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Consensus in Directed Networks of
Agents With Nonlinear Dynamics

Wenwu Yu, Student Member, IEEE, Guanrong Chen, Fellow, IEEE,
and Ming Cao, Member, IEEE

Abstract—This technical note studies the consensus problem for coop-
erative agents with nonlinear dynamics in a directed network. Both local
and global consensus are defined and investigated. Techniques for studying
the synchronization in such complex networks are exploited to establish
various sufficient conditions for reaching consensus. The local consensus
problem is first studied via a combination of the tools of complex anal-
ysis, local consensus manifold approach, and Lyapunov methods. A gen-
eralized algebraic connectivity is then proposed to study the global con-
sensus problem in strongly connected networks and also in a broad class of
networks containing spanning trees, for which ideas from algebraic graph
theory, matrix theory, and Lyapunov methods are utilized.

Index Terms—Algebraic graph theory, complex network, consensus,
Lyapunov function, synchronization.

I. INTRODUCTION

Cooperative collective behavior in networks of autonomous agents
has received considerable attention in recent years due to the growing
interest in understanding intriguing animal group behaviors, such as
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flocking and swarming, and also due to their emerging broad appli-
cations in sensor networks [1], unmanned air vehicles (UAV) forma-
tions, robotic teams, to name a few. To coordinate with other agents in
a network, agents need to share information with their adjacent peers
and agree on a certain value of interest. In this context, the consensus
problem usually refers to the problem of how to reach an agreement
among a group of autonomous agents in a dynamically changing envi-
ronment [2]. One of the main challenges of solving such a consensus
problem is that an agreement has to be reached by all the agents in the
whole dynamic network while the information of each agent is shared
only locally.

Various models have been used to study the consensus problem and
some of the theoretical results obtained recently are closely related to
what is presented in this technical note. In [3], Vicsek et al. studied
a discrete-time system that models a group of autonomous agents
moving in the plane with the same speed but different headings, which
in essence is a simplified version of the model proposed earlier by
Reynolds [4]. Analysis on Vicsek’s model or its continuous-time
version [5]–[9] shows that the connectivity of the time-varying graph
that describes the neighbor relationships within the group is key in
reaching consensus. In particular, in [6], Olfati-Saber and Murray
established the relationship between the algebraic connectivity [10]
(also called the Fiedler eigenvalue) and the speed of convergence when
the directed graph is balanced. A broader class of directed graphs
that may lead to consensus are those that contain spanning trees [8],
[11], which are also called rooted graphs [9], [12]. Second-order and
higher-order consensus in linear multi-agent systems was studied in
[13], [33].

Vicsek’s model is similar to a class of models discussed in studying
the synchronization of complex networks [14]–[20], [26], [27]. In
1998, Pecora and Carroll made use of a master stability function
to study the synchronization of coupled complex networks [17].
Thereafter, stability and synchronization of small-world and scale-free
networks have been investigated extensively using this master stability
function method. In [14], [15], local synchronization was studied
using the transverse stability to the synchronization manifold, where
synchronization was discussed with respect to small-world and
scale-free networks. In [18], a distance from the collective states
to the synchronization manifold was defined and then utilized to
obtain conditions for global synchronization of coupled systems
[19], [20]. It is clear that most of the real-world complex networks,
e.g., World Wide Web and mobile communication networks, are
directed networks. However, many existing tools developed for the
study of synchronization in complex networks can only be applied
to undirected networks. This is partly due to the fact that algebraic
graph theory especially the algebraic connectivity has not been well
developed for directed graphs. For example, there are no standard
definitions for the algebraic connectivity and consensus convergence
rate for directed graphs, while its counterparts for undirected graphs
have been extensively used to study the synchronization problem.

Very recently, the consensus problem in directed networks with non-
linear dynamics has been discussed [21]–[25]. In [22], a class of feed-
back rules was used and a passivity-based design framework was devel-
oped to reach the velocity consensus among agents. Under the assump-
tion that the vector fields satisfy a subtangentiality condition, it was
proved in [23] that agents can reach consensus if and only if the network
is connected sufficiently frequently over time. In [24], distributed al-
gorithms for reaching network consensus was proposed based on non-
smooth analysis and many results assumed that the network is weight-
balanced. In contrast, in this technical note, we consider the multi-agent
system in which the dynamics of each agent consist of two terms:
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one is determined by an intrinsic nonlinear function which governs the
asymptotical state and the other is a simple linear communication pro-
tocol relying only on information about its neighbors. A new frame-
work based on matrix theory was proposed to design cooperative con-
trols for a group of autonomous agents in an intermittent, dynamically
changing, and local environment in [25]. Different from previous works
[22]–[25], a simple linear protocol is designed in this technical note
to generalize the tools developed for undirected complex networks in
order to make them applicable to directed networks.

In this technical note, local stability properties of the consensus
states in a directed network of agents with nonlinear dynamics are
investigated via complex analysis, local synchronization manifold
approach, and Lyapunov method. It is found that the real part of the
second smallest eigenvalue of the Laplacian matrix plays a key role
in deriving the consensus conditions. By assuming that the nonlinear
intrinsic function is Lipschitz and introducing a generalized algebraic
connectivity in the directed network, some sufficient conditions for
reaching network consensus are established. It is found that the general
algebraic connectivity is very critical in reaching network consensus
and can be used to describe the consensus ability in a directed network
which is similar to the role of the algebraic connectivity (Fiedler
number [10]) for undirected networks.

II. PRELIMINARIES

Let � � �� � � � �� be a weighted directed graph of order � , with
the set of nodes � � ���� ��� � � � � ���, the set of directed edges � �
� � � , and a weighted adjacent matrix � � �������� . A directed
edge in graph � is denoted by ��� � ���� ���. If there is an edge from
node �� to node ��, then it is said that node �� can reach node �� and
��� � � is the weight associated with the edge ��� ; otherwise, ��� � �.
As usual, we assume there is no self-loop in �. The Laplacian matrix
	 � �	������ of graph � is defined by 	�� � ���� for 
 	� �,

� � 
 ��� � � � � �� and 	�� � ���� for 
 
 ��� � � � � ��, where ���� �

�

����� ���
��� is the sum of the weights of the edges ending at node

��. It is easy to check that �

���
	�� � � for all 
 � �� �� � � � � � .

The consensus protocol in a multi-agents system considered in [6] is
as follows:

�
���� �
� ���

��� �
����� 
����� � �

�

���

	��
����� (1)

If the network topology changes with time [5], [7]–[9], then in (1)
	 � 	��� is a time-varying matrix. Let � � ��
�� 
�� � � � � 
� � 	

� � 
� � � � � � 
�� be the consensus manifold. It is clear that since

�

���
	�� � � for all 
 � �� � � � � � , 
� must be time-invariant on

the consensus manifold in (1). In other words, the values of 
� will not
change with time once the consensus 
���� � 
���� � � � � � 
� ���
is achieved. However, as has been repeatedly demonstrated in physical
complex networks, the state of each agent is, generally speaking, not a
constant after getting synchronized, but a dynamical variable because
of the intrinsic nonlinear dynamics of each agent and the possible com-
plicated ways in which the network is evolving. To study the synchro-
nization of complex networks for more general cases particularly when
the synchronized state is a time-varying function rather than a constant
equilibrium, we consider the following general consensus protocol:

�
���� � � �
������ �

�

���

	��

���� (2)

where 
� 
 �� is the state of agent 
, ��
�� �
����
��� ���
��� � � � � ���
���

� is a nonlinear function, � is
the coupling strength, and 
 � ��
����� � � � � ��� 
 ���� is a
semi-positive definite diagonal matrix where �� � � means that the

agents can communicate through their �th state [14], [15]. Here,
the state of each agent is an �-dimensional vector as compared
to 1-dimensional variables considered in previous works, e.g. [5],
[7], [8], [28]. Note also that it is straightforward to construct the
discrete-time counterpart of system (2), but only the continuous-time
case is investigated in this technical note.

Clearly, since �

���
	�� � �, if a consensus can be achieved, the

solution ���� of system (2) is expected to be a possible trajectory of an
isolated node satisfying

����� � � ������ � (3)

Here, ���� may be an isolated equilibrium point [5], [7], [8], [28], a
periodic orbit, or even a chaotic orbit [19].

Let � � � denote the Kroneker product [29] of matrices
� and �, 
��� � �
�� ���� 


�
� ���� � � � � 


�
� ����� , ��
���� �

��� �
������ �
� �
������ � � � � �

� �
������� , �� be the �-dimen-
sional identity matrix, �� be the � -dimensional column vector with
all entries being 1, and �� � �������� �� �. Then, system (2) can
be written as

�
��� � � �
����� ��	� 
�
���� (4)

A few definitions and some results are given here, which will be
useful in the development of the next few sections.

Definition 1: The consensus in system (4) is said to be local if, for
any � � �, there exist a ���� and a � � �, such that 

�����
����
 �
���� implies 

�����
����
 � � for all � � � and 
� � � �� �� � � � � � .

Definition 2: The consensus in system (4) is said to be global if, for
any � � �, there exists a � � � such that 

����� 
����
 � � for any
initial conditions and all � � � , 
� � � �� �� � � � � � .

Definition 3: The graph � is said to have a spanning tree if there is
a node that can reach all the other nodes following the edge directions
in graph �.

Lemma 1: [8] Assume that there is a spanning tree in graph �. Then
the Laplacian matrix 	 of � has eigenvalue 0 with algebraic multi-
plicity one, and the real parts of all the other eigenvalues are positive,
i.e., the eigenvalues of 	 satisfy � � ����� � �������� � � � � �
��������. In addition, �
���	� � � � �.

Lemma 2: [29] The Kronecker product has the following properties:
For matrices �, �, � and � of appropriate dimensions,

1) �� � �� � � � � � � � � � �;
2) �� � ���� ��� � ����� ����.

III. LOCAL CONSENSUS OF MULTI-AGENT SYSTEMS

In this section, local consensus of multi-agent systems is investi-
gated. Subtracting (3) from (2) yields the following error dynamical
system:

� ���� � � �
������ � ������� �

�

���

	��
 ���� (5)

where  � � 
�� �, 
 � �� �� � � � � � . Linearizing (5) around ���� leads
to

� ��� � ��� ��� ������� ���� ��	� 
� ��� (6)

where  ��� � � �� ����  
�
� ���� � � � �  

�
����� and ����� 
 ���� is the

Jacobian matrix of � at ����. Let ! be the Jordan form associated with
the Laplacian matrix 	, i.e., 	 � !"!�� where " is the Jordan form
of 	. Then one has

�#��� � ��� ��� �������#���� ��" � 
�#��� (7)
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where ���� � ���� � �������. If � is symmetric, i.e., graph � is
undirected, then � is a diagonal matrix with real eigenvalues. However,
when � is directed, some eigenvalues of � may be complex, and � �
�������	 ��	 � � � 	 ���, where

�� �


� 	 	 	



. . . 	 	

	
. . .

. . . 	

	 	 
 
� � ��

� (8)

Here, it is assumed that the Laplacian matrix � has eigenvalues 
� with
multiplicity ��, 
 � 
	 �	 � � � 	 �, ������� � ���� � � . Let����
and ���� be the real and imaginary parts of a complex number �, and
���� and ���� be the real and imaginary parts of matrix � � �����,
where ������ � ������ and ������ � ������, respectively. Let
�� � �� � � � � � ��, � � 
	 �	 � � � 	 �. Then, separating the real and
imaginary parts of (7), one obtains

� 
����� � ��� ��� �������� �������

� � ������� ��� �������

� � ������� ��� ������� 	

� 
����� � ��� ��� �������� �������

� � ������� ��� �������

� � ������� ��� ������� (9)

where �� � �� , � � 
	 � � � 	 �.
Lemma 3: Suppose that graph � has a spanning tree. If system (9)

is asymptotically stable for � � �	 � � � 	 �, then local consensus can be
reached in system (4).

Proof: According to Lemma 1, zero is a simple eigenvalue of the
Laplacian matrix �. From (7), one has ���� � �� � �������, where
�� � �� . Let� � ���	 ��	 � � � 	 ���. Then �� is the right eigenvector
of � associated with eigenvalue 0, i.e., ��� � 	. Since �

���
��� � 	

and ������� � � � 
, one has �� � ��
	 
	 � � � 	 
�� , where � is a
constant. If system (9) is asymptotically stable for � � �	 � � � 	 �� and
� � �	 � � � 	 �, then ���������� � 	 and ���������� � 	 as � � �,
� � �	 � � � 	 � . Therefore

����� � ������	 �����	 � � � 	 ������
�

where 
����� � ����������. The proof is thus completed.
Lemma 4: [21] Let

�� �

���� � 	 	 	 �

���� ���� 	 	 	 �
...

...
. . . �

���� ���� 	 	 	 ����

� (10)

where � is a zero matrix with appropriate dimension, �		 � �
 
 ,
and �	 are positive integers for all � � 
	 �	 � � � 	 �. If there exist pos-
itive definite diagonal matrices ��	 � �
 
 , such that

��	�
�
		 � ���		�

�
	 � 	 (11)

then, there exists a positive definite diagonal matrix � �
��������
 	 � � � 	���
 �, such that

����� � ������ � 	 (12)

where �� � ��������	 � � � 	 �
�
��.

Theorem 1: Suppose that graph � has a spanning tree. Then the
local consensus of system (4) can be reached if

��� �������� � ���
��� � 		 
 � � 	� (13)

Proof: In view of Lemma 3, one only needs to prove that under
condition (13), system (9) is asymptotically stable for � � �	 � � � 	 �.

Consider the Lyapunov function candidate

� ����



�

�

���

�� �� �������� ���������
� �������� �������

(14)
where �� is positive for � � �	 � � � 	 �.

Taking the derivative of � ��� along the trajectories of (9) gives


� �

�

���

���
� ����������� ��� ��������� ������� ���


 � ��������

�

���

���
� �������


 ���� ��� ��������� ����������� ������� � (15)

From Lemma 4, it is easy to see that if ������������ ���
��� � 	,
then by choosing appropriate positive constants��, one can obtain that
���� ����������������������

� � 	. Under condition (13), system
(9) is asymptotically stable for � � �	 � � � 	 �. Therefore, by Lemmas 3
and 4, the local consensus of system (4) can be reached. The proof is
completed.

Note that system (4) is linearlized around the state of a single node
���� to obtain system (6). Thus, only local consensus is ensured. If ����
does not contain any asymptotical attractor or the state  � of each agent
system is not in the neighborhood of ����, then local consensus may
not be reached. The limitation of the result in Theorem 1 motivates the
following study of the global properties of system (4).

IV. GLOBAL CONSENSUS OF MULTI-AGENT

SYSTEMS IN GENERAL NETWORKS

The following result is widely used to compute the algebraic con-
nectivity of an undirected graph.

Lemma 5: [10], [30] For an undirected graph with Laplacian matrix
�, the algebraic connectivity of the network is given by


���� � ���
� � ��
����

 �� 

 � 
� (16)

Let the generalized in-degree and out-degree of a node in a network
be the sum of the weights of the edges pointing to or leaving from the
node, respectively.

Definition 4: (Balanced Graphs [6]) The node in a directed graph
� is said to be balanced if its in-degree is equal to its out-degree. A
graph � is called balanced if and only if all its nodes are balanced, i.e.,

�

���
��� �

�

���
��� � 	, � � 
	 �	 � � � 	 � .

In [6], the consensus problem of strongly connected balanced graphs
was investigated. Let � � ��� �� �!�. Then � is symmetric and the
sums of the entries in each row and each column are 0. Thus, �� is the
eigenvector associated with the simple eigenvalue 0. From Lemma 4,
one has  �� �  �� � 
���� 

� , where  ��� � 	. Now the
notion of algebraic connectivity is generalized to directed graphs.

Definition 5: For a strongly connected network � with Laplacian
matrix �, the general algebraic connectivity is defined to be the real
number

"���� � ���
� �����
����

 �� 

 �� 
(17)
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where � � ��� � ������, � � ��	
���� � � � � �� �, � �
���� ��� � � � � ���� with �� � � for � � 
� �� � � � � � and �

���
�� � 
.

Note that if � � �	� , then 
���� � �����.
Definition 6: [18], [19] Let � �
� be the set of matrices with real

entries such that the sum of the entries in each row is equal to the
real number 
. The set � � �� �
� if and only if � � 	� �
���

� and � � � ���. The set �� ��� � �� � � � 	� � � �
�� �
�� 	� �� ��� � � ���������	� �������� �	�����.

Lemma 6: [19], [20] Let � � ���� ��� � � � � �� �� , where �� � ��,
� � 
� �� � � � � � . Then the global consensus in system (4) can be
reached if there exists an � � �� ��� satisfying ���� � � as
� � 	.

Now, define a nonnegative distance function by

���� � ����� � ����
���� ��� ���� (18)

From the assumptions on�, one has ����� � if and only if �������
��� � � for all � � 
� �� � � � � � , where �� � �

���
������� is the

objective consensus state.
Assumption 1: There exist constants � and � � � such that

��� ��� ������ ������ ���� ������� ��


 ����� ��� ��� ��� � �� � � ��� (19)

Note that the condition (19) is very mild: If �������� ,
� � 
� �� � � � � � , � � 
� �� � � � � �, are bounded, then this condi-
tion is automatically satisfied. So systems satisfying (19) include many
well-known systems, such as the Lorenz system, Chen system, Lü
system, various neural networks, Chua’s circuit, to name just a few.

Theorem 2: Under Assumption 1, the global consensus of system
(4) can be reached if

� � �
���� � �� (20)

Proof: Consider the following Lyapunov function candidate de-
fined by the distance function in Lemma 6:

� ��� �



�
���������

where � � �	� � ���
� � � 	�, � � ��	
���� � � � � �� �, �� � �,

� � 
� �� � � � � � , with �

���
�� � 
, and ��� � � � 	�. Let �� �

�

���
������� and�� � � � �� � ��.

Taking the derivative of � ��� along the trajectories of (4) gives

�� ��������� �� ������� ���� �������

�������� � ������� ����
� �� 	� � ������

� �������� �	� � ���
� �� 	� ��� ������

�������� �� ������� �� � ������� ����������� ��

� �	� � ���
� �� 	� ���� � �������

� �� � ������ ����
� �� 	� � ������

� �������� ����
� �� 	� ��� ������� (21)

The third equality is satisfied due to the fact that �� � �������
� � �

	�� � �, since �� is the right eigenvector of � associated with eigen-
value 0. From ���� � 
, one has

������� ��� � ������

� �
�
� � �� ���� ��� 	�� �	� � ���

� �� 	� ����

� �� �	� � ���
� � � �� ���� ���� � � (22)

������� ����
� �� 	� � ������

� ��� �	� � ���
� � � �� ���� ���� � � (23)

and

������� ����
� �� 	� ��� ������ � �� (24)

Combining (21)–(24), one obtains

�� �������� �� ������� �� � ������

� ����������� �������


 � ������������� � ����������������

� ����������� �������

� � ������������� � ���� ����� ����� �������


 � ������������� � �� � �
�����

� ���������������� (25)

Under condition (20), global consensus of system (4) is reached. This
completes the proof.

Remark 1: Note that the condition (20) in Theorem 2 can also be
used to check consensus in networks with time-varying topologies. In
this case, condition (20) can be modified as ���
������� � ���� � �.
Taking control input �� � �� �

���
��������� and from Assumption

1 in (19), system (2) can reach consensus by controlling some states
with positive �� � �, � � 
� � � � � � and choosing a control gain �. The
derived condition (20) in Theorem 2 reveals how the network topology
can resist the nonlinear dynamics and thus affects the group collective
behavior in networks.

It is still not straightforward to verify whether the condition in (20)
is satisfied by a properly chosen positive vector �. If � � �, then it
is possible that 
���� � �; if � � �, the condition depends only
on 
����; and if � � �, then 
���� � � must be satisfied. From
condition (20), global consensus can be reached even if the network
is disconnected with � � �. For periodic and chaotic nodes with � �
�, one may be interested in the condition under which 
���� � �.
However, when is it possible to have 
���� � �? In what follows, an
answer is given to this question.

Lemma 7: (Theorem 8.4.4 in [31]) Suppose that is irreducible and
nonnegative. Then there is a positive vector � such that  � � !� ��,
where !� � is the spectral radius of matrix  .

Lemma 8: Suppose that the Laplacian matrix � is irreducible. Then
there is a positive vector � such that ��� � �.

Proof: Choose a positive integer " such that " � �� ��� � �
and " � ��� � � for all � � 
� �� � � � � � . Then matrix "	� � � is
positive definite and, from Lemma 1, !�"	� � �� � ". The matrix
�"	����

� � "	���
� is also positive definite and !�"	���� � � ".

By Lemma 7, there is a positive vector � such that �"	� ��� �� � "�,
and one obtains ��� � �. The proof is thus completed.

Lemma 9: Suppose that the Laplacian matrix � is irre-
ducible. Then there exists a positive-definite diagonal matrix
� � ��	
���� ��� � � � � �� �, such that � � �
������ � ����
is symmetric and �

���
��� � �, � � 
� �� � � � � � .

Proof: By Lemma 8, the proof can be completed by similar anal-
ysis in [21].

Lemma 10: [21] Suppose that the matrix � is symmetric and irre-
ducible, and satisfies �

���
��� � � with ��� 
 �, � 
� �, �� � �


� �� � � � � � . Let


���� � ���
� ����������

����

���
� (26)

Then ����� � 
���� � �. In addition, 
���� � � if and only if �
is orthogonal to the left eigenvector of � associated with eigenvalue
0; 
���� � ����� if � is the left eigenvector of � associated with
eigenvalue 0.
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Corollary 2: [21] If the Laplacian matrix � is irreducible, then
����� � �, where the chosen positive vector � satisfies ��� � �.

Lemma 11: [21] The general algebraic connectivity of a strongly
connected network can be computed by the following LMI:

��� �

�	
��
� ���� ��� ���� � � (27)

where � �
�

��� �� �
� �������� and � � ���� � � � � �����

� .
Remark 2: The definition of the algebraic connectivity presented

here is motivated by a similar definition in [11], where it is assumed
that ��� � �. In this technical note, a more general case is consid-
ered, where � is a positive vector. Based on this general definition of
the algebraic connectivity, the above theoretical analysis for reaching
global consensus can be carried out.

Next, analysis on the global consensus is presented assuming that
graph 	 has a spanning tree. Let the Laplacian matrix � of graph 	 be
in its Frobenius normal form [32]

� �

��� � � � � �

��� ��� � � � �
...

...
. . .

...
��� ��� � � � ���

(28)

where ��� � �� � is irreducible for all 
 � �� �� � � � � �. Matrix
(28) can be interpreted as follows: the nodes and their adjacent edges
in ��� constitute an irreducible subgraph of 	, and ��	�� 
 
� rep-
resents the influence from subgraph �		 to subgraph ���.

Definition 7: [32] Let� be a directed network and let������ � � � ���
be the strongly connected components of � with connection matrices
���� ���� � � � � ���. �� is a condensation network of � if there is a
connection from a vertex in���	� to a vertex in���
��� �� ��, then the
weight 	�
	 � �; otherwise, 	�
	 � � for �� � � �� �� � � � � �; 	�

 � �
for � � �� �� � � � � �.

Note that the condensation network �� of a directed network � has
no closed directed walks [32].

Lemma 12: [21] For every � � �� �� � � � � �, there is an integer � 
 �
such that 	�
	 � � if and only if the directed network � contains a
directed spanning tree.

Let ��� � �� � �� , where �
	�� �

�

	 � � and �� is a diagonal

matrix for all � � �� �� � � � � �� . From Lemma 12, it is easy to see that
�� � � and �� �� � for all 
 � �� � � � � �.

Lemma 13: [26] If L is irreducible, �
	 � �	
 � � for � �� �, and
�
	�� �
	 � �, for all � � �� �� � � � � � , then all eigenvalues of the

matrix

��� � � ��� � � � ���

��� ��� � � � ���

...
...

. . .
...

��� ��� � � � ���

are positive for any positive constant �.
Definition 8: For a network with a directed spanning tree and the

Laplacian matrix in the form of (28), the general algebraic connectivity
of the �th strongly connected component �� � � � �� is defined to be
the real number

�
�
��

� � ���

� ���

���

�

���
�

� ���
����

� �
��
� �

��


 �

 �
��


 � �
��

� ���� � �
��

����	 �
��


 �

 �
��


 (29)

where �

 � ��
�
 � ��

 �
���, �
 � ������
�� � � � � �
� �, �
 �

����� �

�
� � � � � �


�
��
 � ��
�� � � � � �
� ��� �, and ��
 �
 � �,

�
	�� �
	 � �.
Lemma 14: If the Laplacian matrix � has a directed spanning tree,

then �����	����������� �� ��

�	 � �, where the chosen positive

vector � in ������� satisfies ����� � � and the positive vectors �
 in
�
�
��

� satisfy ��
 �
 � � for � � �� � � � � �.

Proof: From Corollary 2, one knows that ������� � �. It suffices
to prove that �����	�� �� ��		� � �. Note that

�
�
��

� ����	 �

��


 �

 �
��




����	 �
��



�
�


 ��
��


�
��
�
 �

��




where �������
�

 � �
��
� is a zero sums symmetric matrix and

�
 � �. By Lemma 12, there is at least one positive diagonal entry in
�
. According to Lemma 13, �

�
��

� � � for � � � � �.

Theorem 3: Suppose that Assumption 1 holds and graph 	 has a
spanning tree. Then global consensus of system (4) can be reached if

� � � ���
��	��

�
�
������ �� ��		� 
 �� (30)

Proof: From (28), one knows that ��� is irreducible, and in view
of Theorem 2, the consensus of agents in the subgraph ��� can be
reached. Suppose that agents �� � � � ��� are synchronized to the state
of the following system:

����� � � ������ �
����
� (31)

where � is a positive constant. First, one has

��
��� � � ��
����� �

�

	��

�
	�	���

� � ��
����� �

�

	��

�
	��	���

� �

� 
�

	�� 
�

�
	��	��� (32)

where  � � �� � � � � � �� . Subtracting (31) from (32) yields the
following error dynamical system:

��
�������
����� � ������� �

�

	��

�
	� ��	��������� �
����
�

(33)

where � �  ������ � � � �  ������ and �
��� � �
��������. Choose
the following Lyapunov function candidate:

! ��� �
�

�

�

���

� 
�


�� 
�

����
�
�

 ����
��� (34)

where �� are positive constants to be determined and ��
 are defined
in Definition 8, 
 � �� � � � � � and � �  ��� � �� � � � �  ��� ��� .
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The derivative of � ��� along the trajectories (33) gives

�� ��� �

�

���

� ��

��� ��

������
�
� ���

� � ��������� ��������

�

���

	������������
��	�

�

�

���


 � ��


�	��� �

�
� ������ � �������

����

���

���

�
�
� ������	�� � �������

������	�� �

�

���

�
�
� ������ � 
������� (35)

where ����� � ���� ��� 	 	 	 � �
�
� �� �

�
and �� �


��
����� 	 	 	 � ��� �.
Under condition (30) and by Lemma 4, one has �� ��� � �. Since

graph � has a spanning tree, 	�� � �� ��� , where the sum of the
entries in �� is zero, and �� �� �. Now, Lemmas 13 and 14 together
lead to the conditions given in (30) where 
 � �. The proof is thus
completed.

V. CONCLUSION

In this technical note, both local and global consensus problems for
multi-agent systems in directed networks have been investigated. The
main contributions of this technical note include the following: i) Local
consensus in a directed network of agents with nonlinear dynamics
has been studied. It is found that the real part of the second smallest
eigenvalue of the Laplacian matrix plays a key role in deriving the con-
sensus conditions. ii) A generalized algebraic connectivity, which can
be used to describe the consensus ability of the network, has been pro-
posed to discuss global convergence properties of consensus in strongly
connected networks and also in networks containing spanning trees.
Some future works are as follows: i) Networks with nonlinear cou-
plings and networks consisting of heterogeneous autonomous agents
will be studied. ii) The multi-agent system with switching topology
will be considered. iii) Based on the general algebraic connectivity dis-
cussed in this technical note, the stable consensus regions will be fur-
ther investigated in multi-agent systems with nonlinear dynamics and
a general inner coupling matrix � in the near future.
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