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Abstract

The influence of the austenitic microstructural morphology on the mechanical

response of a multiphase steel is analyzed by comparing two relevant

configurations, namely (i) uniformly distributed grains of retained austenite

embedded in a ferritic matrix and (ii) a banded morphology of the two

phases. The analysis is carried out numerically using a discrete dislocation–

transformation model that captures processes occurring at sub-grain length

scales connected to nucleation and evolution of individual dislocations and

martensitic platelets inside the austenitic grains. The simulations indicate that a

microstructure composed of uniformly distributed grains of austenite is optimal

in terms of strength since it delays the onset of plastic localization compared

with banded microstructures.

1. Introduction

The microstructure of a typical high-strength low-alloyed multiphase steel assisted by

transformation-induced plasticity, known as TRIP steels, consists of ferrite (dominant phase),

bainite (composed of ferrite and cementite) and austenite (with volume fractions typically

ranging from 5 to 20%) [1]. The presence of austenite, which has been retained in the

microstructure upon cooling to room temperature, plays a critical role in this class of materials.

Indeed, during deformation, whether in forming or during operation, the retained austenite

transforms into a harder phase—martensite—providing this material with enhanced work-

hardening characteristics. The effective (macroscopic) mechanical properties of TRIP steels

strongly depend on the details of the microstructure, including grain size, volume fractions and

grain distribution. Depending on the thermomechanical processing route and the addition of

alloying elements, different microstructural morphologies can be generated for multiphase
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steels [2, 3]. The influence of the grain size on the overall strength has been recently

analyzed in [4] where it was found that the Hall–Petch effect becomes more relevant than

the strengthening due to martensitic transformation as the ferritic and austenitic grain sizes

decrease in samples of equal composition.

This work focuses on analyzing the influence of the spatial grain distribution on the

response of a multiphase steel assisted by transformation-induced plasticity. In particular, two

technologically important morphologies are analyzed, namely (i) a microstructure composed

of uniformly distributed isolated grains of retained austenite and (ii) a banded microstructure

composed of continuous layers of austenite and a ferritic matrix. The first configuration is

representative of a typical TRIP steel that is cold-rolled and subsequently annealed in two

steps (intercritical annealing followed by a second isothermal heat treatment). In the final

microstructure, the retained austenite appears as isolated grains surrounded by a ferritic matrix.

The second configuration is meant to mimic a banded morphology that sometimes appears

as a consequence of mechanical deformation during processing (e.g. hot-rolling) which is not

completely removed through further thermal treatment. The relevance of bandedmorphologies

in ferrous alloys has been discussed in [5–7].

The manufacturing of materials with distinct morphologies involves different deformation

and heat treatments that simultaneously affect a large number of microstructural parameters

such as grain size, carbon content or crystal orientations. All the aforementioned parameters

have an influence on the overall strength of a material, so that the differences in experimentally

measured strengths of variousmorphologies cannot uniquely be ascribed to the different spatial

distributions of grains. One advantage of numerical simulations is that the microstructural

characteristics can be easily controlled, thus allowing for a direct comparison of the influence

of morphologies whose only difference lies on grain distribution. To this end, the typical

microstructure of a TRIP steel with uniformly dispersed austenitic grains is chosen as a

reference while a bandedmicrostructure is constructed as an alternative configuration such that

only the spatial distribution of grains is modified while all the other microstructural parameters

are kept the same.

Plastic deformation is modeled using a discrete dislocation model while phase

transformations are accounted for by a discrete transformationmodel. Thismodeling approach,

initiated in [4], allows to capture complex sub-grain interactions between dislocations and

phase transformation that are difficult to describe using continuum constitutive models.

Computational cells with variousmorphologies are used in simulations with periodic boundary

conditions to mimic the bulk properties of the material and, thus, to determine the effective

strength associated to the various microstructural configurations.

2. Discrete dislocation–transformation model for multiphase steels

The behavior of a discrete aggregate of ferritic (body-centered cubic—bcc) and austenitic

(face-centered cubic—fcc) grains that may transform into martensitic platelets (twinned body-

centered tetragonal—bct) is simulated using the discrete dislocation–transformation model

presented in [4, 8], which is summarized in this section. The problem is decomposed into

three sub-problems, namely (i) a martensitic transformation problem (platelets of martensite

embedded in an infinite austenitic medium), (ii) the dislocation problem (dislocations

embedded in an infinite medium, either ferrite or austenite) and (iii) a complementary problem,

which accounts for a non-homogeneous, finite computational domain. The problems are shown

schematically in figure 1. Correspondingly, the stress σ, strain ε and displacement u are
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Figure 1. Schematic decomposition of the original dislocation–transformation problem into

three sub-problems for an aggregate of grains of ferrite (Äf ), austenite (Äa) and platelets of

martensite (Ämk ).

decomposed as follows:

σ = σ
m + σ

d + σ
c, ε = ε

m + ε
d + ε

c, u = u
m + u

d + u
c, (1)

where the superscripts m, d and c refer to the martensitic transformation problem, the

dislocation problem and the complementary problem, respectively. The fields for the

transformation and dislocation problems are obtained analytically upon adding the individual

solutions σ
m
k , ε

m
k and u

m
k of each martensitic platelet k = 1, . . . , Nm and the solutions σ

d
i , ε

d
i

and u
d
i for each dislocation i = 1, . . . , Nd in the domain (see [4] and [8]). The transformation

fields σ
m
k and ε

m
k corresponding to a martensitic platelet k and the dislocation fields σ

d
i and ε

d
i

connected to a dislocation i are constitutively related as

σ
m
k =

{

C
a
ε
m
k in Ä − Äm

k ,

C
m

(

ε
m
k − ε

tr
k

)

in Äm
k ,

(2)

and

σ
d
i = C

p
ε
d
i for i ∈ A

p , p = f, a,m, (3)

where the index p = f, a,m refers to the ferritic, austenitic or martensitic phase, C
p is the

tensor of elasticmoduli of a phasep andAp refers to the set of dislocationswhose core is located

within the phase p. The whole computational domain is denoted byÄ, whileÄm
k is the region

occupied by platelet k. The transformation tensor εtrk in each platelet k is determined from the

theory of martensitic transformations [9, 10] and consists of an expansion of magnitude δ in the

direction normal to nominal the habit plane (interface between austenite and martensite) and

a simple shear of magnitude γ parallel to the habit plane. The complementary fields satisfy

the following relations:

σ
c = C

p
ε
c + P

p in Äp , (4)

whereÄp is the region occupied by phase p = f, a,m and ε
c = 1

2
(∇u

c + (∇u
c)T). In (4), the

tensors P
p are polarization stresses that stem from the difference in elastic properties between

the ferrite, austenite andmartensite phases, i.e. these tensors take into account inhomogeneities

that are ignored in the analytical solutions of the transformation and dislocation problems.

Detailed forms for these tensors can be found in [4].

While this decomposition is general, the computations reported on here are for plane

strain problems. Assuming that the stress state at time t is known, evolution relations are

used to update the number and location of martensitic platelets and dislocations from time t to

time t + δt . The appearance of new dislocation dipoles and martensitic platelets is simulated

using sources randomly distributed across the specimen (dislocation sources in ferrite and

austenite, and transformation sources in austenite). The nucleation of martensite is based on
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the possibility of an embryonic elliptical martensitic platelet (of given aspect ratio e and major

semi-axis of length c0) to grow (see [8] for details). Subsequent growth of amartensitic platelet

k is assumed to occur by lateral movement of the tips of the elliptical cross section according to

a kinetic law that relates the velocity v
(q)

k of tip q = 1, 2 to an effective transformation driving

force f̄
(q)

k as

v
(q)

k =
f̄

(q)

k

Bm (πec)
, 0 6 v

(q)

k 6 vmmax (q = 1, 2), (5)

where Bm is a drag coefficient for transformation, c is the current length of the major semi-

axis and the tip velocity is limited by a cut-off value vmmax (see [8] for details and additional

rules to handle special situations). Similarly, as proposed in [11], nucleation of dislocation

dipoles is modeled by two-dimensional Frank–Read sources whenever the Peach–Koehler

force f di (driving force for plasticity computed at a dislocation source) exceeds a critical value

f cr = bτ cr during a prescribed time interval tnuc, with τ cr the strength of the dislocation

source (b is the magnitude of the Burgers vector). Subsequent movement of a dislocation i is

determined by its core velocity vdi , which is specified using the plastic kinetic relation

vdi =
f di

Bd
, 0 6 vdi 6 vdmax, (6)

where f di is the Peach–Koehler force computed at the core of dislocation i, Bd is the drag

coefficient for dislocationglide andvdmax is a cut-off value for the dislocationvelocity (additional

details can be found in [11]). The discrete dislocationmodels used for the bcc ferrite and the fcc

austenite are formally the same; only the material parameters and the slip systems are different.

The behavior of the martensite is mostly elastic until fracture (see [12]), hence no dislocation

sources are assigned to the martensitic phase. Dislocations and dislocation sources originally

in an austenitic region that transforms into martensite are deactivated (see [8] for details).

Grain boundaries are modeled as impenetrable barriers for the movement of dislocations and

for the growth of martensitic platelets.

3. Model parameters and boundary conditions

In the present plane strain simulations, the ferritic and austenitic grains are taken such that

the out-of-plane direction of the specimen coincides with the [1 1 0]f and [1 1 0]a directions of

the bcc ferrite and fcc austenite, respectively. Attention is restricted to the movement of edge

dislocations whose lines lie in the out-of-plane direction of the specimens. In-plane plastic

deformation is modeled through dislocation glide on the [1 1̄ 1]f(1̄ 1 2)f and [1̄ 1 1]f(1 1̄ 2)f slip

systems in the ferrite and the [1 1̄ 2]a(1̄ 1 1)a and [1̄ 1 2]a(1 1̄ 1)a slip systems in the austenite

(see [8] for more details). The slip plane normals of the (1̄ 1 2)f and (1 1̄ 2)f planes and the slip

plane normals of the (1̄ 1 1)a and (1 1̄ 1)a planes form angles of approximately 60
◦ between

them. For simplicity, the magnitude of the Burgers vector for ferrite and austenite is assumed

to be the similar. The actual transformation systems found in an fcc austenite to bct martensite

transformation are not compatiblewith plane strain conditions, but their effect can bemimicked

in the present formulation by choosing two distinct in-plane habit plane normal vectors oriented

at angles of 40◦ and 80◦ with respect to the austenitic slip plane normals mentioned above [8].

Unless otherwise noted, the model parameters used in all simulations are the same as those

presented in [4] and correspond to representative values for a low-alloyed multiphase steel

assisted by transformation-induced plasticity. It is worth mentioning that the elastic properties

of the ferrite and the austenite are assumed to be equal, C
f = C

a, and that the stiffness of

martensite is taken to be 30% larger than that of austenite (i.e. Cm = 1.3Ca), in accordance

4
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Figure 2. Illustration of a periodic polycrystalline sample.

with the values estimated in [13]. Furthermore, the average dislocation source strength of the

ferrite is taken to be 90% of the average strength of the austenite (i.e. the mean values of the

Gaussian distributions are such that τ̄ crf = 0.9τ̄ cra with τ̄ cr = 150MPa and a standard deviation

of 30MPa), which reflects the fact that ferrite is a softer phase in multiphase steels, partly due

to its relatively low content of interstitial carbon compared with austenite.

The simulations are carried out using a periodic computational cell consisting of an

aggregate of grains of ferrite and (initially) austenitic grains. The polycrystalline samples

can be realized by stacking replicas of an l × l square computational cell in a doubly periodic

pattern as shown in figure 2, where the grains are generated using a Voronoi algorithm. In order

to ensure periodicity, grains that cross the boundary of the computational cell are viewed as

whole grains in the periodic region, vertically and/or horizontally, as indicated in gray color in

figure 2. Consequently, slip lines that intersect the boundary need to be extendedon the opposite

side, vertically and/or horizontally. When a dislocation leaves the primary computational cell,

an image dislocation is introduced along the image slip line. For simplicity, configurations

are chosen such that austenitic grains do not cross the boundaries of the computational cell,

hence image martensitic platelets are trivially avoided. In simulations where austenitic grains

intersect the boundary of the unit cell, then the boundary of the unit cell is assigned as a

boundary of the austenitic grain.

Periodic displacement are imposed on opposite sides of the cell boundary, i.e., on the left

and right sides and on the top and bottom sides, see figure 2. Since the transformation and

infinite-space dislocation solutions do not satisfy these periodicity requirements, periodicity is

enforced numerically through the complementary problem. In view of (1), the complementary

solution is therefore subjected to the kinematic condition

u
c
R − u

c
L = (u(2) − u

(1)) − (umR − u
m
L ) − (udR − u

d
L), (7)

u
c
T − u

c
B = (u(4) − u

(1)) − (umT − u
m
B ) − (udT − u

d
B). (8)

Here, the subscripts L, R, B and T denote, respectively, points on the left, right, bottom and top

boundaries of the computational cell that are pair-wised connected via horizontal and vertical

periodicity while u
(i) are the displacement vectors of the corner points i = 1, 2, 4 as indicated

in figure 2.
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(a) (b) (c)

x2

x1

Average axial elongation

Figure 3. Morphologies of computational samples with (a) dispersed austenitic grains (gray),

(b) horizontally connected austenitic grains and (c) vertically connected austenitic grains. Sample

(d) is the same as (a) but the transformation mechanism in the austenitic phase is suppressed. Inset:

global coordinate system and sketch of average axial loading for all samples.

4. Simulations

4.1. Geometry and loading of polycrystalline samples

Simulation results are presented in this section to investigate the role of the morphology of

retained austenite on the effective response. In particular, samples with approximately the

same initial austenitic volume fraction of ξA0 ≈ 15% but with different grain connectivities are

analyzed. An8µm×8µmcellwith uniformlydispersed, isolated grains of austenite embedded

in the ferritic matrix is used as the prototypical microstructure of a multiphase steel exhibiting

transformation-induced plasticity (see figure 3(a)). Two other configurations are considered,

as shown in figures 3(b) and (c), in which all austenitic grains are connected horizontally and

vertically, forming a continuous banded (layered) structure. Discontinuous bands of austenitic

grains are more representative of low-alloyed multiphase steel since retained austenite has a

relatively small volume fraction; nonetheless, for comparative purposes, a continuous band

morphology is chosen since the effect of banding can bemore clearly established. The purpose

of considering the horizontally and vertically connected samples separately is that the effective

properties of a banded structure are expected to depend on the relative orientation of loading

with respect to the bands. It should be noted, however, that the horizontally and vertically

connected cases are not related through a 90◦ rotation; rather, the two samples have the

same grain boundaries and source distributions but the phases are assigned differently. More

importantly, the crystal orientation of the individual austenitic and ferritic grains is the same

for both the horizontally and vertically connected samples in order to suppress the influence

of the crystal orientation that would occur with a 90◦ rotation (the effect of crystal orientation

has been analyzed in [14]). An additional simulation is carried out where the transformation

mechanism in the austenitic phase is suppressed in order to establish the relative contribution

of the transformation-induced plasticity effect on the overall strength. The configuration for

this elasto-plastic simulation is the same as for sample (a) and is henceforth referred to as

sample (d).

In order to minimize the influence of strengthening and/or softening effects other than

the spatial distribution of grains, all crystal orientations are kept the same, the specimens are

initially dislocation-free and contain no dislocation obstacles except for grain boundaries and

the habit planes that appear during the simulation. The slip systems of ferrite and retained

6
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Figure 4. Orientations of slip and transformation systems with respect to the global coordinate

system.

austenite and the transformation systems of austenite are symmetrically oriented with respect

to the horizontal axis, according to the angles indicated in figure 4. The dislocation source

densities are ρfnuc ≈ 88µm−2 and ρanuc ≈ 30µm−2 for ferrite and austenite, respectively. In all

cases, the computational cell is subjected to an average axial deformation in the x1-direction

with an imposed average strain rate of ˙̄ε11 = 104 s−1 (specified through the displacement of the

corner nodes in the x1-direction), while the movement of the corner nodes in the x2-direction

is specified so as to mimic an average state of uniaxial tension. The average axial stress σ̄11 is

computed from

σ̄11 =
1

|Ä|

∫

Ä

σ11da,

where |Ä| refers to the area of the computational cell Ä.

4.2. Effect of grain connectivity

The evolution of the average axial stress σ̄11 as a function of the average axial strain ε̄11
is presented in figure 5 for the samples indicated in section 4.1. The transformation-

induced plasticity effect can be observed by comparing the response curves of the sample (a)

with dispersed transforming austenitic grains and sample (d) with dispersed grains where

the transformation mechanism has been suppressed. Their responses remain similar until

ε̄11 ≈ 0.0045 when the transforming material acquires a higher strength and work-hardening

rate than the sample without transformation. This result is in accordance with previous

simulations [4] using mixed displacement-traction boundary conditions and confirms that

the transformation-induced plasticity effect is also captured in the present simulations where

periodic boundary conditions have been applied.

The stress responses for the samples with horizontally and vertically connected austenitic

grains are similar to each other for the whole strain range used in the simulations. Despite an

early softening, the axial stress for the samples with connected grains eventually rise above

the non-transforming sample, which indicates that the transformation-induced plasticity effect

in general does increase the strength of the material regardless of the spatial distribution of

austenitic grains. The response of the samples with connected grains remains below that of

the sample with uniformly dispersed transforming grains, which therefore corresponds to the

most favorable morphology in terms of strength. Nonetheless, the hardening rate, measured in

7
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Figure 5. Average axial stress σ̄11 as a function of the average axial strain ε̄11 for various samples.

terms of the slope of the stress–strain curves, eventually becomes somewhat similar for both

dispersed and connected samples.

The above-mentioned features of the stress–strain response curves of the various samples

can be traced back to the underlying inelastic mechanisms. The development of the total

dislocation density and the volume fraction of austenite as a function of the average axial strain

are indicated in figures 6 and 7, respectively. The volume fraction of austenite is normalized

with respect to its initial value, i.e. ξ̄A = ξA/ξA0 .

In terms of the transformation-induced plasticity effect, it can be observed that the point

of significant departure between the stress responses of the samples with transforming and

non-transforming dispersed austenitic grains, curves (a) and (d) at ε̄11 ≈ 0.45% as shown in

figure 5, coincides with a decrease in the average transformation rate. The decrease in the

transformation rate can be inferred from the average slopes of curve (a) in figure 7 before and

after ε̄11 ≈ 0.45%. A decrease in the transformation rate implies that less stress relaxation

is available via the transformation mechanism and, consequently, there is an increase in the

work-hardening rate.

Despite the similarity of the stress–strain responses of the samples with horizontally and

vertically connected austenitic grains (samples (b) and (c)), their plastic and transformation

responses are rather different. Indeed, as can be observed in figure 6, the plastic deformation,

measured in terms of total dislocation density, is higher for the sample with vertically

connected austenitic grains compared with the sample with horizontally connected grains.

Similarly, from figure 7, the deformation associated with transformation, measured in terms

of austenitic volume fraction, is higher for the sample with horizontally connected austenitic

grains compared with the sample with vertically connected grains. Hence, a similar stress–

strain response is achieved for the sampleswith horizontally and vertically connected austenitic

grains by ‘compensating’ the two inelastic mechanisms.

In order to analyze the effect of grain connectivity in more detail, distributions of the axial

stress are shown in figure 8 for a strain level of ε̄11 = 0.78%, i.e. at the end of the response

8
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Figure 6. Total dislocation density ρ as a function of the average axial strain ε̄11 for various
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Figure 7. Normalized austenitic volume fraction ξ̄A as a function of the average axial strain ε̄11
for various samples.

shown in figure 5. The contour plots also reveal the distribution of martensitic platelets,

indicated as ellipses inside the austenitic grains. Comparing figure 8(a) with the other contour

plots, we see that the axial stress for the sample of dispersed transforming austenitic grains

is more evenly distributed than for the other samples. The ferritic matrix in the samples with

9
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Figure 8. Contour plots of axial stress σ̄11 and distribution of martensitic platelets of (a) dispersed

case, (b) horizontally connected case, (c) vertically connected case and (d) dislocation-only case.

All contours correspond to an average strain of ε̄11 = 0.78%.

horizontally and vertically connected austenitic grains (samples (b) and (c)) shows large areas

in compression. The same situation is observed in the samplewith dispersed, non-transforming

grains (sample (d)).

Further insight can be obtained by analyzing the spatial distribution of plastic deformation

in the various samples. A useful measure for this purpose is an equivalent plastic slip that can

be obtained through post-processing of the solution σ and ε given by the discrete method

(see (1)). To this end, one can introduce a (continuum) decomposition of the total strain ε as

follows:

ε = ε
e + ε

tr + ε
p, (9)

where ε
e, εtr and ε

p correspond to the elastic, transformation and plastic parts. The first two

parts are given by

ε
e = D

p
σ, ε

tr =

{

0 in R
2 − Äm

k ,

ε
tr
k in Äm

k ,
(10)

where D
p is the compliance tensor of phase p = f, a or m for the ferritic, austenitic

or martensitic phases, respectively, and ε
tr
k is the transformation strain associated with the

martensitic platelet Äm
k . If a continuum crystal plasticity had been used, the plastic strain

could be expressed in terms of the accumulated plastic slip γ (α) on the N slip systems by

ε
p =

N
∑

α=1

γ (α)
s

(α) ⊗ n
(α), (11)

10



Modelling Simul. Mater. Sci. Eng. 19 (2011) 074006 J Shi et al

Figure 9. Contour plots of equivalent plastic slip for (a) dispersed case, (b) horizontally connected

case, (c) vertically connected case and (d) dislocation-only case at an axial strain of ε̄11 = 0.78%.

with s
(α) the tangent vector and n

(α) the normal vector to slip system α = 1, . . . , N . Here,

however, we compute the plastic strain tensor εp by subtracting the elastic and transformation

parts calculated by means of (10) from the total strain, in accordance with (9). Subsequently,

it is used to obtain the equivalent plastic slip 0 defined as

0 =

N
∑

β=1

∣

∣s
(β) · ε

p
n

(β)
∣

∣ . (12)

Contour plots of the equivalent plastic slip are shown in figure 9 at an axial strain of

ε̄11 = 0.78% for all configurations. To better visualize the distribution of plastic slip, nine

adjacent cells are shown for each configuration. As can be observed from the figure, the plastic

deformation for the sample with dispersed transforming austenitic grains (figure 9(a)) is more

evenly distributed than for the other samples. Plastic slip in the horizontally and vertically

connected austenitic grains is relatively low, while plastic deformation in the corresponding

ferritic matrices tends to be concentrated in a few areas that, through periodicity of the

computational cell, can be interpreted as slip bands as shown in figures 9(b) and (c). Contrary

to expectations, the connected austenitic grains (both horizontal and vertical) do not form

an effective barrier for plastic slip in the ferrite. In fact, even though the slip bands in the

ferrite are confined between the layers of austenitic grains (that have partially transformed

to martensite), these slip bands continue in subsequent ferritic layers forming what may be

described as a long range slip band. In contrast, as can be observed in figure 9(a), the formation

of long range slip bands is rather limited in the sample with dispersed transforming austenitic

11
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grains. In that case, short range slip bands (spanning one to two ferritic grains) percolate

through all grains in the ferritic matrix resulting in a uniform distribution of plastic slip in

the ferritic matrix. This uniform distribution of plastic slip may not only be ascribed to

the spatial distribution of austenitic grains, but also to their transformation into martensite.

Indeed, the sample with dispersed but non-transforming austenitic grains shown in figure 9(d)

has better defined slip bands than the sample with dispersed transforming austenitic grains

shown in figure 9(a), which indicates that the transformation mechanism helps to delay plastic

localization.

Experimental studies reported in [15, 16] show that a microstructure with uniformly

dispersed grains of retained austenite (the so-called granular austenite) performs

macroscopically better in terms of strength compared with a microstructure where the retained

austenite appears intertwinned in elongated bainitic grains (known as interlath austenite).

The difference in performance has been attributed to the fact that interlath austenite hardly

transforms into martensite upon mechanical loading whereas the granular austenite does.

Despite that the present analysis does not take into account some of the features observed

in the experimental studies, the simulations shown here indicate that indeed the transformation

mechanism plays a significant role. More importantly, this work shows that the spatial

distribution of austenitic grains can play an equally relevant role in determining the strength

of the material, as demonstrated by the effective responses shown in figure 5.

5. Concluding remarks

The role of the spatial distribution of austenitic grains in a multiphase material has been

analyzed by means of computational volumes subjected to periodic boundary conditions. The

sample with uniformly dispersed transforming austenitic grains showed the highest strength

due to the absence of localized slip bands in the ferritic matrix. In contrast, slip bands formed

within the ferritic matrix for samples where the ferrite is confined by connected austenitic

grains, effectively reducing the overall strength. In terms of the phase transformation, the

highest transformation ratewas observed for amorphologywhere the austenitic layer is aligned

with the loading direction. Although more transformation was accompanied with less plastic

deformation (measured in terms of number of dislocations), this sample had well-defined slip

bands in the ferritic matrix that significantly affected the average strength.

It is likely that localization would inevitably occur in samples with dispersed transforming

austenitic grains if the strain level is further increased in the simulations. However, for

computational reasons, the analysis is limited to a relatively small strain range, which

prevents a numerical validation of this hypothesis. Nevertheless, the present simulations

indicate that a microstructure with uniformly distributed transforming austenitic grains delays

the onset of plastic localization and has higher strength than a material with a layered

microstructure. This observation suggests that banded microstructures in multiphase steels

assisted by transformation-induced plasticity are in general detrimental from the point of view

of strength.
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