University of Groningen

Dynamic Kinetic Resolution of alpha-Substituted beta-Ketoesters Catalyzed by Baeyer-Villiger Monooxygenases

Rioz-Martinez, Ana; Cuetos, Anibal; Rodriguez, Cristina; de Gonzalo, Gonzalo; Lavandera, Ivan; Fraaije, Marco; Gotor, Vicente

Published in:
Angewandte Chemie-International Edition

DOI:
10.1002/anie. 201103348

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Rioz-Martinez, A., Cuetos, A., Rodriguez, C., de Gonzalo, G., Lavandera, I., Fraaije, M. W., \& Gotor, V. (2011). Dynamic Kinetic Resolution of alpha-Substituted beta-Ketoesters Catalyzed by Baeyer-Villiger Monooxygenases: Access to Enantiopure alpha-Hydroxy Esters. Angewandte Chemie-International Edition, 50(36), 8387-8390. DOI: 10.1002/anie. 201103348

[^0]
Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. number of authors shown on this cover page is limited to 10 maximum.

Angewandte Chemie

Supporting Information
© Wiley-VCH 2011

69451 Weinheim, Germany

Dynamic Kinetic Resolution of $\boldsymbol{\alpha}$-Substituted $\boldsymbol{\beta}$-Ketoesters Catalyzed by Baeyer-Villiger Monooxygenases: Access to Enantiopure $\boldsymbol{\alpha}$-Hydroxy Esters**
 Ana Rioz-Martínez, Aníbal Cuetos, Cristina Rodríguez, Gonzalo de Gonzalo, Iván Lavandera, Marco W. Fraaije, and Vicente Gotor*

anie_201103348_sm_miscellaneous_information.pdf

Supporting Information

Contents:

1. General S2
2. Experimental procedures S3
3. GC and HPLC analyses S12
4. Determination of absolute configurations. S13
5. Supporting references S14
6. NMR spectra of compounds $\mathbf{4 a}, \mathbf{7 a}, \mathbf{9 a}, \mathbf{3 b}, \mathbf{4 b}, \mathbf{5 b}, \mathbf{6 b}, \mathbf{7 b}, \mathbf{8 b}, \mathbf{9 b}, \mathbf{1 0 b}, \mathbf{3 c}, \mathbf{7 c}$, and $\mathbf{9 c}$.. S15

1. General

Recombinant histidine-tagged phenylacetone mononoxygenase (PAMO), its M446G mutant (M446G-PAMO) and recombinant 4-hydroxyacetophenone monooxygenase (HAPMO) were overexpressed and purified as previously described. ${ }^{[1]} 1.0$ Unit of BVMO will oxidise $1.0 \mu \mathrm{~mol}$ of phenylacetone to benzyl acetate per minute at pH 9.0 and room temperature in the presence of NADPH. Glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides was obtained from Fluka-Biochemika. Starting racemic α-alkyl- β-ketoesters rac-2a, rac-6a and enantiopure hydroxyesters (S)-1-3c and (S)-10c were obtained from Sigma-Aldrich-Fluka, whereas rac-5a was purchased from Alfa Aesar. All other reagents and solvents were of the highest quality grade available and were acquired from Sigma-Aldrich-Fluka and Acros Organics. Chemical reactions were monitored by analytical TLC, performed on Merck silica gel $60 \mathrm{~F}_{254}$ plates and visualised by UV irradiation. Flash chromatography was carried out with silica gel 60 (230-240 mesh, Merck). IR spectra were recorded on a Perkin-Elmer 1720-X infrared Fourier transform spectrophotometer using KBr pellets. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and DEPT spectra were recorded with tetramethylsilane (TMS) as the internal standard with a Bruker AC-300 DPX $\left({ }^{1} \mathrm{H}: 300.13 \mathrm{MHz}\right.$; ${ }^{13} \mathrm{C}$: 75.5 MHz) spectrometer. The chemical shift values (δ) are given in ppm. Optical rotations were measured using a Perkin-Elmer 241 polarimeter and are quoted in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. APCI^{+}and ESI^{+}using a Hewlett Packard 1100 chromatograph mass detector or EI^{+}with a Hewlett Packard 5973 mass spectrometer were used to record mass spectra (MS). Highresolution mass spectra were obtained with a Bruker Microtof-Q-spectrometer. Kinetic determinations were performed with a Varian Cary50Bio UV/Vis spectrophotometer.

2. Experimental procedures

2.1. Enzymatic Baeyer-Villiger oxidation of racemic α-alkyl- β-ketoesters.

Racemic compounds rac-1-10a (10 mm) were dissolved in a Tris- HCl buffer ($50 \mathrm{~mm}, \mathrm{pH} 8.0$ or $9.0,1.0 \mathrm{~mL}$) containing $1 \% v v^{-1}$ DMSO. Then, NADPH (0.2 mm), glucose-6-phosphate (20 mm), glucose-6-phosphate dehydrogenase (5 U) and the BVMO (1 U) were added. The mixture was shaken at 250 rpm at the selected temperature. Reactions were stopped by extraction with ethyl acetate $(2 \times 0.5 \mathrm{~mL})$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Conversions and enantiomeric excesses of compounds (S)-1-10b were determined by GC or HPLC analysis (Table S1).

Table S1. BVMO-catalysed Baeyer-Villiger oxidation of racemic α-alkyl- β-ketoesters.

Entry	Substrate	BVMO	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$c[\%]^{[\mathrm{ac]}}$	$e e[\%]^{[\mathrm{b}]}$
$1^{[\mathrm{cc]}}$	rac-1a	PAMO	30	28	$\geq 99(S)$
2	rac-1a	M446G	30	15	$\geq 99(S)$
3	rac-2a	HAPMO	20	28	$\geq 99(S)$
4	rac-2a	M446G	30	25	$\geq 99(S)$
5	rac-3a	HAPMO	20	5	$\geq 99(S)$
6	rac-3a	M446G	30	36	$\geq 99(S)$
7	rac-4a	HAPMO	20	30	$82(S)$
8	rac-4a	M446G	30	7	$\geq 99(S)$
9	$r a c-8 a$	M446G	30	59	$\geq 99(S)$
10	rac-10a	M446G	30	22	$\geq 99(S)$

${ }^{[a]}$ Determined by GC. ${ }^{[b]}$ Determined by GC or HPLC. ${ }^{[c]}$ Reaction carried out at pH 8.0 .
2.2. Study of the substrate concentration in the PAMO-catalysed oxidation of rac-7a employing two different reaction media.

Racemic isopropyl 2-ethyl-3-oxobutanoate (1.7-13.8 $\mathrm{g} \mathrm{L}^{-1}$) was dissolved in two different reaction media: a) Tris- HCl buffer ($50 \mathrm{mM}, \mathrm{pH} 9.0,1.0 \mathrm{~mL}$) containing $1 \% v v^{-1}$ DMSO or b) Tris- HCl buffer ($50 \mathrm{mM}, \mathrm{pH} 9.0,0.95 \mathrm{~mL}$) containing $5 \% v v^{-1}$ TBME ($50 \mu \mathrm{~L}$) and $1 \% v v^{-1}$ DMSO. Then, NADPH (0.2 mm), glucose-6-phosphate (20 mm), glucose-6-phosphate dehydrogenase (5 U) and PAMO (1 U) were added. The mixture was shaken at 250 rpm at $30^{\circ} \mathrm{C}$ during 48 hours. Reactions were then stopped by extraction with EtOAc $(2 \times 0.5 \mathrm{~mL})$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Conversions and enantiomeric excesses of compounds (S)-7b were determined by GC or HPLC analysis. The space time yields (expressed as mg of 7a consumed per L of solution per h) are indicated in Figure S1.

Figure S1. Effect of rac-7a concentration in the space time yield while using as reaction medium: Tris$\mathrm{HCl} 50 \mathrm{mM} \mathrm{pH} 9.0\left(\boldsymbol{\Delta}\right.$, solid line) and Tris- HCl 50 mM pH 9.0 containing $5 \% v v^{-1} \mathrm{TBME}(\star$, dashed line).

2.3. Baeyer-Villiger oxidation of rac-1-10a at multimilligram scale catalysed by PAMO.

α-Alkyl- β-ketoesters rac-1-10a (50 mg , 1 equiv.) were dissolved in a Tris- HCl buffer ($50 \mathrm{mM}, \mathrm{pH}$ $9.0,13.0 \mathrm{~mL}$) containing $1 \% v v^{-1}$ DMSO. Then, NADPH (0.2 mm), glucose-6-phosphate (40 mM), glucose-6-phosphate dehydrogenase (150 units) and PAMO (30 units) were added. The reactions were stirred at 250 rpm and $30^{\circ} \mathrm{C}$ and stopped after 24 hours by extraction with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. No further purification was required, except for substrates rac-4b and rac-5b, which were purified by flash chromatography on silica gel using hexane/ethyl acetate 9:1 as eluent. All the final products (S)-1-10b were achieved enantiopure except (S)-9b, which was isolated with $e e=50 \%$: $(S) \mathbf{- 1 b}$ (70% yield, 39.3 mg), (S)-2b (62% yield, 35.1 mg), ((S)-3b (59% yield, 32.8 mg), ((S)-4b (68% yield, 38.3 mg), (S)-5b (65% yield, 36.0 mg), (S)-6b(61% yield, 33.4 mg), $(S)-7 \mathbf{b}(63 \%$ yield, 34.4 mg), (S)-8b with (65% yield, 35.6 mg), (S)-9b (74% yield, 39.6 mg), and (S)-10b with (76% yield, 41.0 mg).
Compounds 1a, ${ }^{[2 a]}$ and $\mathbf{2 b}{ }^{[2 b]}$ exhibit physical and spectral properties in accord with those reported.
(S)-Methyl 2-acetoxypropanoate, (\boldsymbol{S})-1b. R_{f} (8:2 hexane-EtOAc): 0.28 . Colourless liquid. IR (KBr): v 2998, 1741, 1643, 1454, and $1237 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 1.46$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.07\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 16.8\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{3}\right), 68.4(\mathrm{CH}), 170.3(\mathrm{CO}), 171.2(\mathrm{CO}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}, m / z\right): 169\left[(\mathrm{M}+\mathrm{Na})^{+}, 24 \%\right]$.
(S)-Ethyl 2-acetoxypropanoate, $\boldsymbol{(S)}$-2b. R_{f} (8:2 hexane-EtOAc): 0.32. Colourless liquid. IR (KBr): \cup 2997, 1743, 1640, 1441, and $1370 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): $\delta 1.26(\mathrm{t}$,
$\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.47\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}), 4.19\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.10\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}}\right.$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 14.0\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 61.3$ $\left(\mathrm{CH}_{2}\right), 68.6(\mathrm{CH}), 170.3(\mathrm{CO}), 171.2(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right): 183\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$.
(S)-Isopropyl 2-acetoxypropanoate, (S)-3b. R_{f} (8:2 hexane-EtOAc): 0.34 . Colourless liquid. IR (KBr): v 2986, 1745, 1455, 1386, and $1200 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 1.23$ (d, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}), 4.97-5.08$ (m, 2H). ${ }^{13} \mathrm{C}$-NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 16.8\left(2 \mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 68.7(\mathrm{CH})$, $68.9(\mathrm{CH}), 166.3(\mathrm{CO}), 170.3(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 197\left[(\mathrm{M}+\mathrm{Na})^{+}, 92 \%\right] . \mathrm{HRMS}^{\left(\mathrm{ESI}^{+}\right) \text {calcd. }}$ for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 197.0784$; found: 197.0776. $[\alpha]_{\mathrm{D}}{ }^{25}=-37.9\left(c 1.00, \mathrm{CHCl}_{3}\right), e e=99 \%$.
(S)-Methyl 2-propionyloxypropanoate, $\boldsymbol{(S)} \mathbf{(\mathbf { 4 b }} . \mathrm{R}_{\mathrm{f}}(8: 2$ hexane-EtOAc): 0.34 . Colourless liquid. IR (KBr): v 2991, 1746, 1461, 1305, and $1277 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta$ $1.15\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.47\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.36-2.47(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.08\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}}\right.$ 7.0 Hz, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 8.8\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{2}\right), 52.2$ $\left(\mathrm{CH}_{3}\right), 68.3(\mathrm{CH}), 171.3(\mathrm{CO}), 173.8(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 183\left[(\mathrm{M}+\mathrm{Na})^{+}, 50 \%\right] . \mathrm{HRMS}^{2}\left(\mathrm{ESI}^{+}\right)$ calcd. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 183.0628; found: 183.0619. $[\alpha]_{\mathrm{D}}{ }^{25}=-34.6\left(c \quad 1.00 \mathrm{CHCl}_{3}\right)$, ee $=$ 99\%.
(S)-Methyl 2-acetoxybutanoate, (\boldsymbol{S})-5b. R_{f} (8:2 hexane-EtOAc): 0.34 . Colourless liquid. IR (KBr): v 2957, 1746, 1440, 1376, and $1235 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 0.96(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.79-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.91-4.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 9.4\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{CH}_{3}\right), 73.2(\mathrm{CH}), 170.5$ $(\mathrm{CO}), 170.6(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 183\left[(\mathrm{M}+\mathrm{Na})^{+}, 34 \%\right]$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$calcd. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NaO}_{4}$ $(\mathrm{M}+\mathrm{Na})^{+}: 183.0628$; found: 183.0637. $[\alpha]_{\mathrm{D}}{ }^{25}=-25.0\left(c 0.90, \mathrm{CHCl}_{3}\right), e e=99 \%$.
(S)-Ethyl 2-acetoxybutanoate, (\boldsymbol{S})-6b. R_{f} (8:2 hexane-EtOAc): 0.36 . Colourless liquid. IR (KBr): v 2980, 1744, 1464, 1375, and $1234 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 0.96\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}\right.$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.25\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.79-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 4.17\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 4.88-4.92 (m, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 9.4\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 24.4$ $\left(\mathrm{CH}_{2}\right), 61.1\left(\mathrm{CH}_{2}\right), 73.3(\mathrm{CH}), 170.1(\mathrm{CO}), 170.5(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right): 197\left[(\mathrm{M}+\mathrm{Na})^{+}, 70 \%\right]$. HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 197.0782; found: 197.0784. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=$-28.7. (c 1.00, CHCl_{3}), $e e=99 \%$.
(S)-Isopropyl 2-acetoxybutanoate, (S)-7b. R_{f} (8:2 hexane-EtOAc): 0.41. Colourless liquid. IR (KBr): v 2989, 1745, 1464, 1426, 1375, 1234, and $1207 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta 0.96\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.22\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.77-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 4.84-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.99-5.08(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$:
$\delta 9.3\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{2}\right), 68.8(\mathrm{CH}), 73.4(\mathrm{CH}), 169.6(\mathrm{CO})$, $170.5(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 211\left[(\mathrm{M}+\mathrm{Na})^{+}, 52 \%\right]$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 211.0946; found: 211.0948. [$\alpha]_{\mathrm{D}}{ }^{25}=-38.7\left(c 0.98, \mathrm{CHCl}_{3}\right), e e=99 \%$.
(S)-Ethyl 2-acetoxypent-4-enoate, (S)-8b. R_{f} (8:2 hexane-EtOAc): 0.44. Colourless liquid. IR (KBr): $\cup 3080,2983,1800,1643,1469$, and $1431 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta$ $1.25\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.60(\mathrm{~m}, 2 \mathrm{H}), 4.18\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.01-5.06$ $(\mathrm{m}, 1 \mathrm{H}), 5.08-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.72-5.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 14.0$ $\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 35.4\left(\mathrm{CH}_{2}\right), 61.3\left(\mathrm{CH}_{2}\right), 71.6(\mathrm{CH}), 118.6\left(\mathrm{CH}_{2}\right), 131.9(\mathrm{CH}), 169.5(\mathrm{CO})$, $170.3(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right): 209\left[(\mathrm{M}+\mathrm{Na})^{+}, 30 \%\right] . \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 209.0784; found: 209.0767. [$\alpha]_{\mathrm{D}}{ }^{25}=-17.3\left(c 1.12, \mathrm{CHCl}_{3}\right), e e=99 \%$.
(S)-Isopropyl 2-acetoxy-3-phenylpropanoate, (\boldsymbol{S})-9b. R_{f} ($8: 2$ hexane-EtOAc): 0.29 . Pale yellow liquid. IR (KBr): v 3030, 2934, 1731, 1496, 1455, and $1375 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): $\delta 1.17$ (d, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}), 3.10\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}} 11.6\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.16\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}} 11.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.98-5.07\left(\mathrm{~m},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.16\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 8.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23-7.31(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$: § $20.5\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 37.2\left(\mathrm{CH}_{2}\right), 69.1(\mathrm{CH}), 73.1(\mathrm{CH}), 126.9\left(\mathrm{CH}_{\mathrm{ar}}\right), 128.3$ $\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 129.3\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 135.9\left(\mathrm{C}_{\mathrm{ar}}\right), 169.1(\mathrm{CO}), 170.3(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 273\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$, 100%]. HRMS $\left(\mathrm{ESI}^{+}\right)$calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 273.1097; found: 273.1105. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=-5.7$ (c 1.05, CHCl_{3}), $e e=54 \%$.
(S)-Benzyl 2-acetoxypropanoate, $\boldsymbol{(S)}$-10b. R_{f} ($8: 2$ hexane-EtOAc): 0.31. Pale yellow liquid. IR (KBr): v 3035, 2994, 1744, 1455, 1305, 1257, and $1196 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): $\delta 1.49\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}), 5.09-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.36(\mathrm{~m}$, $5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 16.8\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 66.9\left(\mathrm{CH}_{2}\right), 68.5(\mathrm{CH}), 128.0$ $\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 128.3\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 135.3\left(\mathrm{CH}_{\mathrm{ar}}\right), 166.3\left(\mathrm{C}_{\mathrm{ar}}\right), 170.3(\mathrm{CO}), 170.6(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 245$ $\left[(\mathrm{M}+\mathrm{Na})^{+}, 55 \%\right]$. HRMS $\left(\mathrm{ESI}^{+}\right)$calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 245.0784$; found: 245.0795. $[\alpha]_{\mathrm{D}}{ }^{25}=-91.4\left(c 1.00, \mathrm{CHCl}_{3}\right), e e=99 \%$.
2.4. General procedure for the enzymatic hydrolysis of rac-isopropyl 2-acetoxybutanoate, rac-7b.

In a typical experiment, to a solution of compound $\mathrm{rac}-7 \mathbf{b}(9.4 \mathrm{mg}, 1.0$ equiv) in a Tris- HCl buffer ($50 \mathrm{~mm}, \mathrm{pH} 9.0,500 \mu \mathrm{~L}$), 9.4 mg of commercially available hydrolase (CAL-A, CRL, PPL, SD, PLE, subtilisin, CAL-B, AK, IM) was added. The reaction was shaken at $30^{\circ} \mathrm{C}$ and 250 rpm in a rotator shaker for the times established (3.5 hours or 7 hours), stopped by extraction with EtOAc
containing $1 \mathrm{mg} \mathrm{mL}^{-1}$ mesitylene ($2 \mathrm{x} 400 \mu \mathrm{~L}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Conversions and enantiomeric excesses of the reactions were measured by GC and HPLC analysis.

For CRL, PLE, subtilisin and CAL-B, it was observed the disappearance of rac-7b, but expected product rac-7c was not obtained. PPL led to rac-7c with very low conversions. Lipases AK and IM were not able to hydrolyse the S enantiomer of rac-7b while lipases CAL-A and SD were not regioselectivity in the process, being achieved other hydrolysis products.

2.5. Procedure for the chemical hydrolysis of diesters (S)-3-9b.

To a solution of the corresponding diester ($25 \mathrm{mg}, 1.0$ equiv.) in 5.0 mL of MeOH , EtOH or ${ }^{i} \mathrm{PrOH}$, traces of HCl were added. The reaction was refluxed and followed by TLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. After disappearance of the starting product, the reaction was stopped and the solvent was evaporated under reduced pressure. (S)- α-hydroxyesters were obtained without any further purification. All the products were achieved enantiopure except for (S) $\mathbf{- 9} \mathbf{c}$, isolated with $e e=54 \%$. $(S) \mathbf{- 3 c}(60 \%$ yield, 11.3 mg$),(S)-\mathbf{4 c}(60 \%$ yield, 9.8 mg$)$, (S) - $\mathbf{5 c}$ was obtained with 64% yield $(11.8 \mathrm{mg}),(S)-\mathbf{6 c}$ with 70% yield $(13.2 \mathrm{mg}),(S)-7 \mathbf{c}$ with 65% yield $(12.6 \mathrm{mg}),(S)-\mathbf{8 c}$ with 70% yield (13.5 mg), and $(S)-9 \mathrm{c}$ with 85% yield (17.6 mg).
Compounds $\mathbf{5 c},{ }^{[3 \mathrm{a}]}$ and $\mathbf{6} \mathrm{c}^{[3 \mathrm{~b}]}$ exhibit physical and spectral properties in accordance with those reported.
(\boldsymbol{S})-Isopropyl 2-hydroxypropanoate, (\boldsymbol{S})-3c. R_{f} (8:2 hexane-EtOAc): 0.20. Colourless liquid. IR (KBr): v 3480, 2984, 1651, 1463, 1376, and $1271 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): δ $1.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.25\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.37\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.94(\mathrm{~s}, 1 \mathrm{H}), 4.15-$ $4.23(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.10(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 20.3\left(\mathrm{CH}_{3}\right), 21.6\left(2 \mathrm{CH}_{3}\right)$, $66.7(\mathrm{CH}), 69.3(\mathrm{CH}), 175.2(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 155\left[(\mathrm{M}+\mathrm{Na})^{+}, 73 \%\right]$. HRMS (ESI $\left.{ }^{+}\right)$calcd. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 155.0684$; found: 155.0687. $[\alpha]_{\mathrm{D}}{ }^{25}=-5.20\left(c 1.00, \mathrm{CHCl}_{3}\right), e e=99 \% .{ }^{[4 \mathrm{a}]}$
(S)-Methyl 2-hydroxybutanoate, (S)-5c. R_{f} (8:2 hexane-EtOAc): 0.20. Colourless liquid. IR (KBr): v 3433, 2969, 1738, 1645, 1420, 1296, and $1135 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): $\delta 0.95\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.60-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $4.15\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}} 5.9 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 8.8\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{2}\right), 52.4$ $\left(\mathrm{CH}_{3}\right), 71.4(\mathrm{CH}), 175.6(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 141\left[(\mathrm{M}+\mathrm{Na})^{+}, 40 \%\right] .[\alpha]_{\mathrm{D}}{ }^{25}=-6.4$ (c 1.15, $\left.\mathrm{CHCl}_{3}\right), e e=99 \% .{ }^{[4 \mathrm{~b}]}$
(S)-Ethyl 2-hydroxybutanoate, (S)-6c. R_{f} (8:2 hexane-EtOAc): 0.21. Colourless liquid. IR (KBr): v 3429, 2980, 1733, 1600, 1464, and $1212 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta$ $0.96\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.29\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.63-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 5.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$,
4.10-4.16 (m, 1H), $4.24\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.1 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 8.7\left(\mathrm{CH}_{3}\right)$, $14.1\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{2}\right), 61.6\left(\mathrm{CH}_{2}\right), 71.3(\mathrm{CH}), 175.2(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 155\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$, $36 \%] .[\alpha]_{\mathrm{D}}{ }^{25}=-5.95\left(c 1.20, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right), e e=99 \% .{ }^{[3 b]}$
(S)-Isopropyl 2-hydroxybutanoate, (\boldsymbol{S})-7c. R_{f} (8:2 hexane-EtOAc): 0.31 . Colourless liquid. IR (KBr): $v 3413,2982,1731,1463,1376$, and $1107 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta$ $0.94\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.25\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.27\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.64-1.71(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.81(\mathrm{~m}, 1 \mathrm{H}), 2.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 5.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.09-4.10(\mathrm{~m}, 1 \mathrm{H}), 5.09\left(\mathrm{~m},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.3 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}-$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 8.7\left(\mathrm{CH}_{3}\right), 21.7\left(2 \mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{2}\right), 69.3(\mathrm{CH}), 71.3(\mathrm{CH})$, 174.7 (CO). MS ($\mathrm{ESI}^{+}, m / z$): $169\left[(\mathrm{M}+\mathrm{Na})^{+}, 61 \%\right]$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$: 169.0835; found: 169.0838. $[\alpha]_{\mathrm{D}}{ }^{25}=-6.1\left(c 0.85, \mathrm{CHCl}_{3}\right), e e=99 \%$.
(S)-Ethyl 2-hydroxypent-4-enoate, (S)-8c. R_{f} (8:2 hexane-EtOAc): 0.23. Colourless liquid. IR (KBr): v 3409, 2984, 1747, 1376, and $1243 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 1.29(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.38-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~d}, 1 \mathrm{H}), 4.20-4.28(\mathrm{~m}, 3 \mathrm{H}), 5.11-$ $5.18(\mathrm{~m}, 2 \mathrm{H}), 5.73-5.87(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 14.0\left(\mathrm{CH}_{3}\right), 38.5\left(\mathrm{CH}_{2}\right)$, $61.4\left(\mathrm{CH}_{2}\right), 69.8(\mathrm{CH}), 118.4\left(\mathrm{CH}_{2}\right), 132.4(\mathrm{CH}), 174.2(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 167\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$, $67 \%] .[\alpha]_{\mathrm{D}}{ }^{25}=-4.2\left(c 0.95, \mathrm{CHCl}_{3}\right), e e=99 \%$.
(S)-Isopropyl 2-hydroxy-3-phenylpropanoate, (S)-9c. R_{f} (8:2 hexane-EtOAc): 0.23. Colourless liquid. IR (KBr): v 3359, 3088, 2982, 1731, 1496, 1375, and $1273 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.13 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 1.26\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.28\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.99\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}} 13.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.15\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}} 13.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.43(\mathrm{~m}, 1 \mathrm{H}), 5.08\left(\mathrm{~m},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.20-7.36(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 21.6\left(2 \mathrm{CH}_{3}\right), 40.3\left(\mathrm{CH}_{2}\right), 69.4$ $(\mathrm{CH}), 71.1(\mathrm{CH}), 126.7\left(\mathrm{CH}_{\mathrm{ar}}\right), 128.1\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 129.4\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 136.3\left(\mathrm{C}_{\mathrm{ar}}\right), 173.6(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right.$, $m / z): 231\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$. HRMS $\left(\mathrm{ESI}^{+}\right)$calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 231.0992$; found: 231.0995. $[\alpha]_{\mathrm{D}}{ }^{25}=-9.7\left(c 0.78, \mathrm{CHCl}_{3}\right), e e=99 \%$.
2.6. General procedure for the synthesis of racemic α-alkyl- β-ketoesters rac-1a, rac-3-4a, rac-7$10 a .^{[5]}$

A mixture of the corresponding alkyl acetoacetate or methyl-3-oxo-pentanoate ($2.0 \mathrm{~g}, 1.0$ equiv) and anhydrous powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.3 equiv) in 20.0 mL of dry acetone was stirred under nitrogen atmosphere for five minutes. Then, methyl iodide, ethyl iodide, allyl bromide or benzyl bromide (1.3 equiv) was added carefully. The reaction was refluxed for 18 hours. The crude mixture was then filtered and the solvent evaporated under reduced pressure. The residues were purified by flash chromatography on silica gel with hexane/ethyl acetate 9:1 to afford methyl 2-methyl-3-
oxobutanoate rac-1a (67% yield, 1.54 g), isopropyl 2-methyl-3-oxobutanoate rac-3a (81% yield, 1.80 g), methyl 2-methyl-3-oxopentanoate rac-4a (29% yield, 0.64 g), isopropyl 2-ethyl-3oxobutanoate $\mathrm{rac}-7 \mathbf{a}(42 \%$ yield, 0.91 g), ethyl 2-acetylpent-4-enoate rac-8a (84% yield, 1.84 g), isopropyl 2-benzyl-3-oxobutanoate rac-9a (53\% yield, 1.13 g), and benzyl 2-methyl-3oxobutanoate rac-10a (47% yield, 1.01 g).
Compounds rac-1a, ${ }^{[6 a]} \mathbf{r a c}-\mathbf{3 a},{ }^{[66]}$, $\mathrm{rac}-\mathbf{8 a},{ }^{[6 \mathrm{c}]}$ and $\mathrm{rac}-\mathbf{1 0 a},{ }^{[6 \mathrm{c}]}$ exhibit physical and spectral properties in accord with those reported.
$\boldsymbol{r a c}$-Methyl 2-methyl-3-oxobutanoate, rac-1a. R_{f} (8:2 hexane-EtOAc): 0.27. Colourless liquid. IR (KBr): v 2999, 1750, 1720, 1380, and $1359 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): δ $1.35\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.51\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 12.7\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right)$, $52.2\left(\mathrm{CH}_{3}\right), 53.3(\mathrm{CH}), 170.8(\mathrm{CO}), 203.5(\mathrm{CO})$. MS ($\left.\mathrm{ESI}^{+}, m / z\right): 153\left[(\mathrm{M}+\mathrm{Na})^{+}, 56 \%\right]$.
$\boldsymbol{r a c}$-Isopropyl 2-methyl-3-oxobutanoate, $\boldsymbol{r a c} \mathbf{- 3 a} . \mathrm{R}_{\mathrm{f}}$ ($8: 2$ hexane-EtOAc): 0.41. Colourless liquid. IR (KBr): v 2942, 1738, 1715, 1455, 1376, and $1359 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): $\delta 1.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.1 \mathrm{~Hz}, 6 \mathrm{H}\right), 1.28\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.20(\mathrm{~s}, 3 \mathrm{H}), 3.44\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.27-5.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 12.6\left(\mathrm{CH}_{3}\right), 21.4\left(2 \mathrm{CH}_{3}\right), 28.3$ $\left(\mathrm{CH}_{3}\right), 53.8(\mathrm{CH}), 68.8(\mathrm{CH}), 170.0(\mathrm{CO}), 203.6(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 181\left[(\mathrm{M}+\mathrm{Na})^{+}, 53 \%\right]$.
$\boldsymbol{r a c}$-Methyl 2-methyl-3-oxopentanoate, $\boldsymbol{r a c}-\mathbf{4 a} . \mathrm{R}_{\mathrm{f}}$ (8:2 hexane-EtOAc): 0.37 . Colourless liquid. IR (KBr): v 2984, 2940, 1747, 1594, 1455, and $1435 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): $\delta 1.06\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.34\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.52-2.59(\mathrm{~m}, 2 \mathrm{H}), 3.52\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 7.6\left(\mathrm{CH}_{3}\right), 12.8\left(\mathrm{CH}_{3}\right), 34.6\left(\mathrm{CH}_{2}\right), 52.3$ $(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 171.1(\mathrm{CO}), 206.3(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 167\left[(\mathrm{M}+\mathrm{Na})^{+}, 76 \%\right] . \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$ calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 167.0679$; found: 167.0671.
rac-Isopropyl 2-ethyl-3-oxobutanoate, rac-7a. R_{f} ($8: 2$ hexane-EtOAc): 0.46. Colourless liquid. IR (KBr): v 2980, 1736, 1714, 1463, 1375, and $1359 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): $\delta 0.82\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 6.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.71-1.82(\mathrm{~m}$, $2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.22\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.94-5.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 11.5\left(\mathrm{CH}_{3}\right)$, $21.2\left(\mathrm{CH}_{3}\right)$, $21.3\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 61.3(\mathrm{CH}), 68.4$ $(\mathrm{CH}), 169.0(\mathrm{CO}), 203.6(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, m / z\right): 195\left[(\mathrm{M}+\mathrm{Na})^{+}, 28 \%\right]$. HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 195.0992$; found: 195.0993 .
rac-Ethyl 2-acetylpent-4-enoate, rac-8a. R_{f} (8:2 hexane-EtOAc): 0.28 . Colourless liquid. IR (KBr): v 3081, 2983, 1743, 1715, 1643, 1441, and $1367 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta 1.25\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.59(\mathrm{~m}, 2 \mathrm{H}), 3.50\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.18$
(q, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.01-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.65-5.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$: $\delta 14.0\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{2}\right), 59.1(\mathrm{CH}), 61.3\left(\mathrm{CH}_{2}\right), 117.3\left(\mathrm{CH}_{2}\right), 132.1(\mathrm{CH}), 169.1$

$\boldsymbol{r a c}$-Isopropyl 2-benzyl-3-oxobutanoate, $\boldsymbol{r a c}-\mathbf{9 a}$. R_{f} ($8: 2$ hexane-EtOAc): 0.43 . Colourless liquid. IR (KBr): v 3056, 2982, 1738, 1715, 1496, and $1455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): $\delta 1.14-1.29(\mathrm{~m}, 6 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 3.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.76\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.98-5.12$ $(\mathrm{m}, 1 \mathrm{H}), 7.18-7.31(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 21.4\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 29.3$ $\left(\mathrm{CH}_{3}\right), 33.7\left(\mathrm{CH}_{2}\right), 61.4(\mathrm{CH}), 69.0(\mathrm{CH}), 128.0\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 128.5\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{ar}}\right), 138.1\left(\mathrm{C}_{\mathrm{ar}}\right)$, $168.6(\mathrm{CO}), 202.3(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right): 257\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$. HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 257.1148$; found: 257.1169.
$\boldsymbol{r a c}$-Benzyl 2-methyl-3-oxobutanoate, $\boldsymbol{r a c} \boldsymbol{- 1 0 a}$. R_{f} (8:2 hexane-EtOAc): 0.35 . Colourless liquid. IR (KBr): v 3050, 2990, 1744, 1715, 1498, 1455, and $1359 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta 1.36\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}), 3.55\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.17(\mathrm{~s}, 2 \mathrm{H}), 7.32-7.37$ $(\mathrm{m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 12.6\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 53.5(\mathrm{CH}), 70.0\left(\mathrm{CH}_{2}\right)$, $128.2\left(\mathrm{CH}_{\mathrm{ar}}\right), 128.4\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 128.5\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 134.0\left(\mathrm{C}_{\mathrm{ar}}\right), 170.3(\mathrm{CO}), 203.3(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: $229\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$.

2.7. General procedure for the synthesis of racemic diesters rac-1-7b and rac-9-10b.

For the preparation of the diesters $\mathrm{rac}-\mathbf{2 - 3 b}, \mathrm{rac}-\mathbf{5 - 7 b}$ and $\mathrm{rac}-\mathbf{9 b}$, a two-step procedure starting from commercially available rac-lactic acid, rac-2-hydroxybutanoic acid or rac-phenyllactic acid was carried out.

Step 1: Synthesis of α-hydroxy esters rac-2-3c, rac-5-7c, and rac-9c.

To a solution of the corresponding acid ($1.0 \mathrm{~g}, 1.0$ equiv) in 40.0 mL of $\mathrm{MeOH}, \mathrm{EtOH},{ }^{i} \mathrm{PrOH}$ or benzyl alcohol, traces of HCl were added. The reaction was refluxed and followed by TLC $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$. After 24 hours, the reaction was stopped; the solvent was evaporated under reduced pressure. The crude mixture was then solved in $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. Racemic α-hydroxy esters were obtained without any further purification: rac-2c (29% yield, 328.4 mg), rac-3c (27% yield, 395.6 mg), rac-5c (52% yield, 589.0 mg), rac-6c (66% yield, 836.3 mg), rac-7c (76% yield, 1.06 g), and rac-9c (72% yield, 893 mg).

For the preparation of $r a c-\mathbf{1 b}$ and $r a c-\mathbf{1 0 b}$, this step was not necessary since $r a c$-methyl lactate and rac-benzyl 2-hydroxypropanoate were commercially available.

Step 2: Synthesis of diesters rac-1-7b and rac-9-10b.

α-Hydroxy esters rac-1-3c, rac-5-7c, and rac-9-10c ($300 \mathrm{mg}, 1.0$ equiv) were acylated with acetic anhydride (2.0 equiv) or propionic anhydride (in case of $\mathbf{4 b}$) and a catalytic amount of $\mathrm{N}, \mathrm{N}-$ dimethylaminopyridine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$. Racemic diesters were achieved without any further purification: rac-1b (75% yield, 315.9 mg), rac-2b (21% yield, 85.4 mg), rac-3b (46% yield, 181.9 mg), rac-4b (22% yield, 101.5 mg), rac-5b (74% yield, 301.0 mg), rac- $\mathbf{6 b}$ (61% yield, 241.2 mg), rac-7b (69% yield, 266.5 mg), rac-9b (35% yield, 126.2 mg), and rac-10b (45% yield, 166.5 mg).

2.8. Experimental procedure for obtaining rac-ethyl 2-acetoxypent-4-enoate, rac-8b.

For the preparation of the diester rac-8b, a two-step procedure starting from commercially avaliable ethyl glyoxilate was employed.

Step 1: Synthesis of rac-ethyl 2-hydroxypent-4-enoate, rac-8c. ${ }^{[7]}$

To a solution of ethyl glyoxylate ($500 \mathrm{mg}, 1.0$ equiv) and allyltrimethylsilane (2.0 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, boron trifluoride diethyl etherate (2.0 equiv) was added dropwise. The solution was allowed to warm up to room temperature and then stirred for 1.5 h . The reaction was then quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic extracts were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by reduced pressure to yield a crude mixture that was purified by flash chromatography on silica gel with hexane/ethyl acetate 7:3 as eluent to afford ethyl 2-hydroxypent-4-enoate, $\mathbf{r a c}-\mathbf{8 c}(59 \%$ yield, 300 mg) as a colourless liquid.
Compound $\mathbf{8 c}{ }^{[7]}$ exhibits physical and spectral properties in accordance with those reported.

Step 2: Acylation of rac-ethyl 2-hydroxypent-4-enoate rac-8c.

Racemic 2-hydroxypent-4-enoate rac-8c ($300 \mathrm{mg}, 1.0$ equiv) was acylated with acetic anhydride (2 equiv) and catalytic N, N-dimethylaminopyridine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ in order to obtain pure rac-ethyl 2-acetoxypent-4-enoate rac-8b in quantitative yield (373.1 mg) and without further purification.

3. GC and HPLC analyses

The following columns were used for the determination of conversions and enantiomeric excesses (Table S2) of some α-alkyl- β-keto esters, their corresponding oxidation and hydrolysis products: A: Restek RT-BetaDEXse ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}, 12 \mathrm{psi} \mathrm{N}_{2}$) and B: Hewlett Packard HP-1 ($30 \mathrm{mxx} 0.32 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}, 12.2 \mathrm{psi} \mathrm{N}_{2}$).

Table S2. Determination of conversions and enantiomeric excesses by employing GC.

Substrate	Program $^{[a]}$	Column	$t_{\mathrm{R}}[\mathrm{min}] \mathbf{a}$	$\mathrm{t}_{\mathrm{R}}[\mathrm{min}] \mathbf{b}$	$\mathrm{t}_{\mathrm{R}}[\mathrm{min}] \mathbf{c}$
$\mathbf{1}$	$50 / 20 / 3 / 110 / 0$	A	$35.9,36.1$	$32.8(S), 33.5(R)$	$27.1(S), 29.0(R)$
$\mathbf{2}$	$50 / 20 / 3 / 110 / 0$	A	37.9	$35.7(S), 36.2(R)$	$26.6(S), 28.5(R)$
$\mathbf{3}$	$50 / 20 / 1 / 90 / 0$	A	$52.2,52.6$	$49.3(S), 50.2(R)$	$34.8(S), 39.7(R)$
$\mathbf{4}$	$50 / 20 / 1 / 110 / 0$	A	$54.2,57.9$	$51.0(S), 52.1(R)$	$21.4(S), 27.5(R)$
$\mathbf{5}$	50 Isotherm	B	6.0	7.5	2.4
$\mathbf{6}$	50 Isotherm	B	10.2	12.8	3.5
$\mathbf{7}$	50 Isotherm	B	13.3	16.3	5.7
$\mathbf{8}$	$50 / 25 / 20 / 200 / 0$	B	22.7	26.6	6.6
$\mathbf{9}$	$70 / 5 / 1 / 120 / 0$	B	44.3	46.0	25.5
$\mathbf{1 0}$	$70 / 5 / 1 / 123 / 0$	B	35.7	33.1	

${ }^{\text {Ta }}$ Program: initial $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) /$ time $(\mathrm{min}) /$ slope $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) / \mathrm{T}\left({ }^{\circ} \mathrm{C}\right) /$ time $(\mathrm{min}) /$

For the determination of the enantiomeric excesses of compounds $\mathbf{5 - 1 0 b}$ (Table S3), the following columns were employed: column A: Chiralcel OB-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) and column B: Chiralcel OD ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), both from Daicel.

Table S3. Determination of enantiomeric excesses by HPLC.

Substrate	Column	Flow rate [$\mathrm{mL} \mathrm{min}^{-1}$]	T [${ }^{\text {C }}$]	Eluent ${ }^{[\text {a] }}$	Retention time [min]
5b	A	0.7	25	n-hexane-IPA 99:1	12.9 (R); 17.7 (S)
6b	A	0.5	25	n-hexane-IPA 99:1	17.8 (R); 21.1 (S)
7b	A	0.5	20	n-hexane-IPA 99:1	12.7 (R); 14.3 (S)
8b	A	0.5	20	n-hexane-IPA 99:1	22.6 (R); 26.3 (S)
9b	B	1.0	25	n-hexane-IPA 99:1	$25.8(R) ; 34.8(S)$
10b	A	0.8	20	n-hexane-IPA 95:5	23.8 (R); 26.3 (S)

[^1]
4. Determination of absolute configurations

Absolute configurations of acylated 2-hydroxy esters $\mathbf{1 - 7 b}$ and $\mathbf{9 - 1 0 b}$ were established by comparison of their HPLC or GC retention times with the ones obtained after the esterification and/or acetylation of the corresponding commercial chiral α-hydroxy esters/acids.

Absolute configuration of ethyl 2-acetoxypent-4-enoate $\mathbf{8 b}$ was obtained comparing the retention times on HPLC with the product achieved after hydrolysis of the racemic compound $\mathbf{8 b}$ employing lipase AK from Pseudomonas fluorescens. ${ }^{[8]}$

Absolute configurations of α-hydroxy esters were achieved by its previous derivatisation into the corresponding acetate or propionate derivatives.

5. Supporting references

[1] a) M. W. Fraaije, J. Wu, D. P. H. M. Heuts, E. W. van Hellemond, J. H. Lutje Spelberg, D. B. Janssen, Appl. Microbiol. Biotechnol. 2005, 66, 393-400; b) N. M. Kamerbeek, M. J. H. Moonem, J. G. M. van der Ven, W. J. H. van Berkel, M. W. Fraaije, D. B. Janssen, Eur. J. Biochem. 2001, 268, 2547-2557; c) D. E. Torres Pazmiño, R. Snajdrova, D. V. Rial, M. D. Mihovilovic, M. W. Fraaije, Adv. Synth. Catal. 2007, 349, 1361-1368.
[2] a) P. Knochel, M. Lotz, A. Monsees, T. Riermeier, R. Kadyrov, J. Almena, DE 10219490 A1 2003; b) H. Wynberg, J. P. Lorand, J. Org. Chem. 1981, 46, 2538-2542.
[3] a) T. Kolasa, M. J. Miller, J. Org. Chem. 1987, 52, 4978-4984; b) K. Nakamura, K. Inoue, K. Ushio, S. Oka, A. Ohno, J. Org. Chem. 1988, 53, 2589-2593.
[4] a) H. C. Brown, G. G. Pai, J. Org. Chem. 1985, 50, 1384-1394; b) T. Akiyama, M. Shimizu, T. Mukaiyama, Chem. Lett. 1984, 611-614.
[5] M. Lee, D. H. Kim, Bioorg. Med. Chem. 2002, 10, 913-922.
[6] a) J. Christoffers, T. Kauf, T. Werner, M. Roessle, Eur. J. Org. Chem. 2006, 2601-2608; b) C. Palomo, M. Oiarbide, J. M. García, P. Banuelos, J. M. Odriozola, J. Razkin, A. Linden, Org. Lett. 2008, 10, 2637-2640; c) Y. Zhang, A. J. Raines, R. A. Flowers, Org. Lett. 2003, 5, 2363-2365; d) M. R. S. Alexander, H. S. Rzepa, A. J. P. White, D. Billen, K. K. Hii, J. Org. Chem. 2010, 75, 3085-3096.
[7] H. Zhu, J. G. Wickenden, N. E. Campbell, J. C. T. Leung, K. M. S. Johnson, M. Glenn, Org. Lett. 2009, 11, 2019-2022.
[8] F. Breard, J.-P. Lecouve, EP 1400531A1, 2004.
6. NMR Spectra

4a

4a

4a

7a

 $\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110\end{array}$

7a

9a

9a
minvirnix.

3b

3b

4b

4b

210
$190 \quad 180 \quad 170 \quad 160$
$\begin{array}{lllll}50 & 140 & 130 & 120 & 110\end{array}$
(pprn)

4b

5b

5b

5b

6b

6b

 190180 170 160 150

90

 00

6b

7b

7b

7b

8b

8b

8b

9b

9b

9b

10b

10b

10b

3c

3c

3c

7c

7c

דा"ा" 190 190180 $180 \quad 170$ 170160 $160 \quad 150$ 140 130 120 110

7c

 $190 \quad 180$ 170 60150 $140 \quad 130$ 120 110 100 90 80 70 60 50 40 30 20 10

9c

[^0]: Copyright
 Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

[^1]: ${ }^{[a]}$ All the experiments were performed with isocratic eluent.

