can only be defined
consistently in combination with an orientifold. The ones with T = 1 are domain walls. The po-
tentials coupling to these domain walls are dual to constants such as mass parameters or gauge
coupling constants. By T-duality, these domain walls need orientifolds as well [3].

In this paper we wish to focus on non-standard branes with T = 2. We call such branes “de-
fect branes” since branes with co-dimension 2, like the D7-brane or 4D cosmic strings, are not
asymptotically flat and can have non-trivial deficit angles at spatial infinity. A prime example of
a Dirichlet defect brane is the ten-dimensional D7-brane [4] whose solution has been discussed
in [5–7]. It is well known that the single D7-brane solution has no finite energy [5,6]. To obtain
such a finite-energy solution one should construct a multiple brane solution which includes ori-
entifolds. In this paper we will only consider single defect branes and assume that finite energy
solutions can be obtained by applying the same techniques as for the D7-brane.

Defect branes couple to (D − 2)-form potentials. These potentials are dual to the dimG −
dimH scalars that parametrize the non-linear coset G/H of the corresponding maximal super-
gravity theory.2 It turns out that the number nP of (D − 2)-form potentials is not equal to the
number nS of coset scalars, i.e. nP �= nS, see Table 1. The reason of this is that the (D − 2)-form
potentials transform in the adjoint representation of the duality group G. Their (D−1)-form field
strengths are essentially the Hodge duals of the Noether current 1-forms associated to the global
invariance under G [8], which transform in the adjoint representation of G. The dimG Noether
currents are constrained by dimH relations [9] and, therefore, the (D − 2)-form potentials de-
scribe as many physical degrees of freedom as the coset scalars. These constraints, however, do
not lead to algebraic relations among the potentials themselves and therefore do not play a role
in the present discussion.

To determine whether we are dealing with a supersymmetric defect brane we will use a crite-
rion that is based on the construction of a gauge-invariant Wess–Zumino (WZ) term that describes
the coupling of the defect brane to a given (D − 2)-form potential [10,11]. This WZ term should
contain worldvolume fields that precisely fit into a half-supersymmetric vector or tensor multi-
plet. This supersymmetric brane criterion leads to a full classification of supersymmetric defect
branes in dimensions 3 � D � 10. It turns out that the number nD of supersymmetric defect
branes in any dimension is less than the number nP of (D − 2)-form potentials, i.e. nD < nP.
This means that not all potentials correspond to supersymmetric branes, see Table 1. This is
different from the standard branes where the number of potentials always equals the number of
supersymmetric branes. The number of all non-standard branes have been recently derived in
dimension higher than five in [12] using the method of [11], and in all dimensions in [13] using
an approach based on E11 [14] and the observation that imaginary roots do not lead to super-
symmetric branes [15]. As far as the number nD of defect branes is concerned, we will give yet

1 We do not consider instantons here. They will be shortly discussed in the conclusion section.
2 We note that it is non-trivial to use these potentials to describe multiple defect branes. For instance, it is not clear how

to express the branch-cuts of the holomorphic axion–dilaton solution in terms of properties of the corresponding dual
potentials. We thank Jelle Hartong for a discussion on this point.
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Table 1
Comparison between the number nP = dimG of (D − 2)-form potentials, the number nD = dimG − rankG of super-
symmetric defect branes and the number nS = dimG − dimH of coset scalars for the coset spaces G/H of maximal
supergravity in 3 � D � 10 dimensions. The derivation of the expression for nD may be found in Section 2.

D G/H nP nD nS

IIA – – – –
IIB SL(2,R)/SO(2) 3 2 2
9 SL(2,R)/SO(2) × R

+ 4 2 3
8 SL(3,R)/SO(3) × SL(2,R)/SO(2) 11 8 7
7 SL(5,R)/SO(5) 24 20 14
6 SO(5,5)/SO(5) × SO(5) 45 40 25
5 E6/Sp(8) 78 72 42
4 E7/SU(8) 133 126 70
3 E8/SO(16) 248 240 128

another derivation of this number using a different method, see Section 2. The final result can be
found in Table 1. This Table also shows that in D < 10 the number nD of supersymmetric defect
branes is not equal to the number nS of coset scalars, i.e. nD �= nS. It is just a coincidence that
these two numbers are the same in ten dimensions.

The lower-dimensional branes with α = 0,−1,−2,−3 can all be seen to arise as dimensional
reductions of branes and a set of generalized KK monopoles in ten dimensions [16,17]. The gen-
eralized KK monopoles can be schematically represented by the introduction of mixed-symmetry
fields in ten dimensions, provided that one applies a restricted dimensional reduction rule when
counting the branes in the lower dimension: given a mixed-symmetry field Am,n with m > n,
indicating a Young tableaux consisting of a column of length m and a column of length n, one
requires that the n indices have to be internal and parallel to n of the m indices [16,17].3 Here we
generalize this result, and we determine all the ten-dimensional mixed-symmetry fields that are
required to generate all the defect branes for any value of α using the restricted reduction rule.
We also derive the eleven-dimensional origin of these fields.

Remarkably, all the solutions corresponding to the generalized KK monopoles that we intro-
duce here were already determined in [18], and as we will show the restricted reduction rule
automatically translates into the dictionary used in [18] to classify these solutions. The mixed-
symmetry fields we introduce can all be seen as generalized duals [19,20] of the graviton and
the other potentials in the ten- or eleven-dimensional theory.4 This means that at least at the lin-
earized level one can impose a duality relation, which can be used to predict the behavior of the
fields in the various solutions. By explicitly writing down some of the explicit solutions of [18],
we will show that this predicted behavior is indeed correct.

The organization of this paper is as follows. In Section 2 we derive the expression for
the number nD of supersymmetric defect branes given in Table 1. In Section 3 we give the
string and M-theory origin of these defect branes in terms of branes and a set of “generalized”
Kaluza–Klein (KK) monopoles. Furthermore, we discuss the relation between the generalized
KK monopoles and mixed-symmetry fields of a certain type. In Section 4 we show how these
mixed-symmetry fields classify all defect brane solutions. As an example we give the string

3 This rule naturally generalizes to the case of fields with more than two sets of antisymmetric indices corresponding
to a Young tableaux with more than 2 columns [17].

4 The actual duality relations are not strictly ten-dimensional covariant since we assume the presence of a number of
isometry directions, see also footnote 13.
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and M-theory monopole solutions that give rise to all the D = 8 defect branes. We also show in
Section 5 how the linearized duality relations between these mixed-symmetry fields and the prop-
agating forms determine the behavior of the fields in the various solutions. This is compared with
the explicit known results in all cases. In Section 6 we explain why the number nD of supersym-
metric defect branes is, for each dimension D, equal to twice the number nZ of corresponding
central charges in the supersymmetry algebra. In the final section we give our conclusions.

2. Supersymmetric defect branes

At first sight one might think that the number nD of supersymmetric defect branes is equal to
the number nP of dual (D − 2)-form potentials. However, this is not the case. A prime example
is ten-dimensional IIB string theory where the 8-forms are in the 3 of SL(2,R) and we only have
a supersymmetric D7-brane and its S-dual, i.e. nD = 2 [10]. The reason why we only have two
supersymmetric seven-branes can be seen as follows: using an SO(2,1) notation the WZ terms
for the three candidate seven-branes can be written in a duality-covariant way schematically as
follows:

WZi ∼ A8,i + F 2ΓiA6 + · · · , i = +,−,3, (2)

where we have used lightcone notation to label the SO(2,1) gamma matrices Γi . Here F2 is
a 2-component spinor5 of SO(2,1) whose components are the worldvolume curvatures of the
Born–Infeld vector and its S-dual. Similarly, the target-space potentials A6 are a spinor (doublet)
of SO(2,1) whose components are the NS–NS and RR 6-form potentials. In general the above
expression (2) for the WZ term contains two worldvolume vectors which do not fit into a single
vector multiplet. Therefore we need that, for a given value of the index i the gamma matrices Γi

act as a projection operator that projects out one of the two worldvolume vectors in the expres-
sion (2). It turns out that this is the case for i = + and i = − but not for i = 3. This explains why
there is no supersymmetric solitonic (α = −2) seven-brane in ten dimensions.

We now consider the counting of supersymmetric defect branes in D < 10 dimensions. We
first decompose the adjoint of the U-duality group G under the direct product of the T-duality
group T = SO(10 − D,10 − D) and a scaling symmetry R

+ of the D-dimensional string cou-
pling constant. We find that for each dimension D � 5 this adjoint representation decomposes
into a Dirichlet, i.e. α = −1, spinor of T-duality with real components, a Solitonic adjoint plus
singlet of T-duality and a charge-conjugate spinor of T-duality with α = −3:

Adj|U = spinorα=−1 + (Adj|T + singlet)α=−2 + (conj. spinor)α=−3. (3)

In four and three dimensions this decomposition is modified, and one gets

Adj|E7
= singletα=0 + spinorα=−1 + (Adj|T + singlet)α=−2

+ (conj. spinor)α=−3 + singletα=−4 (4)

in four dimensions and

Adj|E8
= vectorα=0 + spinorα=−1 + (Adj|T + singlet)α=−2

+ (conj. spinor)α=−3 + vectorα=−4 (5)

in three dimensions.

5 We do not write explicitly the spinor indices here.
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Table 2
Defect branes in different dimensions.

D U repr. α = 0 α = −1 α = −2 α = −3 α = −4

IIB 2 ⊂ 3 1 – 1
9 2 ⊂ 33 1 – 1
8 6 ⊂ (8,1) (2,1) 2 ⊂ (3,1) (2,1)

2 ⊂ (1,3) 2 ⊂ (1,3)

7 20 ⊂ 24 4̄ 12 ⊂ 15 4
6 40 ⊂ 45 8V 24 ⊂ 28 8V
5 72 ⊂ 78 16 40 ⊂ 45 16
4 126 ⊂ 133 1 32 60 ⊂ 66 32 1
3 240 ⊂ 248 14 64 84 ⊂ 91 64 14

The non-standard branes with α = −1, α = −2 and α = −3 have been classified in [11,21]
and [17] respectively. By looking at Eq. (3), this implies the classification of all defect branes
in any dimension above four. Moreover, the α = −4 branes in four and three dimensions can
easily be obtained by the S-duality6 properties of the defect branes. Starting with a defect brane
whose tension scales as (gs)

α and using the fact that under S-duality the string-frame metric
occurring in the Nambu–Goto action transforms as (g′

μν)S = e−8φ/(D−2)(gμν)S one finds that
under S-duality the value of α changes as

α′ = −α − 4. (6)

This means that under D-dimensional S-duality the solitonic defect branes are mapped to each
other while the Dirichlet and Fundamental defect branes are mapped to defect branes with α =
−3 and α = −4, respectively. Using the fact that the number of fundamental branes is well known
this implies that the number of α = −4 branes is known as well.

Applying our supersymmetric brane criterion we find that all Dirichlet defect branes are super-
symmetric (there are no non-supersymmetric Dirichlet branes within the spinor representation)
and the same applies to the charge-conjugate spinor of defect branes with α = −3 [17]. On the
other hand, from [21] we know that not every component of the soliton representations corre-
sponds to a supersymmetric brane: rankT solitons out of the Adj|T solitons as well as the singlet
soliton are not supersymmetric. Using the fact that rankG = rankT + 1 we therefore conclude
that the number nD of supersymmetric defect branes, in each dimension D � 5, is given by

nD = dimG − rankG, (7)

in agreement with the statement under Table 1. The analysis for D = 3,4 is the same as the
D � 5 cases because all the fundamental defect branes within the singlet (D = 4) and the vector
(D = 3) representations of T-duality are supersymmetric, and consequently by S-duality the
α = −4 branes are supersymmetric too, leading again to Eq. (7).

Summarizing, we find that in any dimension 5 � D � 10 we have a chiral T-duality spinor
of Dirichlet defect branes, a set of solitonic defect branes that transforms as an antisymmetric
2-tensor under T-duality and a charge-conjugate T-duality spinor of α = −3 branes, see Table 2.
In D = 8 dimensions the solitonic defect branes split into two parts: one part that transforms as

6 We are referring here to the D-dimensional S-duality in which the D-dimensional string coupling constant (the
exponential of the D-dimensional dilaton) is inverted.
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Table 3
The string-theory origin of all the potentials that couple to defect branes in all dimensions D � 3: antisymmetric tensors
(coupling to branes), and mixed-symmetry fields (coupling to (generalized) KK monopoles). We have not indicated that
in D = 3 also the IIA/IIB pp-wave, represented by the metric, contributes to the defect 0-branes.

α = 0 α = −1 α = −2 α = −3 α = −4

IIA IIB IIA IIB

B2 C1 C2 D6 E8,1 E8 F8,6
C3 C4 D7,1 E8,3 E8,2 F8,7,1
C5 C6 D8,2 E8,5 E8,4
C7 C8 E8,7 E8,6

a positive-dual 2-tensor under the SO(2,2) T-duality and one part that transforms as a negative-
dual 2-tensor. The positive-dual defect branes have a worldvolume vector multiplet and they
transform under U-duality into the defect branes with α = −1 and α = −3 which have world-
volume vector multiplets as well. The negative-dual defect branes have a worldvolume self-dual
tensor multiplet and they transform under U-duality into each other. On top of all these defect
branes we have in D = 4 dimensions a singlet Fundamental, or α = 0, defect brane and in D = 3
dimensions a T-duality vector of Fundamental defect branes. These are the usual fundamental
string and 0-branes which indeed become defect branes in D = 4 and D = 3 dimensions respec-
tively. Finally, the α = −4 branes corresponding to the S-duals of the α = 0 branes. This analysis
coincides with the one recently given in [12] for D � 6 and in [13] for D � 3.

3. String and M-theory origin

In this section we wish to consider the string and M-theory origin of the defect branes of the
previous Section, see Table 2.

The string-theory origin of the Fundamental defect branes is the IIA/IIB Fundamental string
supplied with the fundamental wrapping rule

F

{
wrapped → doubled,

unwrapped → undoubled.
(8)

This means that the IIA/IIB fundamental string, upon applying the wrapping rule (8) leads to the
numbers of fundamental defect branes given in Table 2. We can represent the Fundamental string
by the NS–NS 2-form field B2 it couples to, see Table 3.

Similarly, the string-theory origin of the Dirichlet defect branes given in Table 2 are the IIA
and IIB Dirichlet branes supplied with the Dirichlet wrapping rule

D

{
wrapped → undoubled,

unwrapped → undoubled.
(9)

The string-theory origin of the solitonic defect branes is the IIA/IIB NS5-brane together with the
solitonic wrapping rule [17]

S

{
wrapped → undoubled,

unwrapped → doubled .
(10)

To realize the fundamental wrapping rule (8) one needs the pp-wave. No additional objects
(other than the ten-dimensional D-branes themselves) are needed to realize the Dirichlet wrap-
ping rule (9). To realize the solitonic wrapping rule (10) the ten-dimensional Kaluza–Klein
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(KK) monopole is needed, but that is not enough: one also needs the so-called generalized KK
monopoles. These are extended objects which have, in addition to worldvolume and transverse
directions, isometry directions of various kinds with inequivalent properties. The standard KK
monopole only has one isometry direction. We find that the string-theory origin of the solitonic
defect branes is given by the NS5-brane, the standard KK monopole and one generalized KK
monopole with two isometry directions. One can associate mixed-symmetry fields to generalized
KK monopoles, and, in particular, as far as the solitonic branes are concerned, the standard KK
monopole is associated with the field D7,1 and the generalized KK monopole with two isometries
with the field D8,2 provided that the restricted reduction rule of [16] is applied. For later conve-
nience we give this reduction rule below for a mixed-symmetry field Am,n1,n2 corresponding to
a Young tableaux with 3 columns.

3.1. Restricted reduction rule

For a mixed-symmetry field Am,n1,n2 to yield, upon toroidal reduction, a potential correspond-
ing to a supersymmetric brane, we require that the n2 indices are internal and along directions
parallel to n2 of the n1 indices and n2 of the m indices, and that the remaining n1 − n2 indices
in the second set are also internal and along directions parallel to n1 − n2 of the m indices.

To summarize, all solitonic defect branes in any dimensions are generated by the fields

D6, D7,1, D8,2 (11)

using the restricted reduction rule formulated above. The field D6 is the dual of B2, the field D7,1
can be seen as a dual graviton at the linearized level and similarly D8,2 is an exotic dual of B2 at
the linearized level.

Using the same reasoning, the string-theory origin of the α = −3 defect branes are given by
the following branes and generalized KK monopoles:

E8,n, n = 0, . . . ,7, (12)

where n is even in the IIB case and odd in the IIA case [17]. The eight-form potential E8 (cor-
responding to n = 0) couples to the S-dual of the D7-brane. The other fields are all exotic duals
of the RR fields Cn,n = 1, . . . ,7, and correspond to generalized KK monopole solutions. In the
same way as the D-branes, upon using the Dirichlet wrapping rule (9), build up a chiral spinor
representation of the T-duality group, the S-dual of the D7-brane, upon using the exceptional
wrapping rule

E

{
wrapped → doubled,

unwrapped → doubled,
(13)

builds up the charge-conjugate spinor representation of the same T-duality group. This excep-
tional wrapping rule is realized through the generalized monopoles given in (12), using the
restricted reduction rule given above.

Finally, there is no conventional brane origin and corresponding brane wrapping rule of the
α = −4 branes. All these branes follow from the reduction of generalized KK monopoles. This
is to be expected since the only available α = −4 brane in string theory is the S-dual of the
D9 brane. However, this is a space-filling brane that upon reduction cannot give rise to a defect
brane. We find that we need two α = −4 generalized monopoles in ten dimensions, that can be
associated to the mixed-symmetry fields
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F8,6, F8,7,1. (14)

One can easily see that F8,6 gives an α = −4 singlet 1-brane in four dimensions, while using the
restricted reduction rule in three dimensions one gets (here we denote with i the internal indices)

F8,6 → F1i1...i7,i1...i6 (7),

F8,7,1 → F1i1...i7,i1...i7,i1 (7) (15)

adding up to a total of 14 0-branes, in agreement with Table 2. A new feature is that one of the
monopoles is described by a mixed-symmetry field F8,7,1 corresponding to a Young tableaux
with three columns. This corresponds to a generalized KK monopole with 6 + 1 inequivalent
isometry directions.7 The field F8,6 can be seen as an exotic dual of B2, while F8,7,1 is an exotic
dual of the graviton. The complete result, including all the fields that after restricted dimensional
reduction give rise to the defect branes, is summarized in Table 3.

One may also consider the M-theory origin of the defect branes. It turns out that all the fields
in Table 3 have their origin in the eleven-dimensional fields8

A3, A6, A8,1, A9,3, A9,6, A9,8,1. (16)

They correspond to two branes (the M2- and M5-brane), the standard M-theory monopole and
three generalized KK monopoles one of which has two inequivalent isometry directions as we
will describe in the next section. The fields A6, A9,3 and A9,6 are duals and exotic duals of the
3-form potential A3, while A8,1 and A9,8,1 are duals of the graviton.

4. Mixed-symmetry fields and monopole solutions

In this section we show how the mixed-symmetry fields, together with the restricted reduction
rule, are in one to one correspondence with the classification of generalized KK monopole solu-
tions of [18].9 We are going to use the following notation: an extended object of D-dimensional
string theory with mass proportional to gα

s , T transverse dimensions, p spacelike worldvolume
dimensions and I1, I2, . . . inequivalent isometry directions,10 with T + p + ∑

i Ii = D − 1, will
be denoted by (T ,p, I1, I2, . . .)α . We will omit by convention all the entries to the right of the
last non-vanishing Ii . Thus, standard Dp-branes (Ii = 0) are denoted by (T ,p)−1, the standard
KK monopole in D dimensions is denoted by (3,D − 5,1)−2, etc. For M-theory objects we will
omit the subindex α.

The association between the (p + 1)-form potentials B2,C1, . . . ,C8,D6,E8 and p-branes
is well established. Mixed-symmetry potentials are associated to generalized KK monopoles as
follows: the symmetry of the potential Am,n is that of a Young tableau with two columns, one
with m rows and one with n rows,11 and it corresponds to the generalized KK monopole

Am,n ↔ (D − m,m − n − 1, n)α, or

(T ,p, I )α ↔ AD−T ,I , (17)

7 In which sense they are inequivalent, will be discussed later.
8 We have not indicated the M-theory pp-wave which is represented by the metric.
9 The relation between mixed-symmetry fields and generalized KK monopole solutions has also been recently pointed

out in [13].
10 In this work we will not have to consider more than two inequivalent sets of isometries, but to account for all domain-
wall and space-filling branes, one has to consider more.
11 An antisymmetric potential is denoted by Am,0 = Am.
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where the value of α can be read off from Table 2. This rule can be extended to include monopoles
with two inequivalent isometry directions as follows

Am,n1,n2 ↔ (D − m,m − n1 − 1, n1 − n2, n2)α, or

(T ,p, I1, I2)α ↔ AD−T ,I1+I2,I2 . (18)

From now on, for simplicity, we will denote the correspondence between the mixed-symmetry
fields and the solutions with an equality, i.e. Am,n = (D − m,m − n − 1, n)α . In this notation,
the string-theory origin of the solitonic defect branes mentioned in the previous section (the
NS5-brane, the standard KK monopole and one generalized KK monopole) reads

D6 = (4,5)−2, D7,1 = (3,5,1)−2, D8,2 = (2,5,2)−2, (19)

the string-theory origin of the α = −3 defect branes reads

E8,n = (2,7 − n,n)−3, n = 0, . . . ,7, (20)

and the string-theory origin of the α = −4 defect branes reads

F8,6 = (2,1,6)−4, F8,7,1 = (2,0,6,1)−4. (21)

Finally, the M-theory origin of the defect branes reads

A3 = (6,4), A6 = (5,5), A8,1 = (3,6,1),

A9,3 = (1,5,3), A9,6 = (2,2,6), A9,8,1 = (2,0,7,1). (22)

One advantage of this notation is that it that it makes it easy to write the mass of a toroidally
compactified 10-dimensional monopole solution (T ,p, I1, I2)α , which is given by (�s = 1)

M(T,p,I1,I2)α = R1 · · ·Rp(Rp+1 · · ·Rp+I1)
2(Rp+I1+1 · · ·Rp+I1+I2)

3(gs)
α, (23)

while for an 11-dimensional monopole it is given by (�(11)
Planck/2π = 1)

M(T,p,I1,I2) = R1 · · ·Rp(Rp+1 · · ·Rp+I1)
2(Rp+I1+1 · · ·Rp+I1+I2)

3. (24)

Here the R are the compactification radii in the spacelike worldvolume and two isometry di-
rections. It is this different dependence on the compactification radii that makes the isometry
directions inequivalent. For instance, the mass of the F8,7,1 = (2,0,6,1)−4 generalized KK
monopole is given by

M(2,0,6,1)−4 = (R1 · · ·R6)
2(R7)

3(gs)
−4, (25)

where 1, . . . ,7 indicate the 6 + 1 isometry directions. Similarly, the mass of the A9,8,1 =
(2,0,7,1) generalized KK monopole is given by

M(2,0,7,1) = (R1 · · ·R7)
2(R8)

3, (26)

where 1, . . . ,8 refer to the 7 + 1 isometry directions.
This identification is based on the consistency between the restricted reduction rules of the

potentials and the dimensional reduction of the objects. One can reduce a monopole solution
given by (T ,p, I1, I2) in four different ways: over a transverse (T ), worldvolume (p) or one of
the two inequivalent isometry directions (I1, I2). This leads to brane solutions as soon as one
has reduced over all isometry directions. The branes corresponding to such solutions couple to
a number of potentials. In order to obtain the same number of potentials following from the
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Table 4
This table indicates the string-theory origin of the eight D = 8 half-supersymmetric de-
fect brane solutions. The common factor V5 in the expression for the mass is given by
V5 = R1 · · ·R5. We have set �s = 1. The 8, 9 directions are the two transverse directions.
The free index i = 6,7 indicates two defect brane solutions. In the IIA case, the D6 and D8,2
solutions lead to the two tensor defect branes, while in the IIB case they arise from the D7,1
solution.

IIA Monopole M = mass/V5

α = −1 C7 = (3,6)−1 M = Ri(gs)
−1

α = −2 D6 = (4,5)−2 M = (gs )
−2

D7,1 = (3,5,1)−2 M = (Ri)
2(gs )

−2

D8,2 = (2,5,2)−2 M = (R6R7)2(gs )
−2

α = −3 E8,1 = (2,6,1)−3 M = Ri(Ri+1)2(gs )
−3

IIB Monopole M = mass/V5

α = −1 C8 = (2,7)−1 M = R6R7(gs )
−1

C6 = (4,5)−1 M = (gs )
−1

α = −2 D6 = (4,5)−2 M = (gs )
−2

D7,1 = (3,5,1)−2 M = (Ri)
2(gs )

−2

D8,2 = (2,5,2)−2 M = (R6R7)2(gs )
−2

α = −3 E8 = (2,7)−3 M = R6R7(gs )
−3

E8,2 = (2,5,2)−3 M = (R6R7)2(gs )
−3

reduction of the mixed-symmetry fields one must use the restricted reduction rule formulated in
Section 3.

As an example we consider the string and M-theory origin of the eight D = 8 defect brane
solutions, see Table 2. We have indicated the IIA and IIB string-theory origin of these eight solu-
tions in Table 4. Assuming that we reduce over the i = 6,7 directions the three eight-dimensional
dilatons are given by gs,R6 and R7, where R6 and R7 are the radii in the 6 and 7 directions. The
IIA origin of the remaining 4 axions is given by g67,B67,C6 and C7 where Cμ is the RR vector.
Similarly, the IIB origin of the same axions is given by g67,B67,C67 and C0 where C0 is the IIB
axion. The two transverse directions of the defect brane are 8 and 9.

The IIA/IIB string-theory origin of all eight D = 8 supersymmetric defect branes are given in
Table 4. Note that each object has a different mass. All these objects and corresponding solutions
are known in the literature. For instance, in the IIA case, the (3,6)−1 object is the D6-brane.
This object gives rise to two defect branes depending on whether we take i = 6 or i = 7 along
the worldvolume directions of the D6-brane. (4,5)−2 is the NS5A-brane and (3,5,1)−2 is the
standard KK5A monopole. (2,5,2)−2 is a generalized KK monopole whose M-theory origin is
another generalized KK monopole: A9,3 = (2,5,3). The corresponding explicit solution of the
latter can be found in Eq. (3.9) of [18].12 Finally, (2,6,1)−3 is the reduction of the (3,6,1)

standard M-theory monopole solution over one of its transverse directions and corresponds to
the p = 6 case of Eq. (1.1) of [18]. Together, the M-theory origin of all the IIA solutions is given
by the (5,5) M5-brane solution, the (3,6,1) standard M-theory KK monopole and the (2,5,3)

generalized KK monopole solution.

12 Some of the generalized monopoles have been constructed using E11 techniques [22].
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In the IIB case the two α = −1 objects are the D5-brane and the D7-brane. The three α = −2
objects are the same as in the IIA case. Finally, the two α = −3 objects are the S-dual of the
D7-brane and the (2,5,2)−3 generalized KK monopole.

The masses of all the objects of Table 4 transform into each other under the T-duality rules

R → 1/R, gs → gs/R, (27)

in agreement with the T-duality representations given in Table 2. Note that the mass of the so-
lutions is not left invariant under this T-duality. The mass multiplets form representations of the
SO(3) subgroup of the SO(2,2) T-duality group. Note that under the S-duality rules

gs → 1/gs, R → R/(gs)
1/2 (28)

the masses do not transform in agreement with the S-duality rule (6). This is because the S-
duality underlying (6) refers to the eight-dimensional dilaton whereas the S-duality rules (28)
refer to the ten-dimensional dilaton.

5. Duality relations and explicit solutions

In this section we want to show that the linearized duality relations that the mixed-symmetry
fields satisfy can be used to deduce the behavior of the fields of the corresponding solution. We
consider as a first example the ten-dimensional field B2 together with all its generalized duals
D6, D8,2 and F8,6. For each of these fields, there is a (T ,p, I ) solution in which the field can
be considered to be electric, that is with non-zero components along the p + 1 worldvolume
directions and along the isometry directions. We now want to show that using linearized duality
relations each of these solutions becomes a solution in which only the B2 field occurs. The duality
relation reveals in each case the particular form that the B2 field takes.

We denote the T transverse directions with ωa , with a = 1, . . . , T , the worldvolume direction
with yμ = (t, y1, . . . , yp) and the isometry directions with zm, with m = 1, . . . , I . In all cases the
fields only depend on the transverse directions ω. We start considering the B2 solution. This is
the solution (8,1)0, and simply corresponds to an electric field Bμν(ω). We next consider the D6
solution (4,5)−2. This corresponds to a non-vanishing Dμ1...μ6(ω). Using the duality relation

∂aDμ1...μ6 ∼ εaμ1...μ6
b1b2b3∂b1Bb2b3 (29)

we see that this corresponds to a B2 field along the four transverse directions Ba1a2(ω).
We next consider the field D8,2. The solution (2,5,2)−2 has two isometries, and corresponds

to turning on the components Dμ1...μ6mn,mn(ω). Dualizing we get13

∂a∂bDμ1...μ6mn,mn ∼ εaμ1...μ6mn
c∂b∂cBmn (30)

which means that the solution can be seen as a solution in which one turns on B2 along the
isometry directions, Bmn(ω). The linearized duality relation is at second order in derivatives
because the field has mixed-symmetry with two sets of antisymmetric indices [19,20].

13 Note that the duality relations involving mixed-symmetry fields we use in this section are not truly ten-dimensional
ones. They are only applied to solutions that exhibit a number of isometries. Effectively, this means that, after reduction
over the isometry directions, we apply standard lower-dimensional duality relations between forms. We thank Axel
Kleinschmidt for a discussion on this point.
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We finally consider the field F8,6 corresponding to the solution (2,1,6)−4 with six isometries.
This solution is carried by the electric mixed-symmetry field Fμ1μ2m1...m6,m1...m6(ω) which can
be dualized as follows:

∂a∂bFμ1μ2m1...m6,m1...m6 ∼ εaμ1μ2m1...m6
cεbm1...m6

dν1ν2∂c∂dBν1ν2 . (31)

This corresponds to a solution with Bμν(ω) non-vanishing, exactly as in the first case, but now,
since there are isometry directions, this B2 is not electric.

The same reasoning can be applied to the solutions (2,7 −n,n)−3 corresponding to the fields
E8,n. These solutions have n isometries. The field Eμ1...μ8−nm1...mn,m1...mn(ω) is non-vanishing,
and can be dualized according to

∂a∂bEμ1...μ8−nm1...mn,m1...mn ∼ εaμ1...μ8−nm1...mn

c∂b∂cCm1...mn

∼ εaμ1...μ8−nm1...mn

cεbm1...mn

ν1...ν8−nd∂c∂dCν1...ν8−n
, (32)

corresponding to a solution with the RR field Cn along the isometry directions (or a dual RR
field C8−n along the worldvolume directions).

We now consider the purely gravitational solutions. The KK monopole solution is (3,5,1)−2.
The corresponding ten-dimensional field is D7,1, and turning on the component Dμ1...μ6m,m(x)

the linearized duality relation becomes

∂a∂bDμ1...μ6m,m ∼ εaμ1...μ6m
cd∂c∂bhdm, (33)

corresponding to a linearized graviton fluctuation of the form

ham(x). (34)

This is the well-known KK monopole solution.
The other (generalized) KK monopole solution is (2,0,6,1)−4 where now there are two sets

of isometries: a six-plet and a singlet isometry direction. The corresponding field is F8,7,1 which
has non-vanishing components Fμm1...m7,m1...m7,m1 . This corresponds to a linearized graviton
given by the duality relation

∂a∂b∂cFμm1...m7,m1...m7,m1 ∼ εaμm1...m7
dεbm1...m7

νe∂d∂e∂chνm1, (35)

which corresponds to a linearized graviton fluctuation

hμm(x) (36)

where m is the singlet isometry direction, and thus this solution is a pp-wave.
Finally, we consider the eleven-dimensional solutions. Repeating the analysis just done for

the B2 field and its duals in ten dimensions, one can deduce that the solution A9,3 = (2,5,3)

corresponds to the field A3 along the isometry directions, while the solution A9,6 = (2,2,6)

corresponds to A3 along the worldvolume directions. The gravitational solutions A8,1 = (3,6,1)

and A9,8,1 = (2,0,7,1) are exactly as in the ten-dimensional case.
These results can be tested by looking into the explicit supergravity solutions given in [18],

which we reproduce here for the sake of completeness. Recently, some of these solutions have
been rederived in [13] by performing U-duality transformations on known solutions in the E11
framework.

Let us start with the 10-dimensional (string-theory) fields in Table 3: B2 = (8,1)0 is the Fun-
damental (IIA/IIB) string, Cp+1 = (9 − p,p)−1 are the Dirichlet p-branes, D6 = (4,5)−2 is the
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(IIA/IIB) NS5 brane, D7,1 = (3,6,1)−2 is the standard (IIA/IIB) KK monopole. The explicit
form of all these solutions is well known.

The solution corresponding to D8,2 = (2,5,2)−2 is, in the string frame14

ds2
s = dt2 − d 	y2

5 − H dωdω̄ − H

H H̄
d	z2

2,

eφ =
(

H

H H̄

) 1
2

,

B(6)ty1...y5 =
(

H

H H̄

)−1

, B(2)z1z2 = − A

H H̄
, (37)

which is Eq. (3.1) of [18]. Observe that, as anticipated, B2 only has non-vanishing components
in the two isometric directions. The solutions corresponding to the E8,n = (2,7 − n,n)−3 are,
with 7 − n = p and in the string frame, given by

ds2
s =

(
H

H H̄

)−1/2[
dt2 − d 	y2

p − H dωdω̄
] −

(
H

H H̄

)1/2

d	z2
7−p,

eφ =
(

H

H H̄

) 3−p
4

,

C(p+1)ty1...yp = (−1)[
(p+1)

2 ]
(

H

H H̄

)−1

, C(7−p)z1...z7−p = − A

H H̄
, (38)

which is Eq. (1.1) of [18]. As anticipated, this corresponds to the field C8−n along the worldvol-
ume directions or the dual field Cn along the isometry directions. The solution corresponding to
the F8,6 = (2,1,6)−4 is

ds2
s =

(
H

H H̄

)−1[
dt2 − dy2 − H dωdω̄

] − d	z2
6,

eφ =
(

H

H H̄

)− 1
2

,

B(2)ty = −
(

H

H H̄

)−1

, B(6)z1...z6 = A

H H̄
, (39)

which is Eq. (3.2) of [18] and as anticipated corresponds to the field B2 along the worldvolume
directions. The purely gravitational solution corresponding to F8,7,1 = (2,0,6,1)−4 is

ds2 = −2dt dy − H

H H̄
dy2 − H H̄ dωdω̄ − d	z2

6, (40)

which is Eq. (3.11) of [18] and is a pp-wave.
As for the explicit solutions corresponding to the eleven-dimensional fields in Eq. (16), A3 =

(8,2) and A6 = (5,5) are the M2 and M5 branes, A8,1 = (3,6,1) is the standard KK monopole
and all their solutions are well known. A9,3 = (2,5,3) is given by

14 In all these defect brane solutions function H = H(ω) = A + iH is a complex, holomorphic (multivalued) function
of ω.
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Table 5
This table indicates the R-representations of the p-form central charges and the corresponding standard supersymmetric
p-branes of 7 � D � 10 maximal supergravity. A prime indicates that the worldvolume multiplet is not a vector but a
tensor multiplet. The pp-wave corresponds to the translation generator.

D R p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

IIA 1 1 1 1 1 1
D0 F1 D2 D4 S′5 + KK5

– D6

IIB SO(2) 2 1 1+ + 2+
F1 + D1 D3 KK′5 + (D5 + S5)

9 SO(2) 1 + 2 2 1 1 1 + 2
F0 + (F0 + D0) F1 + D1 D2 D3 KK4 + (D4 + S4)

S′5 + (D5 + S5)

8 U(2) 2 × 3 3 2 × 1 1 + 3 3+ + 3−
2 × (2F0 + D0) F1 + 2D1 2 × D2 KK3 + (2D3 + S3) (D4 + 2S4) + (D4 + 2S4)

7 Sp(4) 10 5 1 + 5 10
6F0 + 4D0 F1 + 4D1 KK2 + (4D2 + S2) 4D3 + 6S3

ds2 =
(

H

H H̄

)−1/3[
dt2 − d 	y2

5 − H dωdω̄
] −

(
H

H H̄

)2/3

d	z2
3,

A(6)ty1...y5 = −
(

H

H H̄

)−1

, A(3)z1z2z3 = − A

H H̄
, (41)

which is Eq. (3.9) of [18] and as anticipated has A3 along the isometry directions, while A9,6 =
(2,2,6) is given in

ds2 =
(

H

H H̄

)−2/3[
dt2 − d 	y2

2 − H dωdω̄
] −

(
H

H H̄

)1/3

d	z2
6,

A(3)ty1y2 = −
(

H

H H̄

)−1

, A(6)z1···z6 = A

H H̄
, (42)

which is Eq. (3.8) of [18] and as anticipated has A3 along the worldvolume directions. Finally,
A9,8,1 = (2,0,7,1) is given by the purely gravitational solution

ds2 = −2dt dy − H

H H̄
dy2 − H H̄ dωdω̄ − d	z2

7, (43)

which is Eq. (3.7) of [18] and again corresponds to a pp-wave.

6. Central charges

It is well known that there is a 1–1 correspondence between standard branes and the central
charges in the supersymmetry algebra in type II string and M-theory. The standard branes, for
3 � D � 10 dimensions have a universal behavior with respect to T-duality. For each dimension
they are given by a singlet and vector of Fundamental branes, a chiral spinor of D-branes and an-
tisymmetric tensors of solitonic branes. On top of this we have in each dimension a pp-wave and a
(3,D − 5,1)−2 standard KK monopole. The pp-wave is represented by the translation generator
whereas all other branes are represented by the most general central charges in the supersym-
metry algebra. This is summarized in Tables 5 and 6, that indicate the R-representations of the
p-form central charges and the corresponding standard supersymmetric p-branes of 3 � D � 10
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Table 6
This table indicates the R-representations of the p-form central charges and the corresponding standard supersymmetric
p-branes of 3 � D � 6 maximal supergravity. The pp-wave corresponds to the translation generator.

D R p = 0 p = 1 p = 2 p = 3

6 Sp(4) × Sp(4) (4,4) (1,1) (4,4) (10,1)+
(1,5) (1,10)−
(5,1)

8F0 + 8D0 KK1 8D2 + 8S2
F1 + 4D1
4D1 + S1

5 Sp(8) 1 + 27 27 36
KK0 + 10F0 + 16D0 + S0 F1 + 16D1 + 10S1

4 SU(8) 28 + 28 63 36+ + 36
−

12F0 + 16D0
16D0 + 12S0

3 SO(16) 120 135

Table 7
The number nD of supersymmetric defect branes is twice the number nZ of corresponding n-form central charges.

D H n = 0 n = 1 n = 2 n = 3 nD

IIB SO(2) 1 2
9 SO(2) 1 2
8 U(2) 3 + 1 6 + 2
7 Sp(4) 10 20
6 Sp(4) × Sp(4) (10,1)+ + (1,10)− 40
5 Sp(8) 36 72
4 SU(8) 63 126
3 SO(16) 120 240

maximal supergravity. In Tables 5 and 6, if applicable, we have indicated the space–time duality
of the central charges with a superscript ±. We also use the following abbreviations in the ta-
bles: F (Fundamental), D (D-brane), S (Soliton), and KK (Kaluza–Klein monopole). All branes
have worldvolume vector multiplets except for the ones indicated by a prime. Note that in D = 3
dimensions there are no standard branes.

One does not expect a similar 1–1 relation to hold between the non-standard branes and the
central charges of the supersymmetry algebra. The reason is that these non-standard branes are
not asymptotically flat and therefore the standard Poincaré supersymmetry algebra is not realized
at spatial infinity. Nevertheless, since we calculated the number nD of supersymmetric defect
branes, it is of interest to compare these numbers with the number nZ of relevant p-form central
charges.15 These are the 3-form central charges for D � 6 and the (D − 3)-form central charges
for 3 � D � 5. We have collected these numbers in Table 7. We observe that there is a universal
2–1 relation between nD and nZ, i.e. we find that nD = 2nZ. The reason that this is the case is due
to the universal behavior of the central charges and defect branes. In any dimension the central
charges corresponding to defect branes transform in the adjoint representation of the R-symmetry

15 We do not consider here the charges corresponding to the generalized KK monopoles.
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group H , which is the maximal compact subgroup of the U-duality group G, i.e. we always
have that nZ = dimH . On the other hand, we found that the number of supersymmetric defect
branes nD is universally given by nD = dimG − rankG. We now use that the U-duality groups
of all maximal supergravity theories are of split-form and therefore we have that dimH = P

and dimG − rankG = 2P where P is the number of positive roots. This indeed implies that
nD = 2nZ. The reason that we find this 1–2 relation between defect branes and central charges is
most likely related to the fact that under S-duality the central charges remain invariant whereas
the defect brane solutions are mapped to S-dual defect-bane solutions according to the S-duality
rule (6).16

7. Conclusions

In this work we have discussed some basic properties of branes with co-dimension 2, i.e. de-
fect branes. Requiring the existence of a supersymmetric gauge-invariant WZ term we gave a full
classification of these branes, see Table 2. Their string and M-theory origin as seven-branes and a
set of generalized KK monopoles was determined. These included monopoles with two inequiv-
alent isometry directions. We explained why the number nD of supersymmetric defect branes
does not equal the number nP of (D − 2)-form potentials or the number nS of coset scalars and
we presented the string and M-theory origin of all defect branes. As an example we gave explicit
results for the D = 8 case. We observed that the number nD of supersymmetric defect branes is
always twice the number nZ of central charges in the supersymmetry algebra and we explained
why this is the case.

There is a simple alternative way to count the number of supersymmetric defect branes and
to verify that for a U-duality group G the number nD of supersymmetric defect branes is given
by nD = dimG − rankG. Each basic half-supersymmetric defect brane is carried by an axion–
dilaton combination that parametrizes an SL(2,R) subgroup of the U-duality group. Together
with the S-dual defect brane this leads to two branes for each inequivalent embedding of SL(2,R)

into G. For instance, for G = SL(n,R), which is the case for D = 7 and D = 9, one has to choose
2 out of the n directions. This leads to n(n − 1)/2 inequivalent embeddings and hence n(n − 1)

supersymmetric defect branes. On the other hand, for G = SL(n,R) we have that dimG = n2 −
1 and rankG = n − 1 so that we indeed verify the expression for nD given above. The other
dimensions proceed in a similar way.

It is interesting to also consider the electric duals of the defect branes, i.e. instantons. These
instantons occur in the same U-duality representations, with the value of α given by the general
relation

αmagnetic = −αelectric − 2, (44)

where in this case αmagnetic is the value of α of a given defect brane and αelectric is the value
of α of the dual instanton. This implies that the values of α for instantons in D � 3 are
α = 2,1,0,−1,−2. Since under S-duality the value of α transforms according to α → −α we
see that the instantons are symmetric around the α = 0 Fundamental instantons. The Funda-
mental, Dirichlet and Solitonic instantons can all be understood as the result of extending the
corresponding wrapping rule to wrapping over time. For instance, the Fundamental instantons
arise as the result of applying the fundamental wrapping rule (8) to the fundamental string, see
Table 8. Note that fundamental instantons only arise in 3 � D � 8 dimensions.

16 We thank the referee for raising this point.
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Table 8
Upon applying the fundamental wrapping rule (8) one obtains in each dimension the U-duality representations of the
Fundamental instantons, cf. Table 2.

Fp-brane IIA/IIB 9 8 7 6 5 4 3

−1 4 12 24 40 60 84
0 2 4 6 8 10 12 14
1 1/1 1 1 1 1 1 1 1

The main result of our work is that we have associated a mixed-symmetry field to each of the
generalized KK monopoles using the general rule (18). All the generalized KK monopoles con-
sidered have a single set of isometry directions, with the notable exception of the ten-dimensional
solution (2,0,6,1)−4 and the eleven-dimensional solution (2,0,7,1), which have two inequiva-
lent isometry directions. Such monopoles have a quadratic and cubic dependence of the mass on
the radii, see Eqs. (25) and (26).

It turns out that the specific mixed-symmetry fields we found are precisely the ones predicted
by E11 [14]. Indeed, E11 naturally contains fields that are all possible dual descriptions of the
supergravity fields, and thus naturally includes the fields in Table 3 and in Eq. (16) [23]. More-
over, selecting out of the various potentials the ones that are associated to supersymmetric branes
corresponds to selecting the real roots of E11, and this gives automatically all supersymmetric
branes in all dimensions [13]. This is one more application where E11 is used to learn about the
properties of supergravity.

It is important to distinguish between the status of the mixed-symmetry fields and that of the
monopole solutions. The monopole solutions have been given in the literature as solutions of the
full non-linear supergravity theory [18,22].17 On the other hand the mixed-symmetry fields can
only be made consistent with supersymmetry at the level of linearized supersymmetry. A prime
example is the dual graviton field A8,1 in D = 11 dimensions whose supersymmetry properties
have been discussed in [24]. The restricted reduction rule of the mixed-symmetry fields Am,n we
found suggests that they couple to a generalized KK monopole via a Wess–Zumino term where
the last n indices are taken into the isometry directions and n of the first m indices are taken into
the same isometry directions. The remaining m−n indices couple to the worldvolume directions
of the monopole in the usual way. It would be interesting to see whether such a gauge-invariant
WZ term describing the coupling of the background fields to the monopole can be constructed.

Note added

During the course of this work the paper [13] appeared which has some overlap with this
work. In particular, Section 3 of [13] discusses defect brane solutions from an E11-point of view.
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