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ABSTRACT
We study the bar-driven dynamics in the inner part of the Milky Way by using invariant mani-
folds. This theory has been successfully applied to describe the morphology and kinematics of
rings and spirals in external galaxies, and now, for the first time, we apply it to the Milky Way.
In particular, we compute the orbits confined by the invariant manifolds of the unstable peri-
odic orbits located at the ends of the bar. We start by discussing whether the COBE/Diffuse
Infrared Background Experiment (DIRBE) bar and the Long bar compose a single bar or
two independent bars and perform a number of comparisons which, taken together, argue
strongly in favour of the former. More specifically, we favour the possibility that the so-called
COBE/DIRBE bar is the boxy/peanut bulge of a bar whose outer thin parts are the so-called
Long bar. This possibility is in good agreement both with observations of external galaxies,
with orbital structure theory and with simulations. We then analyse in detail the morphology
and kinematics given by five representative Galactic potentials. Two of these have a Ferrers
bar, two have a quadrupole bar and the last one a composite bar. We first consider only the
COBE/DIRBE bar and then extend it to include the effect of the Long bar. We find that the
large-scale structure given by the manifolds describes an inner ring, whose size is similar to
the near and far 3-kpc arm, and an outer ring, whose properties resemble those of the Galactic
Molecular Ring. We also analyse the kinematics of these two structures, under the different
Galactic potentials, and find they reproduce the relevant overdensities found in the galactic
longitude–velocity CO diagram. Finally, we consider for what model parameters, the global
morphology of the manifolds may reproduce the two outer spiral arms. We conclude that this
would necessitate either more massive and more rapidly rotating bars, or including in the
potential an extra component describing the spiral arms.

Key words: Galaxy: bulge – Galaxy: disc – Galaxy: evolution – Galaxy: kinematics and
dynamics – Galaxy: structure – galaxies: spiral.

1 IN T RO D U C T I O N

The large-scale structure of the Milky Way (MW) disc has been un-
der study for many years. The COBE/Diffuse Infrared Background
Experiment (DIRBE; Weiland et al. 1994) and Spitzer/Galactic
Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE;
Churchwell et al. 2009) missions provided infrared information
on the global structure of the inner Galaxy. Even though these stud-
ies have provided some light, the large-scale structure of the MW
disc proves to be highly complex. Near- and mid-infrared (IR) low-
resolution images detected the COBE/DIRBE bar (Weiland et al.
1994), also referred to as the triaxial bulge or the COBE/DIRBE bar.

�E-mail: mromero@am.ub.es

Near-IR red clump giants of the mid-plane revealed the existence
of a second bar (Hammersley et al. 2000; López-Corredoira et al.
2007; Cabrera-Lavers et al. 2008), and confirmed by GLIMPSE
(Benjamin et al. 2005), usually referred to as the Long bar. Obser-
vations suggest two other large-scale structures towards the inner
parts of the Milky Way, namely the near and far 3-kpc arms (Kerr
1964; Dame & Thaddeus 2008) and the Galactic Molecular Ring
(GMR; Clemens, Sanders & Scoville 1988). Although their char-
acteristics or even their existence are currently being under debate
(Dame & Thaddeus 2011), here we aim to bring some light given
the observed characteristics up-to-date. The near and far 3-kpc arms
were detected using the H I 21-cm line and CO emission surveys and
extend roughly parallel to the COBE/DIRBE bar, whereas the po-
sition of the GMR is not so well determined. Clemens et al. (1988)
suggested it is located at ∼5.5 kpc from the Galactic Centre, while
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other authors suggest it is located about halfway to the Galactic
Centre (Binney & Merrifield 1998; Dame, Hartmann & Thaddeus
2001; Rathborne et al. 2009).

There has been a lot of effort to determine the bar and spiral arm
characteristics, both from the observational and theoretical point of
view. Debattista, Gerhard & Sevenster (2002) and Sevenster (2002)
use a sample of ∼250 bright OH/IR stars of the inner Galaxy to
determine the pattern speed of the COBE/DIRBE bar, while the CO
emission and the 21-cm line of neutral hydrogen map the galac-
tic longitude–velocity (l, v) diagram (Dame et al. 2001; Dame &
Thaddeus 2008; Vallée 2008). The spiral arms and rings of the
Galaxy appear as overdensities in such diagrams. From the theoret-
ical point of view, several works use hydrodynamics simulations to
constrain the Galaxy parameters and to reproduce the observed (l,
v) diagram (e.g. Englmaier & Gerhard 1999; Rodrı́guez-Fernández
& Combes 2008; Baba, Saitoh & Wada 2010). From the orbits point
of view, Habing et al. (2006) compute a library of orbits, some of
which reproduce the overdensities in the inner longitudes of the
(l,v) diagram, while Green et al. (2011) study in detail the shape of
the 3-kpc arm concluding that it can be approximated by an ellipti-
cal ring. Test particle simulations have recently been used to study
the velocity distribution function in the solar neighbourhood and to
use it to constrain the characteristics of the bar and/or spiral arms
(Dehnen 2000a, hereafter Dehnen00; Fux 2001, hereafter Fux01;
Chakrabarty 2007; Antoja et al. 2009; Minchev et al. 2010).

In this paper we will use an approach which is novel for our
Galaxy, namely that of invariant manifolds. In a previous set of
papers we developed the method and techniques that we will use
here and also applied them to the study of spirals and rings in exter-
nal galaxies (see Romero-Gómez et al. 2006, 2007; Athanassoula,
Romero-Gómez & Masdemont 2009a; Athanassoula et al. 2009b,
2010, hereafter Papers I–V, respectively). The invariant manifolds
are linked to the presence of the Lagrangian points L1 and L2 of
a barred system and they can reproduce the observed structures of
rings and spiral arms. In Papers I–V, we studied in detail the charac-
teristics of the orbits confined by such invariant manifolds and we
analysed both their morphology and kinematics so as to compare
them to the rings and spiral arms in external barred galaxies. In-
variant manifolds, albeit in a quite different way than what we have
here and Papers I–V, have also been used by Tsoutsis et al. (2009) to
model three barred galaxies, NGC 3992, NGC 1073 and NGC 1398
and by Patsis, Kalapotharakos & Grosbol (2010) to perform an
orbital analysis of NGC 1300.

Here we use the invariant manifolds to compute a family of
orbits of a wide range of energies and to study their morphology
and their kinematics. We want to evaluate whether the invariant
manifolds can provide an alternative, plausible model for the inner
part of the MW disc. By using MW analytical potentials recently
used in the literature, we try to answer the following questions.
Can observations be plausibly interpreted by manifolds? Can the
latter provide an alternative interpretation of the inner structure of
the MW? Which are the requirements the potential has to fulfil in
order to reproduce the rings and spiral arms of the MW? In a future
paper we will examine whether the combination of the manifolds
and observations can constrain the MW bar properties.

In order to compute the orbits confined by the manifolds we
must first fix the Galactic potential. We have chosen the most rep-
resentative analytical potentials used to describe a COBE/DIRBE
bar, namely a Ferrers bar (Ferrers 1877), a quadrupole bar (Bin-
ney & Tremaine 2008) and a composite bar (Pichardo, Martos
& Moreno 2004, hereafter PMM04). Deliberately, we consider
studies where the authors have tuned one of these three types of

potentials to the COBE/DIRBE bar, and we use the same set of
parameters as they do.

The paper is organized as follows. In Section 2, we discuss
whether our Galaxy has a single or a double bar, using arguments
from the morphology of external galaxies, from orbital structure
theory and from N-body simulations. We also describe the models
and compare them in detail in terms of forces. In Section 3, we give
a brief summary of the dynamics driven by the unstable Lagrangian
points and, in particular, the definition of the invariant manifolds.
We also give a brief summary of the main relevant results found in
Papers I–V. In Section 4, we compute the invariant manifolds for
the selected models and we analyse them in terms of morphology
and kinematics. The results are compared to the observables in Sec-
tion 4.3. In Section 5, we explore the parameter space and determine
in which cases the manifolds could reproduce outer spiral arms.
Finally, we give a short summary and conclusions in Section 6. In
the appendix, we describe in detail the analytical models and give
the default parameters used.

2 MODELLI NG THE GALACTI C POTENTIAL

2.1 Analytical models

There are several analytical models in the literature used to model
the MW Galaxy. They essentially consist of an axisymmetric plus a
one-bar component. Each model has been constructed to model the
MW and in the appendix of this paper we give a brief description of
the potentials used and their default parameters. We want to stress
here that we will consider the same parameters as these studies. The
axisymmetric component describes the disc, halo and bulge of the
Galaxy and in each model it is modelled in a different way.

The models considered in this paper are the following.

(i) Melnik & Rautiainen (2009, hereafter MR09) and Gardner &
Flynn (2010, hereafter GF10) both use a Ferrers bar (Ferrers 1877),
though the purpose of each of the papers is very different. The
former uses the bar potential in test particle simulations to model
the kinematics of the outer rings and spirals of the Galaxy and to
compare it with the residual velocities of OB associations in the
Perseus and Sagittarius regions. The latter studies the effect of the
bar parameters on the kinematic substructures found in the velocity
plane of the solar neighbourhood.

(ii) Dehnen00 and Fux01 both use a quadrupole bar, but with
different model parameters, to study the effect of the COBE/DIRBE
bar on the local disc stellar kinematics. Such potentials are also often
referred to as ad hoc potentials, since they are not obtained from
any density distribution.

(iii) The composite bar of PMM04 consists of a set of prolate
ellipsoids, superposed so that the surface density matches the mass
distribution obtained by the COBE/DIRBE mission, and from which
the potential and forces are derived. The authors compute in detail
the families of orbits given by this potential and use surfaces of
section to characterize the bar structure.

In order to fix the parameters of each model, the authors take
into account the available relevant observational data. Even though
there is a lot of uncertainty in these data, a range of possible values
can be determined. The semimajor axis of the COBE/DIRBE bar
or Galactic bulge is ∼3.1–3.5 kpc and its aspect ratio of 10:4:3
(length:width:height), as estimated by COBE/DIRBE (Weiland
et al. 1994; Freudenreich 1998; Gerhard 2002). Several studies
fix the mass of the COBE/DIRBE bar in the range 1–2 × 1010 M�
(Matsumoto et al. 1982; Kent 1992; Dwek et al. 1995; Zhao 1996;
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Weiner & Sellwood 1999). The relative orientation of the bar with
respect to the Galactic Centre–Sun is not well established, although
most observations [Two Micron All Sky Survey (2MASS) star
counts or red clump giants] and models (based on COBE/DIRBE
and Spitzer/GLIMPSE) agree it lies roughly within the range of
15◦–30◦ (e.g. Dwek et al. 1995; Binney, Gerhard & Spergel 1997;
Stanek et al. 1997; Englmaier & Gerhard 1999; Fux 1999; Bissantz
& Gerhard 2002; Bissantz, Englmaier & Gerhard 2003; Babusiaux
& Gilmore 2005; Benjamin et al. 2005; López-Corredoira, Cabrera-
Lavers & Gerhard 2005; Churchwell et al. 2009). Here we choose
20◦ as a representative value. The pattern speed obtained by the
studies mentioned in the Introduction lies within the range �b =
35–60 km s−1 kpc−1 although higher values are favoured (see Ger-
hard 2011 for a review). As for the Long bar, it is somewhat longer
than the COBE/DIRBE bar with a semimajor axis of ∼4–4.5 kpc
and an aspect ratio of 10:1.54:0.26 (Hammersley et al. 2000). The
mass of the Long bar is less than the mass of the COBE/DIRBE bar.
It is estimated to be around 6 × 109 M�, i.e. about 2/3 that of the
COBE/DIRBE bar (Hammersley et al. 2000; GF10). The relative
orientation from the Galactic Centre–Sun line is estimated observa-
tionally to be ∼40◦ (Hammersley et al. 2000; Benjamin et al. 2005;
López-Corredoira et al. 2007; Cabrera-Lavers et al. 2008). Note
that the observational sources used to constrain the parameters of
the COBE/DIRBE and the Long bar are different. These could, in
principle, lead to somewhat different definitions of bar length. How-
ever, according to Freudenreich (1998) for the COBE/DIRBE bar
and Hammersley et al. (2000) for the Long bar, both give estimates
of the bar half-length. Even though these estimates are subject to
observational errors, the ratio of the two values will not change
significantly.

2.2 How many bars does our Galaxy have?

A considerable fraction of external barred galaxies are known to
have two bars: a primary or main bar and a secondary or inner bar.
This fraction depends on the galaxy’s Hubble type, the quality of the
sample images, and other factors, but fractions of the order of a third
or a fourth are quite reasonable. Could it be that our Galaxy is one
of these? In order to pursue this line further, one needs to make sure
that the properties of the COBE/DIRBE bar and the Long bar are
compatible with those of galaxies with double bars. Can we safely
assume that the Long bar is the main bar and that the COBE/DIRBE
bar is the secondary bar?

Several properties of inner bars have been well studied (e.g.
Erwin & Sparke 2002; Laine et al. 2002; Erwin 2011) and some
major trends have been found. The strongest constraints come from
the bar length. Inner bars are quite small, with a semimajor axis
between 100 pc and 1.2 kpc, with median size around 500 pc. Typi-
cally their relative length is about 12 per cent of that of the main bar.
The sample of Erwin (2011) contains 64 galaxies with double bars
and out of these only two have a secondary bar longer than 22 per
cent of the primary, and none longer than 30 per cent. This contrasts
strongly with the numbers for our Galaxy, where the length of the bar
semimajor axis is 3.1–3.5 and ∼4 kpc for the COBE/DIRBE and for
the Long bar, respectively. Thus the length of the COBE/DIRBE bar
is more than 10σ beyond the values found for the inner bars of exter-
nal galaxies. Furthermore, the relative length of the COBE/DIRBE
bar relative to the Long bar is ∼0.8, again more than 10σ out of
the distribution found from external galaxies. Double bars have
also been found in simulations (Heller, Shlosman & Athanassoula
2007; Shen & Debattista 2009) and their parameters are in good

Figure 1. Two edge-on views of a bar from a simulation (see text). The
upper panel shows a side-on view, and the bottom one a view from an angle
near the bar major axis. In both cases the views are perspective and thus the
relative thickness of the inner and outer parts should be inferred only from
the upper panel.

agreement with those of observed double bars and in disagreement
with the values for our Galaxy.

So one can reasonably exclude that the Long and the
COBE/DIRBE bar form a double bar system, because their prop-
erties are very far from those of double bars in external galaxies
and simulations, making the two incompatible.1 So then what is it?
The data give us an important clue for that. Namely the ratio of
the major- to z-semi-axis of the bar is ∼0.3 for the COBE/DIRBE
bar and ∼0.03 for the Long bar, i.e. the Long bar is very thin
and the COBE/DIRBE bar is very thick. Let us therefore exam-
ine the alternative that there is only one bar in the Galaxy and
that the COBE/DIRBE bar is simply the part which corresponds to
the boxy/peanut bulge and the Long bar the outer part of this bar.
This geometry has been already discussed for external galaxies in
e.g. Athanassoula (2005) and Athanassoula & Beaton (2006) and
was first proposed for our Galaxy by Athanassoula (2006, 2008).
Cabrera-Lavers et al. (2007) tested this suggestion using their red
clump giants measurements. We will discuss here further what the
relevant orbital structure studies and N-body simulations imply.

Pfenniger (1984) and Skokos, Patsis & Athanassoula (2002a,b)
studied the building blocks of bars, i.e. the periodic orbits, in 3D.
They found that the third dimension introduced considerable com-
plexity to the orbital structure. Whereas in 2D it is the orbits of
the x1 family that are the backbone of the bar (Contopoulos & Pa-
payannopoulos 1980; Athanassoula et al. 1983), in 3D we have a
tree of 2D and 3D families bifurcating from the x1 (Skokos et al.
2002a,b). Each of these families has its own horizontal and vertical
extent. Since the extent of the box/peanut will in general be de-
termined by a different family than that determining the length of
the bar, it is natural for their lengths to be different. Furthermore,
the ratio of the lengths predicted in this way (Patsis, Skokos &
Athanassoula 2002) is in good agreement with that measured for
the COBE/DIRBE bar and the Long bar (0.8).

This structure has also been seen in a number of simulations,
where the bar forms very thin and after a while a vertical insta-
bility develops and creates the boxy/peanut feature (e.g. Binney
1981; Combes et al. 1990; Athanassoula 2005; Martinez-Valpuesta,
Shlosman & Heller 2006). Results from one such simulation are
shown in Fig. 1 (see the appendix for the details of the simulation).
This is given as an illustration and not as a model of our Galaxy.

1 Alard (2001), however, found evidence for a small lopsided bar in our
Galaxy, whose size is well compatible with those of inner bars. This would
then be the secondary bar of the Galactic double bar system, while the
primary would be constituted of the COBE/DIRBE bar and the Long bar
together.
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In the upper panel we give the side-on view2 of the bar component.
For clarity, the remaining disc, as well as the halo, is not displayed.
This shows clearly that the thick part of the bar (i.e. the boxy/peanut
bulge) is less extended than the thin part and that the thin part pro-
trudes on either side of it. It also gives an estimate of the relative
vertical thickness of the inner and outer parts, although this could
vary from one model to another. Note that the thin and thick part are
parts of the same bar, and do not constitute two separate compo-
nents. Furthermore, both orbital theory and simulations show that,
in the present scenario of box/peanut formation, there must be a thin
part of the bar extending further than the box/peanut.

In the lower panel of Fig. 1 the bar is viewed from an angle much
nearer to end-on.3 We do not claim that either the model, or the angle
of the line of sight with respect to the bar major axis is necessarily the
correct one. This projection, nevertheless, illustrates roughly how
one could be mistaken into considering the poxy/peanut feature and
the thin outer part of this bar as two separate components.4

By visualizing a simulation from many viewing angles, it is pos-
sible to realize the geometry of the object, but this is not possible
for real galaxies, where only one viewing angle is possible for each
case. Thus, in near face-on galaxies we can clearly see the bar,
while in near side-on ones we can see the boxy/peanut bulge. There
are, however, viewing angles which are near edge-on, but not quite,
and where both the boxy/peanut shape and the outer thin bar are
visible. The most interesting inclination range is between 60◦ and
80◦. Several examples have already been discussed in the literature,
such as NGC 7582 with an inclination angle of about 65◦ (Quillen
et al. 1997), NGC 4442 (Bettoni & Galletta 1994) at approximately
72◦ and M31 at about 77◦ (Athanassoula & Beaton 2006). In these
cases it is possible to get information on the ratio of lengths of the
box/peanut and bar. For M31, where this was specifically measured
with the help of cuts (Athanassoula & Beaton 2006), it was found
to be ∼0.7, in good agreement with the value found for our Galaxy.
Lütticke, Dettmar & Pohlen (2000) made a detailed morphological
and photometrical study of a sample of 60 edge-on galaxies, also
using cuts, and found that the ratio of boxy/peanut length to bar
length depends on the specific morphology of boxy/peanut bulge
and, therefore, on bar strength. For peanuts, this ratio is 0.53 ± 0.08,
for clear boxes 0.63 ± 0.08 and for box-like shapes 0.71 ± 0.1. Ac-
cording to these numbers our Galaxy would be more box like, but
it should be kept in mind that these statistics are based on very
few objects (21 in total, for this measurement) and the scatter quite
high.

The above arguments seem to exclude the possibility that the
Long bar and the COBE/DIRBE bar are the primary and secondary
bars of a double bar system, since the bar lengths and length ratios
disagree strongly both with observations of external galaxies and
with simulations. Double systems with bars of comparable length
have never been observed either in any external galaxy or in any
simulation. It would thus be very hazardous to assume that our
Galaxy is the only one known to have such a feature. On the other
hand, the alternative that the COBE/DIRBE and the Long bar are
parts of a single bar is in good agreement with observations, with

2 In a side-on view the galaxy is viewed edge-on, with the line of sight
perpendicular to the bar major axis.
3 In the end-on view the galaxy is viewed edge-on with the line of sight
along the bar major axis.
4 A short movie, showing this bar from several viewing angles can
be found in http://lam.oamp.fr/research/dynamique-des-galaxies/scientific-
results/milky-way/bar-bulge/how-many-bars-in-mw/

Figure 2. Face-on view of a simulation. This is not a model built specifically
to represent our Galaxy, but is a clear example of a snapshot with a short
leading ring segment emanating from the end of the bar (see text). In this
figure the rotation is clockwise to facilitate comparison with our Galaxy.

orbital structure and with simulations. It is thus reasonable to favour
this second alternative.

Yet one inconsistency could still remain, concerning the posi-
tion angles of the bar(s). The angle between the major axis of the
COBE/DIRBE bar and the Galactic Centre–Sun line has been esti-
mated to be roughly in the range ∼15◦ to ∼30◦. First observations of
the corresponding angle for the Long bar give an estimate of ∼40◦

(Hammersley et al. 2000; Benjamin et al. 2005; López-Corredoira
et al. 2007; Cabrera-Lavers et al. 2008), while more recent work
favours angles around 25◦ to 35◦ (Zasowski, Benjamin & Majew-
ski, private communication). The uncertainties are such that the
observations could be in agreement with the solution checked here,
particularly since structures such as spiral arm or ring segments
could contribute to the observed Long bar signal. In particular, we
stress that in many N-body simulations there is often, within the in-
ner ring a short, leading segment (see e.g. Athanassoula & Misiriotis
2002, and Fig. 2). Furthermore, in many N-body simulations and
galaxies seen near face-on the boxy/peanut bulge is fatter (i.e. more
extended perpendicular to the bar major axis) than the thin outer
part of the bar. A more accurate answer would necessitate a detailed
comparison of a large number of simulations to the observations.
It would be useful to do this work using the Marseille library of
high-resolution barred galaxy simulations run by one of us (EA).

2.3 Intercomparing the various models

For each model we consider three cases. In the first case, the non-
axisymmetric component describes only the COBE/DIRBE bar or
boxy/peanut bulge located at an angular separation of 20◦ with
respect to the Galactic Centre–Sun line. We will refer to this set
of models as case 1. From the discussion in the previous section
we expect this to have a weaker bar than it should, since the outer
parts, i.e. the contribution of the Long bar, have been neglected.
Nevertheless, we believe it is useful to consider such cases because
a large number of such models have been applied to our Galaxy
for varied purposes. Indeed the five models we are considering here
have been built by other authors for different purposes.

In the second case we will include the effect of the Long bar. Since
our approach necessitates the use of an analytic potential, which has
not been calculated so far for objects as complex as the bar described
in Section 2.2, we will model the bar as the superposition of two
bar models, a vertically very thick one which has the properties of
the COBE/DIRBE bar and represents the boxy/peanut bulge, and
a very thin one which represents the Long bar. Trials with N-body
simulations show that this is a very reasonable approximation, no
worst than other approximations standard used in such modelling.
We still need to decide at what angle to place the bar major axis with
respect to the Galactic Centre–Sun line. Since the measurements of
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the distance of the Long bar are quite accurate, it would be tempting
to place it at 40◦. Simulations, however, show that in many cases
the end of the bar is not symmetric, but extends considerably further
towards the leading side, in a form reminiscent of a short arm of
ring segment (e.g. Athanassoula & Misiriotis 2002). This is also
seen in a number of external galaxies. If it is the case for the MW as
well, then observers would be measuring distances both from stars
in the thin outer parts of the bar and from that leading segment and
that would make the bar look as if it were at a somewhat larger
angle than what it really is. The difference will not be big, maybe
5◦ or 10◦. For this reason, we have considered many values of the
angle between the bar major axis, but will use for most displays
the value of 30◦, while discussing what the effect of changing this
angle is. Since these two bars are part of the same object, i.e. they
rotate together, they should have the same pattern speed. To model
the Long thin bar, we will use the same type of bar as for the thick
COBE/DIRBE bar, but with different values of the free parameters
chosen according to the available observations (see the appendix).
We will refer to this set of models as case 2.

As already discussed in Section 2.2 and also in the previous
paragraph, we believe that the angular separation between the
COBE/DIRBE bar and the Long bar is an artefact due to the un-
certainties of the measurements and the existence of the leading
extension. Nevertheless, in order to follow these observations we
will also consider the case where the angular separation between
bars is of 20◦ (case 3). Clearly, since we assume that the pattern
speeds of the two bars are the same, this situation is dynamically
unstable due to the forces and torques between the two bars. We
nevertheless discuss it briefly to follow the observations.

In Table 1, we give a brief summary of the main characteristics
of each model. For each model (column 1), we give the type of bar
included in the potential (column 2), the solar radius (column 3),
the value of the pattern speed (column 4) and for each of the three
cases, the corotation radius or the distance of the equilibrium point
L1 to the Galactic Centre, rL1 , and the three values of bar strength,
in sequence α, Qb and Qt,L1 . The latter are defined as follows.

(i) α (columns 6, 10 and 14) is the ratio of the radial force due
to the bar’s potential to that due to the axisymmetric background,
evaluated at the solar radius and along the COBE/DIRBE bar major
axis. We thus have

Qr(r) = ∂�b/∂r

∂�0/∂r
, (1)

and α = Qr(R0), where �b and �0 denote the bar and the axisymmet-
ric potential, respectively, and R0 is the solar radius. This quantity
is analogous to qr in Athanassoula et al. (1983).

(ii) A similar quantity can be obtained if we use the tangential,
rather than the radial bar force:

Qt(r) = (∂�(r, θ )/∂θ )max

r(∂�0/∂r)
, (2)

where � is the total potential, �0 is its axisymmetric part and
the maximum in the numerator is calculated over all values of the
azimuthal angle θ . The maximum of Qt(r) over all radii shorter than
the bar extent is called Qb (columns 7, 11 and 15 in Table 1) and
is often used to measure the bar strength (Buta, Block & Knapen
2003; Buta, Laurikainen & Salo 2004; Laurikainen, Salo & Buta
2004; Buta et al. 2005; Durbala et al. 2009; Manos & Athanassoula
2011). The radius where this maximum is achieved is defined as
rmax, i.e. Qb = Qt(rmax).

(iii) Qt,L1 (columns 8, 12 and 16) is the value of the tangential
force at the Lagrange radius or corotation, Qt,L1 = Qt(r = rL1 ).
This indicator was introduced in Paper III and was shown to cor-
relate well with morphological features of the galaxy (such as the
axial ratio of the rings or the pitch angle of spirals).

Note that the values of α and Qt,L1 are evaluated at the outer
parts of the bar or the disc, whereas Qb gives the tangential force at
a radius that lies inside the bar.

In the left-hand panels of Fig. 3, we show Qr(r) (top panel) and
Qt(r) (bottom panel) for the five models with only the COBE/DIRBE
bar, i.e. case 1. In the inlet in each panel, we make a zoom of the re-
gion around the solar radius. The grey strip marks the range between
the minimum (3.6 kpc for PMM04) and the maximum (4.4 kpc for
MR09) corotation radius. From the curves in the left-hand panels of
Fig. 3, and also from the value of Qt,L1 , we note that model Fux01
has the strongest bar around corotation, followed, in sequence by
MR09, PMM04, Dehnen00 and finally GF10. Around the solar ra-
dius, both α and Qt agree in the sequence, which from strongest to
weakest is Fux01, MR09, Dehnen00, PMM04 and GF10. For mod-
els MR09, PMM04 and GF10, the region of corotation is displaced
slightly outwards by the introduction of the Long bar, but it is not
affected by any change in the angular separation between the two
bars, as expected. Indeed this displacement is due to the mass of the
Long bar and is independent of its orientation. In models Fux01 and
Dehnen00 the bar is only modelled as a non-axisymmetric forcing,
thus introducing no extra mass and no displacement of corotation
outwards. Comparing the curves of the middle and right-hand panels
of Fig. 3, at the corotation and solar regions, we note that the se-
quence of the models as a function of bar strength does not change.
Note, however, how the introduction of the Long bar increases both
Qr and Qt, in all models and especially in PMM04, GF10 and MR09,
which have a bar that comes from a density distribution.

Table 1. Characteristics of the five analytical models. In the first and second columns, we write the name of the model and the type of bar,
respectively. In the third column, give the value of the solar radius and in the fourth column, we give the value of the pattern speed. Then for
each case, namely case 1 (potential with only the COBE/DIRBE bar), case 2 (potential with the COBE/DIRBE and Long bar aligned) and case
3 (potential with the COBE/DIRBE and Long bar at 20◦ of angular separation), we give the corotation radius (rL1 ), the radial force at the solar
position (α), the maximum of the tangential force (Qb) and the tangential force at the corotation radius (Qt,L1 ). The units are kpc for distance
and km s−1 kpc−1 for the pattern speed.

Case 1 Case 2 Case 3
Model Bar R0 �b rL1 α Qb Qt,L1 rL1 α Qb Qt,L1 rL1 α Qb Qt,L1

Fux01 Quadrupole 8. 51. 4.3 0.022 0.38 0.08 4.7 0.03 0.45 0.1 4.7 0.03 0.43 0.1
MR09 Ferrers 7.1 54. 4.4 0.02 0.49 0.08 4.7 0.02 0.83 0.09 4.7 0.02 0.50 0.09

PMM04 Composite 8.5 60. 3.6 0.005 0.53 0.08 3.9 0.01 0.61 0.12 3.9 0.008 0.54 0.13
Dehnen00 Quadrupole 8. 51. 4.3 0.01 0.17 0.04 4.5 0.016 0.23 0.06 4.5 0.015 0.21 0.05

GF10 Ferrers 8. 56. 4.2 0.003 0.22 0.02 4.5 0.006 0.63 0.03 4.4 0.004 0.36 0.02
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Figure 3. Radial profile of Qr (upper panels) and Qt (bottom panels) for the models used here. Left-hand column: case 1 with only the COBE/DIRBE bar;
middle column: case 2 with the COBE/DIRBE and Long bars aligned; right-hand column: case 3 with the COBE/DIRBE and Long bars at an angular separation
of 20◦. The inlays show the solar neighbourhood region in better resolution. In all panels, the grey strip marks the corotation region (see text).

Note that the value of Qb only reflects the behaviour of the tan-
gential force in the inner parts of the bar. If we were interested in this
region, we would use the value of Qb as the measure of bar strength,
and the sequence would be as follows: PMM04, followed by MR09,
Fux01, GF10 and Dehnen00. In case 3, the introduction of the Long
bar does not change the sequence, although when the two bars are
aligned, case 2, the sequence, from the highest to the lowest bar
strength, is MR09, GF10, PMM04, Fux01 and Dehnen00.

Since we are not interested in the innermost parts of the Galaxy,
but rather in a region around corotation, we will use Qt,L1 as the
measure of bar strength.

3 TH E I N VA R I A N T M A N I F O L D S

The models presented in the previous section are composed of an
axisymmetric component and a non-axisymmetric component, the
latter described by either a single bar (case 1) or two bars (cases
2 and 3), rotating clockwise with a constant angular velocity, �b.
In cases 2 and 3, both bars are assumed to have the same pattern
speed. We will work in the reference frame where the bar is at rest
and we use the convention that in this frame, the COBE/DIRBE
bar is along the x-axis. We concentrate on the motion on the z = 0
plane (the Galactic equatorial plane). A full 3D study, albeit for a
simple logarithmic potential, was treated in Romero-Gómez et al.
(2009) and revealed that the motion in the vertical direction can be
essentially described by an uncoupled harmonic oscillator, whose
amplitude is relatively small and that the 3D structures do not affect
the motion in the z = 0 plane.

Our theory is largely based on the dynamics of the Lagrangian
points L1 and L2 of a 2D galaxy system. These are located where
the first derivatives of the effective potential vanish, along the bar
semimajor axis, and are unstable saddle points (Binney & Tremaine
2008). Each of them is surrounded by a family of periodic orbits,

called Lyapunov orbits (Lyapunov 1949). Since these orbits are
unstable they cannot trap around them quasi-periodic orbits of the
same energy, so that any orbit in their immediate vicinity (in phase
space) will have to escape the neighbourhood of the corresponding
Lagrangian point. Not all departure directions are, however, pos-
sible. The direction in which the orbit escapes is set by what we
call the invariant manifolds. These can be thought of as tubes that
guide the motion of particles of the same energy as the manifolds
(Koon et al. 2000; Gómez et al. 2004). In Fig. 4, we show that from
each Lyapunov orbit (light grey thin curve roughly in the middle

Figure 4. Dynamics around L1. The four branches of the invariant manifolds
(black curves) associated to the Lyapunov orbit (grey curve). The red arrows
show the sense of circulation, while the black dashed line marks the position
of the corotation radius.
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of the panel), emanate four branches: two of them inside corotation
(inner branches) and two of them outside it (outer branches). Along
two of these branches (one inner and one outer) the mean motion
is towards the region of the Lagrangian point (stable manifolds),
while along the other two it is away from it (unstable manifolds). In
this theory the stars travel along the orbits trapped by the manifolds.

We need to stress that the terms ‘stable’ and ‘unstable’ do not
mean that the orbits that follow them are stable and unstable, re-
spectively. In fact all the orbits that follow the manifold are chaotic,
but they are in a loose way ‘confined’ by the manifolds, so that they
stay together, at least for a few pattern rotations, in what could be
called a bundle. The terms stable and unstable refer to the sense of
the motion and are related to the saddle behaviour of the equilibrium
points. We propose that these manifolds and orbits are the building
blocks of the spirals and rings (Papers II and III). These manifolds
do not exist for all values of the energy, but only for energies for
which the corresponding Lyapunov periodic orbit is unstable. This
means energies within a range starting from the energy of the L1

or L2 (EJ,L1 ) and extending over a region whose extent depends on
the potential (Skokos et al. 2002a).

The morphological and kinematical characteristics of the mani-
folds in external barred galaxies are studied in Papers III–V. Note
that in these papers, the non-axisymmetric component consists of a
single bar. The main results relevant to this study can be summarized
as follows.

(i) The large-scale structure of the galaxy is related to the strength
and the pattern speed of the bar (Paper III). We find that weak non-
axisymmetric perturbations produce manifolds of rR1 ring shape
(an inner ring elongated around the bar and an outer ring whose
principal axis is perpendicular to that of the bar), while strong non-
axisymmetric perturbations produce spiral arms or other types of
rings.

(ii) The range for the shape and size of both the inner and outer
ring given by the models agree with that from observations, where
the axial ratio of the inner ring spreads uniformly within the range
0.6–0.95, while the axial ratio of the outer ring falls within the range
of 0.7–1 (Buta 1986). Furthermore, we find a strong anticorrelation
between the axial ratio of the rings and the bar strength.

(iii) The default number of spiral arms given by the manifolds
is two, since they are associated with the number of saddle points
of the model. The typical orientation is trailing, i.e. following the
unstable branch of the manifolds, and their shape reproduces the
characteristic arm winding often observed in external galaxies, i.e.
the spiral arms first unwinds and then returns to the bar region.

(iv) The formation of the manifolds, and therefore of the rings
and spirals, depends on the existence of the saddle Lagrangian
points. These appear when we perturb the axisymmetric potential
with a non-axisymmetric component. We have applied this theory
to barred galaxies, but the saddle Lagrangian points can be due to
other non-axisymmetric perturbations, such as spiral perturbations.

(v) In potentials with a strong m = 4 component of the forcing,
manifolds can also account for four-armed spirals.

(vi) We also studied the behaviour of collisional manifolds using
a simple model in which the particles within a manifold lose en-
ergy (Papers III and V). We compared collisional and collisionless
manifolds and found that they have very similar shapes, at least
for rings and for the first half turn of spirals. The collisional rings,
however, are thinner, i.e. more concentrated, than their collisionless
counterparts.

(vii) Bars are known to evolve secularly, becoming longer and
stronger while slowing down. As a result, the Lagrangian points

move outwards and the Qt,L1 increase. This has important implica-
tions for manifolds, whose shape and location will change adiabati-
cally with time. Furthermore, it will bring material to the Lagrangian
points, replenishing the mass reservoirs that fill the manifolds. In
the case of rings, once material is trapped in the manifolds, it can
stay there indefinitely, if the model is stationary, while any increase
in the bar strength can trap more material into the manifolds.

4 TH E I N N E R PA RT O F TH E D I S C

Here we study the morphology and kinematics of the models men-
tioned in Section 2. To compare them morphologically, in Sec-
tion 4.1 we show the invariant manifolds, ‘tubes’ that guide the
motion of the stars, of a given energy level. To study the kinemat-
ics, in Section 4.2, we use the orbits trapped by the manifolds, since
these are the ones that really trace the kinematics. In this case, and in
order to make the plots clear and clean, we will consider the orbits
of minimum energy, since for higher energies, the orbits overlap
and the area they outline grows thicker (Paper I). Finally, in Sec-
tion 4.3, we discuss how the manifolds reproduce the observables
of the inner part of the Galaxy, i.e. the region between 2 and 6 kpc,
using the up-to-date MW potentials.

4.1 The morphology

Fig. 5 illustrates how the invariant manifolds change as a function
of the pattern speed and the bar mass/amplitude for two of the bar
types considered here, namely the composite bar (top panel) and the
ad hoc quadrupole bar (bottom panel). The results for the Ferrers
bar are similar to the composite bar and can be seen by comparing
with fig. 4 of Paper III. Note that only the COBE/DIRBE bar is
modelled here (case 1) and that as we increase the pattern speed of
a model, the Lagrangian radius moves inwards, and the manifolds
become attached to the bar. To better understand the plots, we give
the ratio of the Lagrangian radius over the bar scalelength. For the
composite bar models, the bar scalelength is fixed to a = 3.13 kpc
(see the appendix) and the Lagrangian radius is varied, therefore,
the ratio rL/a increases from left to right from 1.47 to 2. On the
other hand, for the quadrupole bar models, the ratio rL/a is fixed to
1.25, so the bar length-scale is different in each panel. In the latter
case, the ratio is inside the range determined by hydrodynamic
simulations rL/a = 1.2 ± 0.2 (Athanassoula 1992), while in the
former, it is outside it. We cannot, however, extend our search to
smaller rL/a values because this would entail too big pattern speed
values (Gerhard 2011).

In Fig. 6 we plot the invariant manifolds for all case 1 models
that we consider here, i.e. up-to-date MW models with only the
COBE/DIRBE bar and we use the set of parameters that the authors
consider to describe best the MW disc potential. In each panel we
plot the invariant manifolds of a given energy. The morphology
does not depend on the energy value chosen, provided this is near
the Lagrangian point energy (Paper I).5 The panels are ordered
from left to right, from the strongest bar model to the weakest
bar model, namely Fux01, MR09, PMM04, Dehnen00 and GF10,
according to the Qt,L1 measure of the force (see Table 1). All cases
present both an inner and an outer ring and can be classified as

5 The energy chosen for each model is |(EJ,Fux01 − EJ,L1 )/EJ,L1 | =
6.6 × 10−4, |(EJ,MR09 − EJ,L1 )/EJ,L1 | = 2.5 × 10−3, |(EJ,PMM04 −
EJ,L1 )/EJ,L1 | = 6.5×10−4, |(EJ,Dehnen00 −EJ,L1 )/EJ,L1 | = 7.2×10−3

and |(EJ,GF10 − EJ,L1 )/EJ,L1 | = 7.2 × 10−3.
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Figure 5. 2D parameter study of the composite and quadrupole bar models for case 1. On the x-axis we decrease the pattern speed from left to right. On the
y-axis we increase the bar strength from bottom to top, from a bar mass Mb = 7 × 109 to 18 × 109 M� for the composite bar or from α = 0.005 to 0.15 for the
quadrupole bar. The thin black circle in each panel marks the solar radius. Top panel: the composite bar model. The panel with grey background corresponds
to model PMM04. Bottom panel: the quadrupole bar model. The panels with grey background correspond to model Fux01 (top: α = 0.02 and �b = 51) and
Dehnen00 (bottom: α = 0.01 and �b = 51).

rR1 ring morphologies. The axial ratio of the rings, however, is
clearly different from one model to another. In columns 2–5 of
Table 2 we give the axial ratio and the major diameter of the inner
and outer rings. Dehnen00 and GF10 have an inner ring axial ratio
that falls well within the observational range (0.6–0.95) for the SB
galaxies (Buta 1986). In contrast, the inner rings in Fux01, MR09
and PMM04 are too elongated with axial ratios ranging from di/Di =
0.43–0.5, respectively. In the particular cases of MR09 and PMM04,
whose bar potential is built from a density distribution, the locus of

the inner manifolds falls well inside the bar ellipsoid, so that, when
self-gravity would be considered, the two could merge, as discussed
in Paper IV. Therefore, we cannot consider the inner rings of MR09
and PMM04 as proper inner rings surrounding the bar and this
justifies their low axial ratio. The bar in Fux01 is ad hoc and we
cannot confirm this fact. For Dehnen00 and GF10, the axial ratio
of the inner ring increases with decreasing bar strength, from being
oval, di/Di = 0.66 for Dehnen00, to more circular, di/Di = 0.77 for
GF10, in good agreement with what was found in Paper IV. There
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Figure 6. Invariant manifolds for the five selected bar potentials and case 1. From left to right: Fux01, MR09, Dehnen00, PMM04 and GF10. The thick solid
red line marks the position and length of the bar. In the case of the ad hoc potentials, it marks the bar scalelength. The thin dashed red circle marks the solar
radius adopted by the respective authors.

Table 2. Sizes of the inner and outer rings in the three cases considered, from left to right, only the
COBE/DIRBE bar (case 1), COBE/DIRBE and Long bar aligned (case 2) and COBE/DIRBE and Long bar at
φ = 20◦ (case 3). For each of the cases and for each of the models, we give, in the first and second columns,
the axial ratio and the major diameter of the inner ring, di/Di and Di, respectively, (in kpc), while in the third
and fourth columns, we give the same values for the outer ring, do/Do and Do, respectively.

Case 1 Case 2 Case 3
Model di/Di Di do/Do Do di/Di Di do/Do Do di/Di Di do/Do Do

Fux01 0.43 4.6 0.74 6.9 0.31 4.7 0.68 7.2 0.31 4.6 0.74 7.1
MR09 0.46 4.3 0.75 6.2 0.40 4.7 0.71 6.8 0.32 4.6 0.78 6.9

PMM04 0.50 3.6 0.78 5.0 0.32 3.9 0.76 6.6 0.41 3.7 0.78 5.5
Dehnen00 0.66 4.5 0.80 6.1 0.54 4.5 0.76 6.3 0.50 4.5 0.82 6.3

GF10 0.77 4.2 0.86 5.3 0.72 4.4 0.81 5.7 0.78 4.1 0.82 5.1

are also differences in the size. The inner ring in Fux01, MR09 and
PMM04 is very elongated, as mentioned above, not reaching 3 kpc
along the minor axis. On the other hand, Dehnen00 and GF10 have
a major diameter of Di = 4.5 and 4.2 kpc, respectively.

The axial ratio of the outer ring in the five models falls well
within the observational range (0.7–1) for SB galaxies (Buta 1986)
and correlates with the bar strength as measured by Qt,L1 , as found
for other models in Paper IV. Fux01, with the strongest bar, has
the more eccentric outer ring, do/Do = 0.74, while GF10, with the
weakest bar, has a more circular ring with do/Do = 0.86. The major
diameter is around Do = 6 kpc. In Fux01 the outer ring reaches
6.9 kpc along the major diameter, and in MR09 and Dehnen00 it
is around 6 kpc, while GF10 and PMM04 have the smallest outer
rings with a major diameter of 5.3 and 5.0 kpc, respectively.

In case 2, where the Long bar is aligned to the COBE/DIRBE bar,
the global morphology is still that of an rR1 ring, but there is an ef-
fect on the shape and kinematics of the rings (see Section 4.2).
The axial ratio of the outer ring decreases approximately by
5 per cent in the mean, compared to that of case 1, while the
axial ratio of the inner ring decreases on average by 20 per cent
(see columns 6–9 of Table 2). Changing the angle between the bar
major axis and the direction of the Galactic Centre–Sun line makes
no difference to this result. In case 3, the axial ratio of the outer
ring, do/Do, essentially does not change compared to that of case 2.
The inner ring, on the contrary, gets more elongated with a mean
decrease of the axial ratio, di/Di, of about 30 per cent compared to
the values given by case 1, in agreement with the elongated 3-kpc
arm obtained by Habing et al. (2006) from the distribution of maser
stars in the inner MW. As discussed in Paper IV this can be due to
the fact that we include orbits that form the outer parts of the bar.

The size of the global structure is similar to that of the single bar
model (see columns 10–13 of Table 2). This means that there is in
general an agreement with what is observed in external galaxies.

4.2 The kinematics

This section is devoted to the analysis of the kinematics provided by
the manifolds in the selected models. Fig. 7 shows the line-of-sight
heliocentric velocity given at each galactic longitude, hereafter (l,
v) diagram, obtained from CO observations (Dame et al. 2001). The
main features found in the inner 2–6 kpc of the Galaxy are marked
with solid and dashed lines, namely the near and far 3-kpc arms
and the overdensity crossing the (l, v) at l = 0◦ and v = 0 km s−1

(GMR). The rest of the features are related to the central part of
the Galaxy or to the outer arms, so we will not consider them in
our comparisons. Note also that these features were observed in
the CO, while we compare them to collisionless manifolds. This,
nevertheless, is possible since in Papers III and V we showed that
the shape of collisional and collisionless manifolds does not differ
much, at least for rings and for the first half turn of spirals (except for
the width, which is smaller in the collisional cases). Furthermore, in
external galaxies where it is easy to check, we note that the shapes
of the gaseous and stellar rings are very similar, with the notable
difference that the rings in the young stars are thinner than the ones
in the old stars, in good agreement with our calculations. Finally, in
external galaxies there are few, if any, purely gaseous rings with no
stellar component. This would anyway be contrived, since it would
involve a strong concentration of gas which would not form stars.
We can thus proceed with our comparisons.
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Figure 7. The (l, v) diagram obtained from the observations of Dame et al.
(2001) and Dame & Thaddeus (2008), as plotted by Rodrı́guez-Fernández
& Combes (2008). The line-of-sight velocity is given with respect to the
local standard of rest (LSR). The solid lines trace the position of some
remarkable features such as the locus of the spiral arms, the 3-kpc arm
and the connecting arm. The black dashed lines indicate the contour of the
GMR. The solid circles are the terminal velocities measurements of Fich,
Blitz & Stark (1989) using CO, while the triangles are the terminal velocities
determined from the H I data of Burton & Liszt (1993). The boxes mark the
position of the Sagittarius, Scutum, Norma and Centaurus tangent points,
located, respectively, at l ∼ 50◦, ∼30◦, ∼−30◦ and ∼−50◦.

For each model, we compute the orbits trapped by the manifolds
with the energy closest to the energy of L1 (minimum energy for
the manifolds to exist), and we show them in the first column of
Figs 8–10, for the COBE/DIRBE bar only (case 1), the two-bar
models aligned (case 2) and the two-bar models with and angular
separation of 20◦ (case 3), respectively. In the middle and right-hand
panels of the same figures, we plot the (l,v) diagram separately for
the inner and outer branches of the rings, respectively. The colours
mark the different parts of the ring. We also show in a thin dotted
black line the axisymmetric component of the terminal velocity
curve, i.e. the maximum line-of-sight velocity at a given longitude.
The black solid and dashed lines are extracted from Fig. 7 and
trace the position of the near and far 3-kpc arm and of the GMR,
respectively.

The kinematic features in the (l, v) diagram that should be char-
acterized and taken into account for the subsequent comparison
with observations (Section 4.3) are as follows: first, where and by
how much the non-axisymmetric component exceeds the circular
terminal velocities; secondly, the shape of the lines traced on the
diagram compared to the overdensities on the observed one; thirdly,
the non-zero value of the line-of-sight velocity at l = 0◦ for these
overdensities (expansion or contraction in the radial Sun–centre
direction).

In several models, we observe that the velocities of the orbits
in the manifolds exceed the circular terminal velocities at low lon-
gitudes. For example, the inner rings of Fux01 and MR09 in all
three cases (one or two bars) exceed the terminal velocities at low
longitudes (see the second column of Figs 8–10). This is due to the
non-axisymmetric motions, but can in some cases be excessive (see
discussion in Section 4.3). It is also worth mentioning that the intro-
duction of the Long bar changes the (l,v) diagram in almost all cases.
In case 2, where the Long bar is aligned with the COBE/DIRBE bar,
in all models except for GF10, the velocities of the inner ring ex-
ceed the circular terminal velocity curve, due to the excess of mass

introduced. In Fux01 and MR09, however, the maximum velocity is
well above the terminal curve. In case 3, it increases the velocities in
models PMM04, Dehnen00 and GF10 to values slightly exceeding
the terminal velocities at certain longitudes.

Table 3 summarizes the line-of-sight velocities along the Galactic
Centre–Sun line, i.e. l = 0◦. We see that the range of variation for
this velocity is 6–50 km s−1 in absolute value, for the models in
case 1. The introduction of the Long bar in case 2 increases the
line-of-sight velocity at l = 0◦ in all models and, in case 3, in all
models but PMM04, where it slightly decreases.

The kinematics along the outer ring also provides information
about the deviation from the circular velocity curve. Fig. 11 shows
the relative deviation of the tangential velocity in the inertial frame
from the circular velocity for the orbits in all models with the
COBE/DIRBE bar. The angle θ is defined as the azimuthal galac-
tocentric angle with origin on the Galactic Centre–Sun line and
measured clockwise. The circular velocity at a given radius is given
by the axisymmetric component in the case of Fux01 and Dehnen00
models and by the axisymmetric component plus the m = 0 com-
ponent of the bar in MR09, GF10 and PMM04 models. Note that
in each case, the deviation from a flat rotation curve is less than
20 km s−1, in agreement with fig. 6 of Kranz, Slyz & Rix (2001).

4.3 Towards a manifold model of the inner MW

In the previous sections we analysed in an exhaustive way the re-
sults given by the manifolds for a wide set of models including
the possibility of modelling only the COBE/DIRBE bar or both the
COBE/DIRBE bar and the Long bar. We claim that in general the
manifolds can interpret the observables both morphologically and
kinematically. We now compare the results with the MW observa-
tions and analyse in detail what manifold models are more likely to
reproduce the 3-kpc arm and the GMR.

The observed characteristics of the 3-kpc arm are twofold: it
is elongated along the bar and it has non-zero velocities at l = 0◦

(−53 km s−1 for the near arm and 56 km s−1 for the far arm; Dame &
Thaddeus 2008), although other studies based on ammonia and wa-
ter in absorption give a value of −43 km s−1 (Wirström et al. 2010).
This sets a tentative estimate of the error bar of about 10 km s−1.
Among the set of models considered here, we can say that when only
the COBE/DIRBE bar is considered (case 1) MR09 and PMM04
reproduce this feature (see Table 3, where Fux01, Dehnen00 and
GF10 have absolute values below 15 km s−1).

The introduction of the Long bar, either aligned or misaligned,
in the models makes the inner ring more elongated and increases
the velocities along l = 0◦, suggesting that the models with the two
bars have a tendency to better reproduce the observed line-of-sight
velocity of the 3-kpc arm (see Table 3). There is a big uncertainty in
the model parameters, including the angular position of the bar in
case 2. Increasing the angle from 20◦ to 40◦ makes the line-of-sight
velocities in the region of the 3-kpc arm to increase in absolute
value, i.e. increases the rectangular shape of the orbits in the (l,v)
diagram, while it decreases the size of the necklace-shaped feature
corresponding to the GMR. In the three selected cases, we can see
that several models can reach the observed line-of-sight velocities,
and even exceed them, whereas Dehnen00 and GF10 clearly do not
fit the observations.

From Figs 8–10 we observe that Fux01 in all three cases and
MR09 in cases 2 and 3 have velocities that highly exceed the termi-
nal velocity curve and, therefore, they do not satisfy one of the main
constraints of the (l,v) diagram. This fact can be due to two reasons.
First, these models have strong bars, i.e. the bar perturbation is quite
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Figure 8. The (l, v) diagrams of the five selected models with only the COBE/DIRBE bar, i.e. case 1: from top to bottom, Fux01, MR09, PMM04, Dehnen00
and GF10 model. Left-hand column: orbits in the (x, y) plane, the colours showing different parts of the rings; middle and right-hand column: (l, v) diagram of
the inner and outer manifolds, respectively. The circular terminal velocity is given by the black dotted line.
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Figure 9. As in Fig. 8, but now for case 2, where the two bars are aligned at 30◦ from the Galactic Centre–Sun line.
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Figure 10. As in Fig. 8, but now for case 3, i.e. for models with two bars with an angular separation of 20◦.
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Table 3. Line-of-sight velocities with respect to the LSR at l = 0◦.
N stands for the near 3-kpc arm, while F stands for the far 3-kpc arm.
Units are in km s−1.

Case 1 Case 2 Case 3
Model vlos N vlos F vlos N vlos F vlos N vlos F

Fux01 −15. 13. −30. 30. −27. 28.
MR09 −46. 44. −108. 109. −59. 58.

PMM04 −51. 50. −94. 95. −42. 42.
Dehnen00 −7. 6. −15. 15. −15. 13.

GF10 −6. 6. −13. 12. −9. 9.

noticeable in the outer parts. The second reason is morphological
and related to the previous one. The orbits trapped in the inner ring
resemble the cuspy x1 orbits of the bar, responsible for the maximum
in the terminal velocity curves (Binney et al. 1991). So the inner
branches of the orbits are in the immediate vicinity of the orbits of
the bar, making an increase of the velocity at low longitudes.

All the above discussion suggests that at least some of the model
parameters may not be appropriate for the MW, and most of them
may not be optimum. Indeed, they were selected in the papers
described in the appendix so as to give optimum results for the
COBE/DIRBE bar only, and not for the two bars together. We
have nevertheless followed them here because they are the standard
reference models in the field. In a future paper we will search for
the parameter values which are optimum for the COBE/DIRBE and
Long bar system.

The spatial locus of the GMR is not well established. Clemens
et al. (1988) claim that the peak emission of the GMR is at ∼5.5 kpc,
while Binney & Merrifield (1998), Dame et al. (2001) and Rath-
borne et al. (2009) suggest that it is located around (1/2)R0. Clemens
et al. (1988) believe that the GMR is an almost circular ring with
a pitch angle of about 4◦, while other authors (Fux 1999; Dame
et al. 2001; Rodrı́guez-Fernández & Combes 2008) favour the pos-
sibility that the molecular ring is composed of several inner spiral
arm segments rooted in the central bar. Kinematically, though, it is
somewhat better constrained. It defines an overdensity in the (l,v)
diagram, crossing the plane from ∼100 km s−1 and l ∼ 30◦ to ∼
−100 km s−1 and l ∼ −40◦, passing through the origin and having
a typical necklace shape. Morphologically, the outer branches of
the manifolds in most of the cases have a size appropriate to the
GMR, although Fux01, MR09 and Dehnen00 have a major diam-
eter closer to the Sun’s position than to halfway from the Galactic
Centre. The shape varies from one model to another, the models of
Dehnen00, PMM04 and GF10 (with only one bar or with two bars)
having the shape nearest to circular. Kinematically, not all models
fit the enhancements related to the GMR. The manifold branches
plotted in red in Figs 9 and 10 (cases 2 and 3) fit well inside the
dashed lines in all models, while the dark blue branches lie inside
the dashed lines only for models GF10 and PMM04. Fux01, MR09
and Dehnen00 the blue line makes a loop that resembles the over-
density found between l = 30◦ and 40◦ [see fig. 5 of Rathborne et al.
2009, where they plot the (l,v) diagram given by the 13CO emission
of the molecular clouds and clumps of the Boston Galactic Ring
Survey]. Note, in addition, that the angular separation between the
bars does not affect the global shape of the outer manifolds, either
morphologically or in the (l,v) diagram.

5 O BTA ININ G THE O UTER SPIRAL ARMS

As mentioned in the Introduction, one of the main features of the
MW is the presence of two stellar massive spiral arms (Benjamin

Figure 11. Relative deviation of the tangential velocities in the inertial
frame with respect to the circular velocity of the outer ring as a function of
the azimuthal galactocentric angle θ . Top panel: case 1, models with only the
COBE/DIRBE bar. Middle panel: case 2, two-bar models aligned. Bottom
panel: case 3, two-bar models at an angular separation of 20◦. The colours
represent the same type of models in all panels.

et al. 2005). In this section, we discuss the COBE/DIRBE bar models
focusing on the parameters necessary in order for the manifolds to
reproduce a two-armed spiral shape.

In Section 3 and Paper II we showed that in a barred galaxy
potential, the two parameters that influence most the shape of the
invariant manifolds in the outer parts are the bar mass (or amplitude
of the m = 2 component for quadrupole bars) and its pattern speed.
In subsequent papers, we analysed the effect of the variation of both
parameters and showed that the resultant gross global morphology
is not model dependent, and that, for all models, faster and more
massive bars produce more open spiral arms, while slower and
less massive bars produce symmetric outer rings (see Fig. 5 and
Paper III).

In the previous section, we computed the invariant manifolds for
five selected MW models with the default parameters chosen by the
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authors. In all cases, the global morphology is that of an rR1 ring
whose extension does not reach the solar radius. As seen in Fig. 5, if
we want to reproduce the outer spiral arms of the Galaxy using orbits
confined by the manifolds, we should significantly increase the bar
mass or strength, and the pattern speed of each model. In fig. 8
of Paper III, we plot the different models considered as a function
of the strength parameter Qt,L1 . We observed that the different
morphologies are grouped as a function of Qt,L1 , so if the bar model
has Qt,L1 < 0.1 we have R1 outer rings, while for 0.1 < Qt,L1 < 0.2
the model gives R′

1 pseudo-rings, and for Qt,L1 > 0.2 it gives
spirals and the other type of rings (R2 and R1R2). So we need to
use model parameters that give a value of Qt,L1 of around 0.2, or
larger. Note that this value is significantly larger than the values
given in Table 1. We will see if this is a plausible option for the
MW.

In the case of quadrupole bars, the minimum values of α and
�b necessary to obtain tightly wound spiral arms are 0.05 and
50 km s−1 kpc−1, respectively (bottom panel of Fig. 5). A model with
two open spiral arms that crosses the solar radius can be obtained
with α ≥ 0.1 and �b ≥ 40 km s−1 kpc−1. Even though the pattern
speed falls within the range found by simulations (Englmaier &
Gerhard 1999), the bar strength is too high. Remember that α is the
radial force along the bar semimajor axis and at the solar radius. It
means that with a quadrupole model and a flat rotation curve, we
need a bar whose strength is about 10 per cent of that of the disc
at the solar radius. Besides, the Qb parameter of this model is 2.08
far outside the observed range (Block et al. 2004). If we vary the
shape of the rotation curve and we make it slightly decreasing in
the outer parts (β = −0.2), we can obtain two open spiral arms
with α ≥ 0.075 and �b ≥ 57 km s−1 kpc−1. The radial force of the
bar in the solar neighbourhood is still quite high but it gives Qb =
0.63, implying a strong bar, but within the observed range (Block
et al. 2004). This might indicate that if we want to reproduce the
spiral arms using manifolds, it seems necessary to have a decreasing
rotation curve in the outer parts. A recent study conducted by Xue
et al. (2008) analysed more than 2400 stars from the Sloan Digital
Sky Survey (SDSS) and concluded that it is indeed possible that the
rotation curve of the MW decreases in the outer parts, by a factor
within the range β = (−0.2, −0.1), compatible with the suggested
model. Other studies (Brand & Blitz 1993) suggest that the rotation
curve of the MW could be slightly increasing in the outer parts,
meaning that we should need stronger bars in order to obtain open
spiral arms with manifolds.

In the case of composite bars, the force decreases very abruptly
in the outer parts of the disc, see Fig. 3. In order to obtain values
of Qt,L1 of the order of 0.1 or 0.2 we have to increase the pattern
speed up to at least �b ∼ 75 km s−1 kpc−1 for a bar mass of 1.4 ×
1010 M�. If, on the other hand, we decrease the bar axial ratio, also
related to the bar mass, to b/a = 0.25, we can obtain values of Qt,L1

of the order of 0.1 with a bar mass of ∼2.0 × 1010 M� and a pattern
speed of �b ∼ 70 km s−1 kpc−1. Nevertheless, the value of Qt,L1 is
still too low. The case of Ferrers bars is analogue to the composite
bar.

The main conclusion here is that it seems that in any case the
COBE/DIRBE bar is not strong enough to make two open spiral
arms that could reach the outer parts of the disc. Even though the
introduction of the Long bar makes the inner branches of the mani-
folds more elongated (Section 4.1), it does not change the previous
conclusions. Models with an extra component to the potential, for
example a spiral forcing, should be explored in the future as a
possible option to induce spiral arms through manifolds.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we applied the invariant manifolds theory for the first
time to the MW. We first presented a thorough discussion about
whether the Long bar and the COBE/DIRBE bar are, respectively,
the primary and the secondary bar of a double bar system in our
Galaxy. We dismissed this alternative, because their properties are in
strong disagreement with the properties of double bars in external
galaxies and with those in simulations. We then considered the
alternative that the COBE/DIRBE bar and the Long bar are simply
parts of the same bar, the former being the boxy/peanut bulge
and the latter the thin outer parts of the bar. We compared the
morphology thus obtained with that of external barred galaxies,
with that obtained from orbital structure and with simulations, and
found very good agreement in all cases. We also proposed some
reasonable possibilities to explain the fact that observations indicate
a misalignment between the major axes of the COBE/DIRBE bar
and of the Long bar.

We then selected five characteristic models in the literature that
include the COBE/DIRBE bar, and, to account for recent observa-
tions and the above-mentioned possibility, we have also considered
the case with an additional Long bar. We analyse the models, first in
terms of forces, and then we compute the manifolds in three cases,
namely when only the COBE/DIRBE bar is modelled (case 1), when
the two bars are aligned at 30◦ from the Galactic Centre–Sun line, as
observed in a large amount of external galaxies (case 2), and when
the two bars have an angular separation of 20◦ according to the
observations (case 3). Note, however, that in the models discussed
here, both bars rotate at the same pattern speed, which makes case
3 dynamically unstable.

Regarding the questions formulated in the Introduction, we con-
firm that the observed features of the inner parts of the Galaxy, more
specifically the 3-kpc arms and the GMR, can be plausibly inter-
preted using manifolds. The morphological and kinematic analysis
shows that the inner and outer rings described by the manifolds
can well represent the 3-kpc arms and the GMR of the inner parts
of the Galaxy, respectively. Not all models, however, are suitable
to describe both features at the same time and in both ways. In
general, the GMR is well reproduced by all models in all three
cases, but the 3-kpc arms depend more on the characteristics of the
potential.

We can tentatively conclude that the two bars of the Galaxy, i.e.
the COBE/DIRBE and the Long bar, are necessary to reproduce
the observables and, in this case, among the five models, the ones
with less strong bars, namely PMM04, Dehnen00 and GF10 have
a better fit. Another conclusion of this work is that the value of the
angular separation between the bars does introduce changes both in
the morphology of the rings and in the (l, v) diagram.

We also analysed in detail what bar parameters would be neces-
sary so that the manifolds have a spiral arms morphology concluding
that, for quadrupole bars, a stronger bar is necessary, while for the
composite and the Ferrers bars, the force decreases too abruptly in
the outer parts of the disc, and it is difficult to obtain open spiral
arms by only increasing the bar mass or its pattern speed. In the
case, though, where the global morphology would be one with two
spiral arms, the rR1 configuration would be lost. This suggests that
the most probable solution in the manifold framework would be a
more complex potential with one or two bars in the inner part and a
spiral further out.

In a future paper we will revisit the most successful of the models
considered here and vary their main parameters – i.e. the mass and
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the pattern speed of the bar, and the angle of the bar major axis with
the Galactic Centre–Sun line – searching for the values that give the
best fits to the observations.
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APPEN D IX A :

Here we describe the models we used throughout the paper, namely
models with a quadrupole bar (Dehnen00; Fux01), a composite bar
(PMM04) and a Ferrers bar (Ferrers 1877; MR09; GF10). We also
give a brief description of the simulation used in Section 2.2.

A1 The quadrupole bar model: Fux01 and Dehnen00

The quadrupole model consists of the superposition of an axisym-
metric component given by a simple power-law rotation curve and
an m = 2 type potential for the bar, as in Dehnen00 and Fux01. We
refer to these models in the text as Dehnen00 and Fux01, respec-
tively.

The potential corresponding to a power-law rotation curve is

�0(R) = v2
0

{
(2β)−1(R/R0)2β, β �= 0,

ln(R/R0), β = 0, (A1)

where R0 = 8 kpc denotes the Galactocentric distance to the Sun
and v0 the local circular speed. Since in this paper we compare
the two Galaxy models, we will keep the original values of R0

and v0, namely 8 kpc and 220 km s−1 for Dehnen00, and 8 kpc and
200 km s−1 for Fux01. The parameter β is related to the shape of
the rotation curve, with β = 0 for a flat rotation curve, β < 0 for
a falling rotation curve and β > 0 for a rising rotation curve. We
use flat rotation curves in this paper, unless otherwise stated. In the
case of falling rotation curves, we use a value of β = −0.2.

The bar is described as the m = 2 component of the Fourier
decomposition of the potential: �b(R, θ ) = A(R) cos (2θ ), where

A(R) = Ab

⎧⎪⎨
⎪⎩

(
R
Rb

)3
− 2, R ≤ Rb,

− (
Rb
R

)3
, R ≥ Rb, (A2)

where Rb and Ab are the size and the amplitude of the bar. In both
models, Rb = 0.8rL1 and rL1 = 4.35 kpc. This Lagrangian radius
together with the rotation curve given by equation (A1), corresponds
to a pattern speed of �b = 51 km s−1 kpc−1.

The authors measure the strength parameter of the bar by the
ratio of the forces due to the bar and to the axisymmetric power-law
component at the Sun Galactocentric radius on the bar’s semimajor
axis:

α = 3
Ab

v2
0

(
Rb

R0

)3

. (A3)

Note that this measure is dimensionless, it is directly related to the
bar amplitude and it is related to equation (1) by α = Qr(R0). When
the Long bar is introduced in the potential, it is described also with
an m = 2 component of the Fourier decomposition of the potential
with Rbl = 0.92rL1 , rL1 = 4.35 kpc and αl = 0.6α.

A2 The composite bar model: PMM04

The composite bar is an analytical model designed to fit the density
profile of the bar given by COBE/DIRBE. Again, it consists of
the superposition of an axisymmetric component and a bar. The
axisymmetric component is the result of the superposition of a
bulge, a disc and a dark matter halo. The potential we used is
based on the one considered by Allen & Santillán (1991) to fit the
axisymmetric component of the MW. The bulge and the disc are
modelled using a Miyamoto–Nagai potential (Miyamoto & Nagai
1975):

�bl(R, z) = − M1(
R2 + z2 + b2

1

)1/2 , (A4)

where (R, z) are the cylindrical coordinates, M1 = 1.4 × 1010 M�
is the bulge mass and b1 = 0.3873 is the bulge scalelength:

�d(R, z) = − M2(
R2 +

[
a2 + (

z2 + b2
2

)1/2
]2

)1/2 , (A5)

where M2 = 8.56 × 1010 M� is the disc mass, a2 = 5.3178 and
b2 = 0.25 are the radial and vertical scalelengths, respectively. The
dark matter halo is described using a spherical potential:

�h(r) = −M(r)

r

− M3

1.02a3

[
− 1.02

1 + (r/a3)1.02 + ln
(
1 + (r/a3)1.02

)]100

r

,

(A6)

where the halo radius is 100 kpc, M3 = 10.7 × 1010 M�, which
makes the total mass of the halo M(100 kpc) = 8.002 × 1011 M�,
and a3 = 12 is its scalelength.

The parameters are chosen so that the total mass of the axisym-
metric component is 9 × 1011 M�, the rotation curve flattens at
approximately 200 km s−1, setting the Galactocentric distance to
the Sun R0 = 8.5 kpc and the circular velocity at the Sun’s position
to v0 = 220 km s−1.

The bar component is taken from PMM04. The density distri-
bution is obtained to match the observations from COBE/DIRBE.
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The bar is the result of the superposition of prolate spheroids with
density:

ρb(Rs) = ρ0

⎧⎨
⎩

sec h2(Rs) Rs ≤ Rends ,

sec h2(Rs)e
−

(
(Rs−Rends )2/h2

ends

)
Rs ≥ Rends ,

(A7)

where Rs = ((x2/a2
x) + ((y2 + z2)/a2

y))1/2. The parameters ax and ay

are the scalelengths of the bar and are fixed to 1.7 and 0.54 kpc,
respectively. The constants Rends and hends are defined as abar/ax and
hend/ax, respectively. The authors fix abar = 3.13 kpc and hend =
0.46 kpc, as the values of the length of the bar and its scaleheight.
The bar is divided in three regions to better describe the density. The
first two have a fall of sec h2 and the third has a Gaussian fall that
starts where the bar ends. This implies a steep but smooth decrease
in the density in the outer parts. The bar mass is fixed to Mb =
1010 M� and �b = 60 km s−1 kpc−1. The model parameters of the
Long bar, when included in the potential, are a = 4.5 kpc, b/a =
0.24 and Mbl = 0.6Mb = 6 × 109 M�.

A3 The Ferrers bar model: MR09 and GF10

The third bar model we use is a Ferrers bar as used by MR09
and GF10. The potential is described by the superposition of an
axisymmetric plus a bar-like component. The axisymmetric com-
ponent considered by the two pairs of authors is slightly different
even though both have a flat rotation curve.

In MR09, the axisymmetric part of the potential has two compo-
nents: a bulge and a halo. The bulge potential is a Plummer sphere
(Binney & Tremaine 2008). The bulge mass is fixed to 1.22 ×
1010 M� and its scalelength to 0.31 kpc. The halo is described by
its rotation curve as

v2(r) = v2
max

r2

r2 + r2
c

, (A8)

where vmax = 251.6 km s−1 is the asymptotic maximum of the halo
rotation curve and rc = 8 kpc is its core radius.

In GF10, the axisymmetric part of the potential has three compo-
nents: a bulge, a disc and a dark halo. The bulge is a superposition of
two Plummer spheres, with masses 3 × 109 and 1.6 × 1010 M�, re-
spectively, and scalelengths 2.7 and 0.42 kpc, respectively. The halo
is described by an axisymmetric logarithmic potential with asymp-

totic velocity fixed to 220 km s−1 and core radius 8.5 kpc. Finally,
the disc results of the superposition of three Miyamoto–Nagai discs
(Miyamoto & Nagai 1975) with masses 7.704 × 1010, −6.848 ×
1010 and 2.675 × 1010 M�, respectively, and radial scalelengths
5.81, 17.43 and 34.84 kpc, respectively. The vertical scalelength is
the same for the three discs and it is fixed to 0.3 kpc.

As mentioned above, in both models, the bar component is de-
scribed by a Ferrers ellipsoid (Ferrers 1877), whose density distri-
bution is described by the expression

ρ =
{

ρ0(1 − m2)n, m ≤ 1,

0, m > 1, (A9)

where m2 = x2/a2 + y2/b2. The parameter n measures the degree of
concentration of the bar and ρ0 measures its central concentration.
It is related to the bar mass via the expression

Mb = 22n+3πab2ρ0�(n + 1)�(n + 2)/�(2n + 4). (A10)

In MR09, the authors fix n = 1, a = 3.82 kpc, b = 1.2 kpc and
Mb = 1.82 × 1010 M�. The default value for the pattern speed is
�b = 53 km s−1 kpc−1. In GF10, the authors fix n = 2, a = 3.5 kpc,
b = 1.4 kpc and Mb = 1010 M�, and the default value for the
pattern speed is �b = 55.9 km s−1 kpc−1. The model parameters for
the Long bar, when included in the potential, are a = 4.5 kpc, b/a =
0.15 kpc and Mb = 1.1 × 1010 M� for MR09 and a = 3.9 kpc,
b/a = 0.15 kpc and Mbl ∼ 0.6Mb = 6 × 109 M� for GF10.

A4 The simulation in Section 2.2

The simulation discussed in Section 2.2 is part of the library of N-
body simulations run by EA, but was not made specifically to model
the MW, and is only intended for illustration purposes. In the initial
conditions the disc has an exponential horizontal profile and a sec h2

vertical one. The halo is described by equation (2.2) of Hernquist
(1993) and the bulge by a Hernquist sphere (Hernquist 1990). It was
run using the public version of the gyrfalcon code (Dehnen 2000b,
2002). The resolution for Fig. 1 was enhanced using the technique
described by Athanassoula (2005) and made use of the glnemo2
display software, written by J.-C. Lambert. The same software was
also used to create the short movies.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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