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1 Introduction

Since the turn of the millenium, a lot of progress has been made in the context of flux
compactifications of string theory in order to obtain four-dimensional effective descriptions
with a number of desired features. In particular, from a phenomenological point of view, one
is interested in a vacuum with small but positive cosmological constant and spontaneously
broken supersymmetry. This implies the necessity of finding de Sitter (dS) solutions from
string theory compactifications. In addition to modelling dark energy, these are relevant
for embedding descriptions of inflation in string theory. Moreover, Anti-de Sitter (AdS)
solutions are employed in holographic applications in order to study physical systems which
have a conformal symmetry realised in the UV.

Many string theory constructions related to flux backgrounds compatible with mini-
mal supersymmetry have been studied so far. In particular, the mechanism of inducing
an effective superpotential from fluxes [1] has been extensively studied in the literature
for those compactifications giving rise to a so-called STU -model as low energy descrip-
tion [2–10]. However, recent progress in understanding the link between half-maximally
supersymmetric string backgrounds and gaugings of N = 4 supergravity [11–13], seems to
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give a powerful tool for addressing the same issue in the context of N = 4 compactifica-
tions. As we will discuss later, this allows one to address the stabilisation of all moduli
consistent with the isotropic Z2 × Z2 orbifold compactification.

Another interesting opportunity offered by the study of such flux compactifications
and their relation to half-maximal supergravity, is that of addressing the issue of stability
without supersymmetry in extended supergravity. More precisely, for a long time it was
believed that there are no stable vacua of maximal or half-maximal supergravity that
spontaneously break all supersymmetry. Very recently [14], however, an example of an AdS
critical point which is both non-supersymmetric and stable has been found in maximal
supergravity. This adds further motivation to look for new such extrema in the half-
maximal case as well. Furthermore, the possible existence of stable de Sitter vacua in this
context still remains an open discussion point [15].

In maximal supergravity with SO(8) gauge group, the main approach to classify critical
points has been to consider a particular truncation, restricting only to the degrees of
freedom that are singlets with respect to a certain symmetry group, e.g. an SU(3) subgroup
of SO(8). The consistency of the truncation ensures the extremality of the non-singlet
scalars that are truncated out. However, it by no means implies any restriction on the
mass of these scalars, and hence in order to check e.g. stability of a particular critical
point, one should consider the full theory. A striking example is provided by a particular
critical point of N = 8 supergravity that is invariant under SU(4)−: even though all singlet
scalars are stable, there are instabilities in the non-singlet sector [16]. This underlines the
importance of considering the mass spectrum of the full theory. We will adopt a similar
approach towards the classification of critical points of general N = 4 theories, by requiring
the critical points to preserve at least an SO(3) subgroup of the gauge group. This will
allow us not only to classify the different critical points of a particular theory, but also all
the theories that allow for moduli stabilisation in e.g. geometric IIA compactifications.

With respect to the string theory interpretation of the theories at hand, progress in
this direction has been (partially) motivated by the search for de Sitter solutions. Firstly, a
no-go result was proven which rules out the possibility of having de Sitter solutions in the
presence of only gauge fluxes [17]. Further generalisations have investigated the possibility
to circumvent this no-go theorem by including geometric fluxes, see e.g. [18–24]. However,
the difficulties in finding de Sitter solutions in an N = 4 set-up with only gauge fluxes and
geometric fluxes [13], make it necessary to go beyond those ingredients. A first extension
has been carried out by introducing the so-called T-folds in doubled geometry [25, 26];
this is a T-duality-covariant construction obtained by supplementing the internal space
with extra coordinates conjugate to winding number. A second extension goes towards
the introduction of non-geometric fluxes. These were introduced as dual counterparts
of geometric and gauge fluxes based on mirror symmetry [27, 28], thus allowing for the
generalisation of duality symmetries in the presence of fluxes. This construction turns out
to be natural in the context of type IIB string theory. However, the relation between these
two generalisations of a flux background is not completely immediate and turns out to
depend on the duality frame. In the present paper we will mainly focus on gauge and
geometric fluxes, and only lightly touch upon some non-geometric fluxes.
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The paper is organised as follows. In section 2, we first review the embedding tensor
formulation of half-maximal supergravity theories and discuss the structure of the under-
lining gauging; secondly we construct an SO(3) truncation thereof and interpret it in the
N = 1 superpotential language which allows us to spell out a complete dictionary between
fluxes and embedding tensor components. In section 3, we present the tools used in order
to analyse critical points and discuss their features. In section 4, we present the complete
set of vacua of geometric type IIA N = 4 compactification. In section 5, we give the com-
plete set of vacua of type IIB compactifications with only gauge fluxes and some relevant
solutions of non-geometric type IIB compactifications. Finally we present our conclusions
in section 6. In appendix A we present the classification of vacua in the case of geometric
type IIA N = 1 compactifications.

2 N = 4 supergravities from flux compactifications

In this section we present a brief introduction to half-maximal supergravity theories in
four dimensions. We will focus on those arising as consistent SO(3) truncations of the
general theory and will show that they admit a string theory realisation in terms of flux
compactifications in the presence of generalised background fluxes.

2.1 General review of N = 4 gauged supergravities

We mostly follow the notation and conventions of ref. [29] to work out the N = 4 super-
gravity theory invariant under the action of the G = SL(2) × SO(6, 6) duality group in
four dimensions.

Gauge vectors and gauge algebra. The theory contains vector fields Aµ in four di-
mensions which transform in the fundamental representation of G = SL(2) × SO(6, 6),

Aµ = V αM
µ TαM , (2.1)

where α = (+,−) is a fundamental SL(2) index and M = 1, . . . ., 12 is the SO(6, 6)
fundamental index.

In the ungauged theory, only a subgroup G0 = U(1)12 ⊂ SO(6, 6) is realised and the
vector fields become abelian, i.e. [TαM , TβN ] = 0. However, this ungauged theory can be
deformed away from the abelian structure without breaking the N = 4 supersymmetry so
that a non-abelian subgroup G0 ⊂ SO(6, 6) is realised [29]. Then, the most general form
of the gauge algebra in the gauged theory becomes1

[TαM , TβN ] = fαMN
P TβP , (2.2)

with fαMNP = fαMN
Q ηQP = fα [MNP ] being the structure constants of G0 and with

ηMN the SO(6, 6) metric. This automatically implies that only theG0 ⊂ SO(6,6) subgroups
admitting ηMN as a non-degenerate bi-invariant metric can be realised as deformations of

1In general this can be extended with deformation parameters ξαM . We will not include these here as

such parameters are completely projected out in the SO(3) truncation that we analyse in the present paper.
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the ungauged theory. In other words, the adjoint representation of G0 has to be embeddable
within the fundamental representation of SO(6, 6). This embedding may not be unique,
thus resulting in non-equivalent realisations of the same G0 subgroup. From now on, we
will use light-cone coordinates, so that an SO(6, 6) index is raised or lowered by using the
SO(6, 6) light-cone metric

ηMN = ηMN =

(
0 I6

I6 0

)
. (2.3)

Let us perform the splitting of the fundamental SO(6, 6) index M ≡ (m , m) ≡ (m, m̄)
with m = 1, . . . , 6 and m̄ = 1̄, . . . , 6̄ . Then, the vectors split as TαM ≡ (Zαm , Xα

m)
alike, and the algebra in (2.2) can be rewritten as the set of brackets

[Zαm, Zβn] = fαmn
p Zβp + fαmnp Xβ

p ,

[Zαm, Xβ
n] = fαm

np Zβp + f n
αm p Xβ

p ,

[Xα
m, Zβn] = f m p

α n Zβp + f m
α np Xβ

p ,

[Xα
m, Xβ

n] = fα
mnp Zβp + f mn

α p Xβ
p .

(2.4)

It is worth noticing that this is only apparently a twenty-four-dimensional gauge algebra,
but in fact the actual gauging is twelve-dimensional after imposing the constraints

εαβ fαMNP Tβ
P = 0 , (2.5)

which ensure the anti-symmetry of the brackets in (2.2). This fact is related to the ob-
servation in ref. [30], i.e. that the algebra realised on the vectors can only be embedded
in Sp(24), whereas the proper gauge algebra is that one realised on the curvatures, which
is obtained from the previous one after dividing out by the abelian ideal consisting of all
generators acting trivially on the curvatures. To summarise, in order to identify the correct
gauging, one has to solve these constraints by expressing half of the generators in terms
the other ones and plug the solution into the brackets of (2.4).

Quadratic constraints and scalar potential. The scalars of the theory span the
coset geometry

SL(2)
SO(2)

× SO(6, 6)
SO(6)× SO(6)

. (2.6)

We will name Mαβ the scalars parameterising the first factor and MMN those ones pa-
rameterising the second factor in (2.6). For the former we will use the following explicit
parameterisation

Mαβ = eφ

(
χ2 + e−2φ χ

χ 1

)
, α = (+,−) , (2.7)

where the SL(2) indices are raised and lowered using εαβ = εαβ with ε+− = −ε−+ = 1.
The matrix MMN , can be determined by starting from a ’vielbein’ denoted by V A

M , where
A is an SO(6) × SO(6) index whereas M is an SO(6, 6) one. This object is such that

M = V VT . (2.8)
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Global SO(6, 6) transformations act on V from the left, whereas local SO(6) × SO(6)
transformations act from the right. Even though V is not by itself invariant under local
SO(6) × SO(6) transformations, the particular combinations constructed out of it which
will appear in the scalar potential are. In particular, the matrix M itself is invariant.

As for the embedding tensor components, they can be parameterised by fα[MNP ]

and ξαM , but, as discussed in footnote 1, we will set ξαM = 0 in the following formula.
The non-vanishing embedding tensor components fαMNP have to satisfy the following
quadratic constraints2

fαR[MNfβPQ]
R = 0 , εαβ fαMNR fβPQ

R = 0 . (2.9)

The combination of supersymmetry and gaugings then induces the following scalar
potential3

V =
1
64
fαMNP fβQRSM

αβ

[
1
3
MMQMNRMPS +

(
2
3
ηMQ −MMQ

)
ηNRηPS

]
− 1

144
fαMNP fβQRS ε

αβMMNPQRS , (2.10)

where
MMNPQRS ≡ εmnpqrsV m

M V n
N V p

P V
q

Q V r
R V s

S . (2.11)

The underlined indices here are time-like rather than light-like, and related by the change
of basis

R ≡ 1√
2

(
−I6 I6

I6 I6

)
. (2.12)

Because of this distinction between time- and space-like indices of SO(6, 6), this completely
antisymmetric tensor is invariant under local SO(6)×SO(6) transformations. Despite this,
though, one would need to compute V associated with MMN explicitly in order to obtain
the full form of the scalar potential.

2.2 The SO(3) truncation

Let us consider the SO(3) truncation of the full theory enjoying an SL(2) × SO(6, 6) global
symmetry.4 In the following sections of this work we will be dealing with (non-)geometric
flux compactifications of type II string theory having such a low-energy effective description.
This truncation is performed by considering an SO(3) subset in SO(6, 6) and keeping in
the theory only the singlets with respect to this subgroup both in the scalar sector and in
the embedding tensor part. Such a group theoretical truncation is always guaranteed to be

2The only further subtlety is that the second set of quadratic constraints in (2.9) can be obtained

from (2.5) by specifying it to the adjoint representation. Nevertheless, these sets of constraints are only

equivalent if such adjoint representation is faithful, otherwise one has to take into account that the linear

dependence relations between the 24 generators have to be supplemented with the vanishing conditions for

some of them.
3We have set the gauge coupling constant to g = 1

2
with respect to the conventions in ref. [29].

4This is the natural generalisation of the SL(3) × SL(3) truncation considered in ref. [31], and indeed

will lead to a much richer landscape of vacua.
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consistent in the sense that all of the non-singlet scalars can be consistently set to zero in
that their field equations can never be sourced by SO(3) singlets. However, it by no means
guarantees the stability of the non-singlets, and hence one must always explicitly check the
mass spectrum of these fields as well.

The scalar sector of the theory. The decomposition of the adjoint representation of
SO(6, 6) contains six scalars

66→ 6 · (1,1)⊕ non-singlet representations , (2.13)

amongst which two of them correspond to the product SO(6)× SO(6) and therefore they
are pure gauge. This implies that the scalar coset associated with the matter multiplets
is parameterised in terms of only four physical scalars: two dilatons (ϕ1, ϕ2) and two
axions (χ1, χ2). The scalar coset in this sector reduces in the following way under the
SO(3) truncation

SO(2, 2)
SO(2)× SO(2)

. (2.14)

The explicit parameterisation of MMN is defined in terms of a symmetric G and an
antisymmetric B matrices as

MMN ≡
(

G−1 −G−1B

BG−1 G−BG−1B

)
, (2.15)

where G and B are given by

G = eϕ2−ϕ1

(
χ2

2 + e−2ϕ2 −χ2

−χ2 1

)
⊗ I3 , B =

(
0 χ1

−χ1 0

)
⊗ I3 . (2.16)

In consequence, we will choose the vielbein V in (2.8) to be

V ≡
(

eT 0
B eT e−1

)
⊗ I3 , e ≡ e(ϕ1+ϕ2)/2

(
1 χ2

0 e−ϕ2

)
, (2.17)

with eT e = G−1.
Using this parameterisation of the scalar sector in the truncated theory, the kinetic

terms then reduce to

Lkin =
1
8

(∂Mαβ)(∂Mαβ) +
1
16

(∂MMN )(∂MMN ) (2.18)

= −1
4

[
(∂φ)2 + e2φ(∂χ)2 + 3(∂ϕ1)2 + 3 e2ϕ1(∂χ1)2 + 3(∂ϕ2)2 + 3 e2ϕ2(∂χ2)2

]
.

The quadratic constraints for the SO(3) truncation. First of all, the number of
allowed embedding tensor components turns out to be 40, arranged into 20 SL(2) doublets,
20 being the number of SO(3)-singlets contained in the decomposition of the 220 of SO(6,6):

(2,220)→ 20 · (2,1)⊕ non-singlet representations . (2.19)
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A convenient way of describing these 20 SO(3)-invariant doublets is described in ref. [3],
where the relevant components of the embedding tensor are classified using the SO(2, 2)×
SO(3) subgroup of SO(6, 6) with embedding 12 = (4,3). In this case, one can rewrite every
SO(6, 6) index M as a pair (AI), where I = 1, 2, 3 is a fundamental SO(3) index, whereas
A = 1, . . . , 4 is a fundamental SO(2, 2) index. Due to this decomposition, the structure
constants of the gauge algebra can be factorised as follows

fαMNP = fαAI BJ CK = ΛαABC εIJK , (2.20)

from which one can infer that the SO(2, 2)-tensor ΛABC is completely symmetric. This
observation takes us back to the number of 20 as expected from the group theoretical
decomposition. What one can now do, is to write down the quadratic constraints (2.9) in
terms of the Λ tensor. One obtains

εαβ Λ C
αAB ΛβDEC = 0 , Λ C

(αA[B Λβ)D]EC = 0 , (2.21)

where the extra indices α, β = (+,−) still represent the SL(2) phase.
The first set of constraints in (2.21) takes values in the following representation of

SL(2)× SO(2,2)

(1, ⊗AS ) , (2.22)

which has dimension 45, whereas the the second set of constraints in (2.21) takes values in
this other one (

3,
)
, (2.23)

which should not yet be thought of as only consisting of its irreducible (traceless) part
and therefore it has dimension 63. This leads us to 108 as total amount of constraints,
which can also be obtained by means of a computer. It turns out, though, that the number
of independent constraints reduces to5 105. We will come back to this point in the next
section when investigating the superpotential formulation of our truncated theory.

2.3 Relation to flux compactifications

So far, we have introduced the main features of the SO(3) truncation of half-maximal su-
pergravity in four dimensions. As we have seen in the previous section, the scalar manifold
in the truncated theory reduces to

SL(2)
SO(2)

× SO(2, 2)
SO(2) × SO(2)

∼
(

SL(2)
SO(2)

)3

, (2.24)

where each of the SL(2) factors can be parameterised by a complex scalar field. The result-
ing supergravity models are commonly referred to in the literature as STU -models. They

5This fact should be understood in the following way: the trace part of (2.23) is already implied by the

remaining full set of constraints coming from both (2.22) and (2.23).
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consist of three complex fields which are related to those entering the Mαβ matrix in (2.7)
and the MMN matrix in (2.15) — through the metric G and the B-field in (2.16) — by

S ≡ χ+ i e−φ , T ≡ χ1 + i e−ϕ1 and U ≡ χ2 + i e−ϕ2 . (2.25)

Furthermore, the splitting 4→ 1⊕3 of the fundamental representation of SU(4) ∼ SO(6)
R-symmetry under the action of SO(3) ensures an N = 1 structure of the supergravity
describing the truncated theory. This implies that it has to be possible to formulate it in
terms of a real Kähler potential K(Φ, Φ̄) and a holomorphic superpotential W (Φ) , where
Φ = (S, T, U) , by using the standard minimal supergravity formalism. According to it, the
scalar potential can be worked out as

V = eK

(∑
Φ

KΦΦ̄|DΦW |2 − 3|W |2
)
, (2.26)

where KΦΦ̄ denotes the inverse of the Kähler metric KIJ̄ = ∂K
∂ΦI∂Φ̄J̄

, and DΦW = ∂W
∂Φ +

∂K
∂ΦW is the Kähler derivative.

The Kähler potential. Let us start by noticing that the kinetic Lagrangian in (2.18)
can be rewritten in terms of the complex fields in (2.25) as

Lkin = KIJ̄ ∂ΦI∂Φ̄J̄ =
∂S∂S̄(−i(S − S̄)

)2 + 3
∂T∂T̄(−i(T − T̄ )

)2 + 3
∂U∂Ū(−i(U − Ū)

)2 , (2.27)

with KIJ̄ being again the Kähler metric. The above kinetic terms are then reproduced
from the Kähler potential

K = − log
(−i (S − S̄)

)− 3 log
(−i (T − T̄ )

)− 3 log
(−i (U − Ū)

)
, (2.28)

which matches the one obtained in string compactifications and being valid to first order
in the string and the sigma model perturbative expansions.

The superpotential: flux backgrounds in terms of the embedding tensor. Find-
ing out the precise superpotential WSO(3)(Φ) from which to reproduce the scalar potential
in (2.10) is certainly not an easy task. The reason why is that both scalar potentials,
namely the one computed from the superpotential and that of (2.10), do not have to per-
fectly match each other but they have to coincide up to the quadratic constraints in (2.21).

As for the above Kähler potential, we want the superpotential WSO(3)(Φ) also to stem
from (orientifolds of) some string compactifications from ten to four dimensions. Their
compatibility with producing an SO(3) truncation of half-maximal supergravity in four
dimensions allows for a simple interpretation of the internal space of the compactification.
It can be taken to be the factorised six-torus of figure 1 whose coordinate basis is denoted
ηm with m = 1, . . . , 6 , supplemented with a set of flux objects fitting the embedding tensor
components f±MNP surviving the truncation.
In the following we will use early Latin indices a, b, c for horizontal “− ” x-like directions
(η1, η3, η5) and late Latin indices i, j, k for vertical “|” y-like directions (η2, η4, η6) in the 2-
tori TI with I = 1, 2, 3. This splitting of coordinates is in one-to-one correspondence with

– 8 –
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η1

η2

η3

η4

η5

η6× ×

Figure 1. T6 = T2
1 × T2

2 × T2
3 torus factorisation and the coordinate basis.

the SO(6, 6) index splitting of the embedding tensor components given in (2.20), where
A = (1, 2, 3, 4) ≡ (a, i, ā, ī) refers to an SO(2, 2) fundamental index and εIJK denotes the
usual totally antisymmetric tensor.

The identification between the embedding tensor components (gauging parameters)
in the supergravity side and the flux objects in the string compactification side crucially
depends on the string theory under investigation. As an example, when considering N = 1
type IIA orientifold compactifications including O6-planes and D6-branes, only a few em-
bedding tensor components in the supergravity side are known to correspond to flux compo-
nents in the string theory side. In contrast, all of them correspond to (at least conjectured)
fluxes in N = 1 orientifold compactifications of type IIB string theory including O3/O7-
planes and D3/D7-branes. In this type IIB scheme [11, 13], the correspondence between
embedding tensor components and fluxes entering the superpotential in (2.30) reads

f+mnp = F̃ ′mnp , f+mn
p = Q′mn

p , f mn
+ p = Qmn

p , f mnp
+ = F̃mnp ,

f−mnp = H̃ ′mnp , f−mn
p = P ′mn

p , f mn
− p = P mn

p , f mnp
− = H̃mnp ,

(2.29)

where, for instance, F̃mnp ≡ 1
3!
εmnpm′n′p′ Fm′n′p′ . The correspondence between SO(6, 6)

and SO(2, 2) embedding tensor components with known/conjectured flux objects in both
type IIA and type IIB orientifold compactifications is presented in tables 1 and 2.

Irrespective of the particular string theory realisation, we have explicitly checked that
the scalar potential (2.10) induced by the gaugings in the SO(3) truncated theory is cor-
rectly reproduced, up to N = 4 quadratic constraints, from the following flux-induced
superpotential

WSO(3) = (PF −PH S) + 3T (PQ −PP S) + 3T 2 (PQ′ −PP ′ S) + T 3 (PF ′ −PH′ S) , (2.30)

using the standard results in minimal supergravity. However, just by a simple inspection of
tables 1 and 2, it is clearly more convenient to adopt the terminology of the type IIB string
theory when it comes to associate embedding tensor components to fluxes. In this picture,
the superpotential in (2.30) contains flux-induced polynomials depending on both electric
and magnetic pairs — schematically (e,m) — of gauge (F3, H3) fluxes and non-geometric
(Q,P ) fluxes,

PF = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 , PH = b0 − 3 b1 U + 3 b2 U2 − b3 U3 ,

PQ = c0 + C1 U − C2 U
2 − c3 U

3 , PP = d0 +D1 U −D2 U
2 − d3 U

3 ,
(2.31)
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couplings SO(6, 6) SO(2, 2) Type IIB Type IIA fluxes

1 −f+āb̄c̄ −Λ+333 Fijk Faibjck a0

U f+āb̄k̄ Λ+334 Fijc Faibj a1

U2 −f+āj̄k̄ −Λ+344 Fibc Fai a2

U3 f+īj̄k̄ Λ+444 Fabc F0 a3

S −f−āb̄c̄ −Λ−333 Hijk Hijk b0

S U f−āb̄k̄ Λ−334 Hijc ωcij b1

S U2 −f−āj̄k̄ −Λ−344 Hibc Qbci b2

S U3 f−īj̄k̄ Λ−444 Habc Rabc b3

T f+āb̄k Λ+233 Qabk Habk c0

T U f+āj̄k = f+īb̄k , f+ab̄c̄ Λ+234 , Λ+133 Qajk = Qibk , Qbca ωjka = ωibk , ωabc c1 , c̃1

T U2 f+īb̄c = f+āj̄c , f+īj̄k Λ+134 , Λ+244 Qibc = Qajc , Qijk Qcib = Qjca , Qijk c2 , c̃2

T U3 f+īj̄c Λ+144 Qijc Rijc c3

S T f−āb̄k Λ−233 P abk d0

S T U f−āj̄k = f−īb̄k , f−ab̄c̄ Λ−234 , Λ−133 P ajk = P ibk , P bca d1 , d̃1

S T U2 f−īb̄c = f−āj̄c , f−īj̄k Λ−134 , Λ−244 P ibc = P ajc , P ijk d2 , d̃2

S T U3 f−īj̄c Λ−144 P ijc d3

Table 1. Mapping between unprimed fluxes, embedding tensor components and couplings in the
superpotential.

as well as those induced by their less known primed counterparts (F ′3, H
′
3) and (Q′, P ′)

fluxes,

PF ′ = a′3 + 3 a′2 U + 3 a′1 U
2 + a′0 U

3 , PH′ = b′3 + 3 b′2 U + 3 b′1 U
2 + b′0 U

3 ,

PQ′ = −c′3 + C ′2 U + C ′1 U
2 − c′0 U3 , PP ′ = −d′3 +D′2 U +D′1 U

2 − d′0 U3 .
(2.32)

For the sake of clarity, we have introduced the flux combinations Ci ≡ 2 ci − c̃i , Di ≡
2 di − d̃i , C ′i ≡ 2 c′i − c̃′i and D′i ≡ 2 d′i − d̃′i entering the superpotential, and hence the
scalar potential and any other physical quantity.

These so-called primed fluxes have been conjectured in ref. [9] to be needed in order
to have a fully U-duality invariant flux background, but there is no further understanding
of their physical role and of the types of sources coupling to them at the present stage.
Still, those give a hint to understand the relation between doubled geometry and non-
geometry as anticipated in the introduction. In the heterotic duality frame those two
exactly coincide, in the sense that all the fluxes introduced by using doubled geometry
happen to be interpretable as non-geometric fluxes. However, in such a duality frame it is
impossible to introduce their magnetic dual counterparts. After performing an S-duality
to go to type I (equivalent to type IIB with O9-planes) and subsequently a 6-tuple T-
duality, we are in IIB with O3-planes. In such a duality frame, non-geometry and doubled
geometry happen to give rise to two complementary generalised sets of fluxes, the second
one consisting of these primed fluxes. Moreover, this particular frame is S-duality invariant
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couplings SO(6, 6) SO(2, 2) Type IIB Type IIA fluxes

T 3 U3 −f+abc −Λ+111 F ′ijk a′0

T 3 U2 f+abk Λ+112 F ′ijc a′1

T 3 U −f+ajk −Λ+122 F ′ibc a′2

T 3 f+ijk Λ+222 F ′abc a′3

S T 3 U3 −f−abc −Λ−111 H ′ijk b′0

S T 3 U2 f−abk Λ−112 H ′ijc b′1

S T 3 U −f−ajk −Λ−122 H ′ibc b′2

S T 3 f−ijk Λ−222 H ′abc b′3

T 2 U3 f+abk̄ Λ+114 Q′kab c′0

T 2 U2 f+ajk̄ = f+ibk̄ , f+ābc Λ+124 , Λ+113 Q′kaj = Q′kib , Q
′a
bc c′1 , c̃′1

T 2 U f+ibc̄ = f+ajc̄ , f+ijk̄ Λ+123 , Λ+224 Q′cib = Q′caj , Q
′k
ij c′2 , c̃′2

T 2 f+ijc̄ Λ+223 Q′cij c′3

S T 2 U3 f−abk̄ Λ−114 P ′kab d′0

S T 2 U2 f−ajk̄ = f−ibk̄ , f−ābc Λ−124 , Λ−113 P ′kaj = P ′kib , P
′a
bc d′1 , d̃′1

S T 2 U f−ibc̄ = f−ajc̄ , f−ijk̄ Λ−123 , Λ−224 P ′cib = P ′caj , P
′k
ij d′2 , d̃′2

S T 2 f−ijc̄ Λ−223 P ′cij d′3

Table 2. Mapping between primed fluxes, embedding tensor components and couplings in the
superpotential.

and therefore such a flux background can be completed to a fully S-duality invariant one.
This construction in the isotropic case allows us to at least formally6 describe all the
embedding tensor components included in the SO(3) truncation.

The superpotential in (2.30) was originally derived from a type II string theory ap-
proach in ref. [9] by using duality arguments. Concretely, they worked out the N = 1
duality invariant effective supergravity arising as the low energy limit of type II orientifold
compactifications on the T6/(Z2 × Z2) toroidal orbifold. More recently, this has been put
in the context of type IIB (with O3/O7-planes)/F-theory compactifications in ref. [11] and
connected to generalised geometry in ref. [32]. Finally, some aspects of the vacua structure
of this supergravity have been explored in refs [33–35] where only the unprimed fluxes
inducing the polynomials in (2.31) were considered.

A worthwhile final remark about the SO(3) truncation of half-maximal supergravity
in four dimensions is that the resulting scalar potential V is left invariant by the action of
a discrete Z2 = {1 , α1} symmetry. This parity symmetry transforms simultaneously the
moduli fields Φ = (S, T, U) and the different fluxes fi as

α1 : Φ −→ −Φ̄ ,

fi −→ (−1)n1+n2+n3 fi ,
(2.33)

6Primed fluxes do not have any well-defined string theory description, not even a local one, since they

stem from some strongly coupled limit of the IIB theory.
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where fi S
n1Tn2Un3 denotes a generic term in the superpotential (2.30). This trans-

formation can be equivalently viewed as taking the superpotential from holomorphic to
anti-holomorphic, i.e., W (Φ) → W (Φ̄), without modifying the Kähler potential. This
additional generator extends the SO(2, 2) part of the duality group to O(2, 2), while also
acting with an element of determinant minus one on the SL(2) indices.

Understanding the matching: are there unnecessary quadratic constraints?
Let us go deeper into the matching between the N = 1 and N = 4 supergravity formu-
lations of the theory. This equivalence happens to hold only after the N = 4 quadratic
constraints in (2.21) are imposed on the N = 1 side as well. Some of those constraints
happen to kill some moduli dependences which are not allowed by N = 4, since they
cannot be expressed in an SL(2) × SO(6, 6) covariant way, whereas some others are only
needed in order to recover the same coefficients in front of terms which are present in
both of the theories. A further subtlety is that, in total, one only needs to impose 96
out of the 105 independent quadratic constraints. This means that there are 9 quadratic
constraints which do not seem to be needed in order for the matching to work. Going
back to the representation theory analysis we started in (2.22) and (2.23), one realises
that (2.22) splits in the following irreducible representations of SO(2, 2) in the case of the
SO(3) truncated theory

⊗AS = ⊕ ⊕ , (2.34)

that is to say, a splitting of the 45 into 6 ⊕ 9 ⊕ 30. It turns out that all of the unneeded
constraints combine together to give the 9 irreducible component in the right-hand side
of (2.34). The reason why these constraints are not needed still remains unclear but it is a
peculiar feature of the SO(3) truncation. This can be understood by going back to the full
theory, where those constraints combine together with other ones into a bigger irreducible
representation of SL(2) × SO(6, 6) and hence they have to be necessary as well as the
other constraints in order to have a complete matching between the N = 4 and N = 1
scalar potentials.

Up to our knowledge, these results represent the first general demonstration7 of the
explicit relation between the embedding tensor formulation of N = 4 supergravity and the
superpotential formulation of N = 1 supergravity in this particular truncation.

3 Analysis of critical points

In this section we present the strategy followed to find the complete set of extrema of the
scalar potential induced by the gaugings and tools for analysing the mass spectrum and
supersymmetry breaking.

3.1 Combining dualities and algebraic geometry techniques

The investigation of the full vacua structure of a particular truncation is carried out by
making use of the following two ingredients: i) part of the SL(2) × SO(2, 2) duality

7This point was also discussed in ref. [11] and we thank the authors for correspondence on their results.
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group in order to reduce the extrema scanning to the origin of the moduli space without
loss of generality.8 ii) specific algebraic geometry techniques which permit an exhaustive
identification of the flux backgrounds

Provided a set of vacuum expectation values (VEVs) for the moduli fields Φ0 ≡ (S0, T0, U0)
that satisfies the extremisation conditions of the scalar potential, ∂ΦV |Φ0

= 0 , it can al-
ways be brought to the origin of the moduli space, i.e.,

S0 = T0 = U0 = i , (3.1)

by subsequently applying a real shift together with rescaling upon each of the complex
moduli fields. These transformations span the non-compact part,

Gn.c =
SL(2)× SO(2, 2)

SO(2)3
, (3.2)

of the duality group. In the case of the modulus S, they belong to the electric-magnetic
SL(2) factor, while transformations on the moduli T and U belong to SO(2, 2). In conse-
quence, the fluxes will also transform in such a way that they compensate the transforma-
tion of the moduli fields and leave the scalar potential invariant.

Because of the aforementioned, restricting the search of extrema to the origin of the
moduli space does not imply a lack of generality as long as the considered set of flux com-
ponents is invariant under the action of the non-compact part of the duality group.

This statement automatically leaves us with two complementary descriptions of the
same problem: the field and the flux pictures. In the former, a consistent flux background
is fixed and the problem reduces to the search of extrema of the scalar potential in the
field space. In the latter, the point in field space is fixed (the origin) and the problem
reduces to find the set of consistent flux backgrounds compatible with the origin being
an extremum of the scalar potential. The two descriptions are equivalent since dragging
different moduli solutions down to the origin in the field space maps to a splitting of the
corresponding flux background into various ones related by elements of Gn.c in the flux
space. This correspondence is depicted in figure 2.

Using the flux picture turns out to be quite useful because, schematically, the scalar
potential induced by the gaugings takes the form of

V =
∑

terms

(fluxes)2 · (fields)high degree , (3.3)

hence being a sum of terms which are quadratic in the fluxes and contain high degree
couplings between the moduli fields. After deriving the scalar potential with respect to
the fields and going to the origin of the moduli space, the extremum conditions reduce to
a set of quadratic constraints on the fluxes. Putting these conditions together with the
quadratic constraints in (2.21) coming from the consistency of the gauging, we end up with

8This approach differs from that followed in ref. [33] where the invariance under the action of the duality

group was used to remove redundant flux configurations producing physically equivalent solutions.
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⊗ ⊗

⊗ ⊗

Gn.c Gn.c

Gn.c Gn.c

field space

⊗

Gn.c Gn.c

Gn.c Gn.c

flux space

←→

Figure 2. Sketch of the correspondence between the field picture (crossed dots) and the flux picture
(filled dots). The left diagram represents moduli space, whereas the right diagram illustrates the
space of fluxes.

a set of homogeneous polynomial equations, namely an ideal I in the ring C [a0, . . . , d
′
3] ,

involving the different flux components as variables,

I = 〈 ∂ΦV |Φ0
, εαβ Λ C

αAB ΛβDEC , Λ C
(αA[B Λβ)D]EC 〉 . (3.4)

Nonetheless, only those solutions for which all the flux components turn out to be real are
physically acceptable.

The study of non-trivial multivariate polynomial systems and their link to geometry
is the subject of algebraic geometry [36]. A powerful computer algebra system for polyno-
mial computations is provided by the Singular project [37]. Moreover, a comprehensive
introduction to the specifics of this software as well as to the algebraic geometry techniques
implemented on it can be found in ref. [38]. These techniques have been shown to be a
successful approach to investigate the vacua structure of the effective supergravity theories
coming from flux compactifications of string theory [34, 39] and some extensions including
both fluxes and non-perturbative effects9 [41].

Among the set of algebraic geometry tools implemented within Singular, in this work
we will make extensive use of the Gianni-Trager-Zacharias (GTZ) algorithm [42] for primary
decomposition into prime ideals (for more details on primary decomposition algorithms, see
the appendix B of ref. [39] and references therein). Specifically, we will apply this method
to decompose the ideal I of (3.4) into a set of n simpler prime ideals Jn ,

I = J1 ∩ J2 ∩ . . . ∩ Jn , (3.5)

which can be solved analytically. These prime ideals will only intersect in a finite number
of disjoint points and, in general, they may have different dimension.

For the sake of simplicity, we are not running this decomposition in the most general
case in which all the forty embedding tensor components (fluxes) allowed in the SO(3)

9For a computational implementation of these algebraic geometry tools into a Mathematica package

exploring vacuum configurations, see ref. [40].
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truncation are kept. Instead, we are considering two examples of gauged supergravities
which have a well understood interpretation as type II string compactifications in the
presence of flux backgrounds: type IIA compactifications with gauge and metric fluxes [3,
7, 10, 12] and type IIB compactifications with gauge fluxes [1, 2, 4].

Even though not all the fluxes are kept in these examples, the previous argument
for going to the origin of the moduli space without loss of generality still holds since the
transformation needed to bring any moduli solution from its original location to the origin
(i.e. an element of Gn.c) does not turn on new flux components out of the initial setup. We
postpone a detailed analysis of more general flux backgrounds for which a realisation in
string theory is not known, namely those including non-geometric fluxes, to future work.

3.2 Supersymmetry breaking and full mass spectrum

Two further important steps in the analysis of critical points are those of computing the
amount of supersymmetry preserved at the extrema of the N = 4 theory and the mass
spectrum of the scalar sector. As already pointed out in the introduction, carrying out
such a computation for a whole set of vacua can help us shed further light on the relation
between supersymmetry breaking and instability, which has recently been a crucial point
of discussion in the context of extended supergravity. In order to do this, we will compute
the gravitini mass term included in the fermionic mass terms Lagrangian [29]

e−1Lf.mass ⊃ 1
6
Aij1 ψ̄µi Γµν ψνj , (3.6)

with Aij1 = A
(ij)
1 and i = 1, . . . , 4 are SU(4) indices. This symmetric matrix is given in

terms of the complexified SL(2) and SO(6, 6) vielbeins by

Aij1 = εαβ (Vα)∗ V[kl]
M VN [ij] VP [jl] fβM

NP . (3.7)

The complexified SL(2) vielbein Vα is written as

Vα = eφ/2
(
S̄ , 1

)
, where S = χ+ i e−φ , (3.8)

whereas the complexified (Lorentzian) SO(6, 6) vielbein VM [ij] is built from the VMm real
vielbein by using the the mapping(

v12 , v13 , v14 , v34 , v42 , v23
) ≡ (z1 , z2 , z3 , z

∗
1 , z

∗
2 , z

∗
3) , (3.9)

where the complexification takes place as zI ≡ 1
2
(
v2I−1 + i v2I

)
with I = 1, 2, 3. This is

consistent with
vij = (vij)∗ =

1
2
εijkl v

kl , (3.10)

together with the normalisation

− vm δmn v
n = − 1

2
εijkl v

ij vkl , (3.11)
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as was adopted in ref. [29]. Using this matrix Aij1 , the Killing spinor equations determining
the amount of supersymmetry at any extremum is translated into the eigenvalues equation

Aij1 qj =
√
−3V0 q

i , (3.12)

where qi is an SU(4) vector and V0 is the potential energy at either an AdS4 or a
Minkowski extremum.

Working in the SO(3) truncation of the SO(6, 6) theory translates into an Aij1 gravitini
mass matrix of the general form

A1 = diag (κ1 , κ2 , κ2 , κ2 ) , with κ1, κ2 ∈ C , (3.13)

which reflects the splitting 4 → 1 ⊕ 3 of the fundamental of SU(4) under the action of
SO(3). Consequently one expects that the amount of supersymmetry preserved would be

i) N = 4 at those extrema where |κ1| = |κ2| =
√−3V0.

ii) N = 3 at those extrema where |κ1| > |κ2| with |κ2| =
√−3V0.

iii) N = 1 at those extrema where |κ1| < |κ2| with |κ1| =
√−3V0.

iv) N = 0 at any other extremum.

The presented conditions for preserving supersymmetry only constrain the modulus of the
eigenvalues of A1 since the relation (3.12) exhibits a U(1) × U(1) covariance. The action of
these transformations can be expressed in terms of the diagonal matrix diag(λ , µ , µ , µ),
where λ, µ ∈ U(1).

Now it is worthwhile making a comment about the computation of the full mass spec-
trum of the scalar sector for a vacuum of the N = 4 theory. To this purpose we applied
the mass formula given in ref. [15], where the scalar potential of the full N = 4 theory
has been expanded up to second order around the origin in order to be able to read off
the second derivatives of the potential with respect to all of the 38 scalars of the theory
evaluated in the origin of moduli space. The Hessian matrix evaluated in the origin is
nevertheless not yet the physical mass matrix from where one can draw conclusions about
stability of a solution. Suppose one has

e−1Lcanonic =
1
2
R− 1

2
Kij (∂φi)(∂φj)− V , (3.14)

where i = 1, . . . , 38 , then the covariant normalised mass2 at an extremum φ0 of the scalar
potential V is then given by

(mass2)ij =
1
|V | K

ik ∂2V

∂φk∂φj

∣∣∣∣
φ=φ0

, (3.15)

where Kij denotes the inverse of the matrix Kij appearing in (3.14). This (mass)2 matrix
is known as the canonically normalised mass matrix, which is consistent with taking the
“mostly plus” signature for the space-time metric and its eigenvalues are to be read as the
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values for the squared mass in natural units.10 According to this definition of covariant
mass, the Breitenlohner-Freedman (B.F.) bound for the stability of an AdS4 moduli solution
is given by

m2 ≥ −3
4
, (3.16)

where m2 denotes the lightest eigenvalue of the mass matrix (3.15) at the AdS4 extremum.
The mass formulae for the masses of the SL(2) scalars, those ones of the SO(6, n) sector
and finally the mixing between them are given in ref. [15]. In the next sections, when
presenting results, we shall give both a table with the values of the masses of the scalars
in the SO(3) truncation and the full mass spectrum for comparison’s sake.

4 Geometric type IIA flux compactifications

Let us commence this section by analysing the complete vacua structure of the SO(3) trun-
cation of N = 4 supergravity which arises as the low energy limit of certain type IIA orien-
tifold compactifications including background fluxes, D6-branes and O6-planes. More con-
cretely, it is obtained from type IIA orientifold compactifications on a T6/(Z2×Z2) isotropic
orbifold in the presence of gauge Ramond-Ramond (R-R) (F0, F2, F4, F6) and Neveu-
Schwarz-Neveu-Schwarz (NS-NS) H3 fluxes, together with metric ω fluxes, D6-branes and
O6-planes. In order to preserve half-maximal supersymmetry in four dimensions, the D6-
branes have to be parallel to the O6-planes, i.e. they wrap the 3-cycle in the internal
manifold which is invariant under the action of the orientifold involution.11

According to the mapping between fluxes and SO(3)-invariant embedding tensor com-
ponents listed in table 1, this type IIA flux compactification gives rise to an N = 4 gauged
supergravity for which the possible gaugings are determined in terms of the electric and
magnetic flux parameters

f+āb̄c̄ = −a0 , f+āb̄k̄ = a1 , f+āj̄k̄ = −a2 , f+īj̄k̄ = a3 ,

f−āb̄c̄ = −b0 , f−āb̄k̄ = b1 , f+āb̄k = c0 , f+āj̄k = f+īb̄k = c1 , f+ab̄c̄ = c̃1 .
(4.1)

It is worth noticing here that in the type IIA scheme: (a0, a1, a2, a3) are R-R fluxes,
(b0, c0) are NS-NS H3-fluxes and (b1, c1, c̃1) are metric ω-fluxes. As we proved in the
section 2.3, this effective supergravity admits an N = 1 formulation in terms of the Kähler
potential in (2.28) and the superpotential

WIIA = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 − b0 S + 3 b1 S U + 3 c0 T + (6 c1 − 3 c̃1)T U . (4.2)

Observe how acting upon this supergravity with the non-compact part of the duality group,
i.e. rescalings and real shifts of the moduli fields, will not turn on new couplings in the
superpotential (4.2).

10Every numerical value given in the following sections for the energy is computed by setting the reduced

Planck mass mp to 1, whereas one needs to reinsert the value mp = (8πG)−1/2 = 2.43× 1018 GeV when

expressing quantities in energy units.
11Sources invariant under the combined action of the orientifold involution and the orbifold group break

from half-maximal to minimal supersymmetry in four dimensions.
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The quadratic constraints in (2.9) coming from the consistency of the N = 4 gauging
give rise to the three flux relations

c1 (c1 − c̃1) = 0 , b1 (c1 − c̃1) = 0 , −a3 c0 − a2 (2 c1 − c̃1) = 0 . (4.3)

The first and the second are respectively identified with the nilpotency (d2 = ω2 = 0) of
the exterior derivative operator d = ∂+ω ∧ and the closure of the NS-NS flux background
dH3 = ω ∧H3 = 0 . The third one is however related to the flux-induced tadpole∫

10d
(ω ∧ F2 +H3 ∧ F0) ∧ C7 ⇒ N6 = ω ∧ F2 +H3 ∧ F0 , (4.4)

for the R-R gauge potential C7 that couples to the D6-branes. In particular, it corre-
sponds to the vanishing of the components along the internal directions orthogonal to
the O6-planes,

N⊥6 = −a3 c0 − a2 (2 c1 − c̃1) = 0 . (4.5)

In contrast, the component parallel to the O6-planes, denoted N
||
6 , remains unrestricted

since it can be canceled by adding sources still preserving half-maximal supersymmetry

N
||
6 = 3 a2 b1 − a3 b0 . (4.6)

Nevertheless, whenever N ||6 = 0 for a consistent flux background, then the resulting gauged
supergravity admits an embedding into an N = 8 theory. As a result, the flux background
does not induce a tadpole for the C7 gauge potential, i.e., N⊥6 = N

||
6 = 0, and an enhanced

four-elements discrete Z2 × Z2 = {1 , α1 , α2 , α1α2} symmetry group shows up when it
comes to relate non-equivalent vacuum configurations.

This Z2 × Z2 discrete group is generated by the α1-transformation in (2.33) and an
extra parity transformation defined by

α2 : U −→ −Ū ,

fi −→ (−1)n3+1 fi ,
(4.7)

where now fi S
n1Tn2Un3 denotes a generic term in the superpotential of (4.2). The action

of the α2-transformation can equivalently be viewed as taking the original superpotential
to a “fake” new one

WIIA(S, T, U)→ −WIIA(S, T, Ū) . (4.8)

As a consequence, the scalar potential gets also modified as V → V + δV where δV takes
the form

δV =
1

8 (ImT )3

[
3
(

ImT
ImS

)
N⊥6 −N ||6

]
. (4.9)

Therefore, having N⊥6 = N
||
6 = 0 (equivalently an N = 8 flux background) ensures δV = 0

and hence a complete realisation of the Z2 × Z2 discrete group on the vacua distribution.
The first Z2 factor relates a supersymmetric critical point to another supersymmetric one,
while the second Z2 to a pair of fake supersymmetric critical points [43].
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The aim of this section is to completely map out the vacua structure of these N = 4
type IIA compactifications. In particular, we are computing the complete set of extrema
of the flux-induced scalar potential as well as the number of supersymmetries which they
preserve and their mass spectrum. In the appendix A, we have also studied the effect of
introducing O6/D6 sources breaking from half-maximal to minimal supersymmetry, namely
N⊥6 6= 0 , and their consequences from the moduli stabilisation perspective.

4.1 Full vacua analysis of the N = 4 theory

Here we will present the complete vacua data of the N = 4 supergravity theory introduced
above. By this we mean to specify:

1. The complete set of vacua forming the landscape of the theory and the connections
among themselves.

2. The associated data for each of these solutions: vacuum energy, supersymmetries
preserved, mass spectrum and stability under fluctuations of all the scalar fields in
the N = 4 theory.

3. The gauge group G0 underlying the solutions.

As it was explained in the previous section, algebraic geometry techniques are found
to be powerful enough to find the entire set of extrema of the flux-induced scalar potential
but, unfortunately, they will not give us any information about whether, and if so how,
these extrema are linked to each other. To this respect, we will use the non-compact
part Gn.c of the duality group in (3.2) together with the discrete group generated by the
transformations in (2.33) and (4.7) as an organising principle to connect different vacuum
solutions. These connections will shed light upon the often confusing landscape of N = 4
flux vacua.

Our starting point is the ideal I in (3.4) consisting of the set of N = 4 quadratic
constraints in (4.3) together with the six extremisation conditions of the scalar potential
with respect to the real and imaginary parts of the S, T and U fields evaluated at the origin
of the moduli space. After decomposing it into prime factors, as explained in section 3, we
are left with a set of simpler pieces which can be solved analytically. The outcome of this
process is a splitting of the landscape of vacua into sixteen pieces of dim= 1 and an extra
piece of dim= 2. Let us go deeper into the features of these critical points.

The sixteen critical points of dim= 1. The sixteen critical points of dim = 1 in
the N = 4 theory are presented in table 3. More concretely, we list the associated flux
backgrounds after having brought these moduli solutions to the origin of the moduli space,
as it was explained in detail in section 3.1. The vacuum energy at the solutions turns
out to be

V0

[
1(s1,s2)

]
= −λ2 , V0

[
2(s1,s2)

]
= V0

[
4(s1,s2)

]
= −32λ2

27
, V0

[
3(s1,s2)

]
= −8λ2

15
. (4.10)

As we discussed in section 3.2, the number of supersymmetries preserved in these
solutions can be computed from the gravitini mass matrix Aij1 in (3.13). After solving
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1
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id a0 a1 a2 a3 b0 b1 c0 c1 = c̃1

1(s1,s2) s2
3
√

10
2

λ s1

√
6

2
λ −s2

√
10
6

λ s1
5
√

6
6

λ −s1 s2

√
6

3
λ

√
10
3

λ s1 s2

√
6

3
λ

√
10λ

2(s1,s2) s2
16
√

10
9

λ 0 0 s1
16
√

2
9

λ 0
16
√

10
45

λ 0
16
√

10
15

λ

3(s1,s2) s2
4
√

10
5

λ −s1
4
√

30
15

λ s2
4
√

10
15

λ s1
4
√

30
15

λ s1 s2
4
√

30
15

λ
4
√

10
15

λ −s1 s2
4
√

30
15

λ
4
√

10
5

λ

4(s1,s2) s2
16
√

10
9

λ 0 0 s1
16
√

2
9

λ 0
16
√

2
9

λ 0
16
√

2
9

λ

Table 3. The sixteen extrema of dim = 1 in the scalar potential of the N = 4 theory. They can
be arranged into four groups of extrema each of which in turn consists of four solutions labelled by
a choice of the pair of signs (s1, s2) ≡ {(+,+), (+,−), (−,+), (−,−)}.

the eigenvalues equation of (3.12), we find that all the solutions of the N = 4 theory
are non-supersymmetric except those ones labelled by 1(+,+) and 1(−,+) which turn out
to preserve N = 1 supersymmetry. Nevertheless, it is worth noticing here that they all
actually enjoy an embedding in an N = 8 theory due to the lack of flux-induced tadpoles
for the local sources,12 i.e.,

N⊥6 = N
||
6 = 0 . (4.11)

This observation was previously made for the N = 1 type IIA supersymmetric solution
found in ref. [12]. Now we are extending the statement about the existence of an N = 8
lifting to the complete vacuum structure of the theory including both minimally supersym-
metric and non-supersymmetric solutions. This fact has two immediate implications, the
second actually being a direct consequence of the first:

i) The discrete Z2 group generated by the α2-transformation in (4.7) is “accidentally”
realised as a symmetry of the flux-induced scalar potential V (Φ). Then a complete
discrete symmetry group Z2 × Z2 = {1 , α1 , α2 , α1α2} appears in the landscape of
the N = 4 theory connecting solutions through the chain

N(+,+)
α1−→ N(−,+)

α2−→ N(−,−)
α1−→ N(+,−)

α2−→ N(+,+) , (4.12)

where N = 1, 2, 3, 4 stands for the four groups of solutions N(s1,s2) in table 3. In fact,
we have checked that combining these discrete transformations with the continuous
non-compact part Gn.c in (3.2) of the duality group, the vacua structure of the theory
turns out to be a net of extrema connected by elements of the enhanced group

Gvac = Gn.c × Z2 × Z2 . (4.13)

As it is shown in figure 3, all the sixteen critical points of dim = 1 in the N = 4
theory are then connected to each other by an element of Gvac.

12The condition N
||
6 = 0 is in fact implied by the N = 4 quadratic constraints and two of the three

axionic field equations provided c0 a1 6= 0. This is the case for the solutions 1(s1,s2) and 3(s1,s2) in table 3,

whereas for the flux background in the remaining cases it is straightforward.
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1(−,+)

1(−,−)

1(+,+)

1(+,−)

2(−,+)

2(−,−)

2(+,+)

2(+,−)

3(−,+)

3(−,−)

3(+,+)

3(+,−)

4(−,+)

4(−,−)

4(+,+)

4(+,−)

SL(2) × SO(2, 2) / SO(2)3

SL(2) × SO(2, 2) / SO(2)3

S
L
(2

)
×

S
O

(2
,2

)
/

S
O

(2
)3

S
L
(2)×

S
O

(2,2)
/

S
O

(2) 3

α1

α1

α2α2

α1

α1

α2 α2

α1

α1

α2α2

α1

α1

α2 α2

Figure 3. Net of connections between the dim = 1 sixteen critical points of the N = 4 theory.
The dotted points correspond to (fake-)supersymmetric solutions whereas the filled ones are non-
supersymmetric.

ii) Since the α2-transformation in (4.7) is an accidental symmetry of the scalar potential
but not of the superpotential, then the existence of non-supersymmetric and never-
theless stable solutions is guaranteed as long as there are supersymmetric ones. The
reason is that these non-supersymmetric solutions would be “fake” supersymmetric in
the sense that they do correspond to supersymmetric solutions of the “fake” superpo-
tential in (4.8). Consequently, all the results concerning stability of supersymmetric
solutions still apply to these non-supersymmetric ones since the scalar potential is
left invariant. Supersymmetric and “fake” supersymmetric (non-supersymmetric)
solutions of the theory are then connected by

SUSY SUSY FAKE SUSY FAKE SUSY

1(+,+)
α1−→ 1(−,+)

α2−→ 1(−,−)
α1−→ 1(+,−)

.

We will see this explicitly by computing the full mass spectrum associated to these
solutions and checking that they coincide.

The first step to check stability involves computing the masses only for the SO(3)-
invariant fields, namely the SL(2)/SO(2) axiodilaton S and the two SO(2, 2)/SO(2)2

moduli fields T and U . Nonetheless, stability of a solution under fluctuations of these
2 + 4 = 6 real fields does not imply stability with respect to the rest of the N = 4 scalars
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id m2
1 m2

2 m2
3 m2

4 m2
5 m2

6 B.F.

1(s1,s2) 0 −2
3

4 +
√

6
3

4−√6
3

47 +
√

159
9

47−√159
9

m2 = −2
3
→ stable

2(s1,s2) 0 −4
5

−2
5

2
64
15

20
3

m2 = −4
5
→ unstable

3(s1,s2) 0 0 2 2
20
3

20
3

min

4(s1,s2) 0 0
4
3

2 6
20
3

min

Table 4. Eigenvalues of the SO(3)-truncated canonically normalised mass matrix at the AdS4

extrema of the scalar potential in the N = 4 theory. For those being saddle points, the last column
shows their stability according to the Breitenlohner-Freedman bound in (3.16).

which may render it unstable. The set of normalised masses of the SO(3)-invariant scalars
at the sixteen dim = 1 extrema of the N = 4 theory are summarised in table 4. As we
anticipated, they do not depend on the choice of a particular (s1, s2) solution within a
N(s1,s2) group.

Up to this point, the given information about the mass spectrum and stability of
solutions is still incomplete. In order to determine whether these critical points are actually
stable under fluctuations of all the scalar fields in the N = 4 theory, we have to compute
the full mass spectrum. As already anticipated in section 3.2, we have made use of the
mass formula provided in ref. [15] to address the issue of stability. The computation of the
complete mass spectrum for the sixteen dim = 1 solutions of the N = 4 geometric type
IIA compactifications gives the following results:

• The normalised scalar field masses and their multiplicities for the four solutions
1(s1,s2) take the values of

1
9
(
47±√159

)
(×1) ,

1
3
(
4±√6

)
(×1) ,

29
9

(×3) ,

1
18

(
89 + 5

√
145±

√
606 + 30

√
145

)
(×5) , 0 (×10) ,

1
18

(
89− 5

√
145±

√
606− 30

√
145

)
(×5) , −2

3
(×1) .

The unique tachyonic scalar then implies m2 = −2
3 so these AdS4 solutions satisfy the

B.F. bound in (3.16) hence being totally stable. Notice that the dangerous tachyonic
mode has a special mass value, corresponding to a massless supermultiplet and being
identical to that of a conformally coupled scalar field in AdS4 [44]. In terms of group
theory, it corresponds to the discrete unitary irreducible representation for AdS4,
while all other masses with m2 ≥ −3

4 comprise a continuous family of such irreps.

• The normalised scalar field masses and their multiplicities for the four solutions
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2(s1,s2) take the values of

1
15
(
77± 5

√
145
)

(×5) ,
2
15
(
31±√145

)
(×5) ,

64
15

(×1) ,
20
3

(×1) ,

46
15

(×3) , 2 (×1) , 0 (×10) , −2
5

(×1) , −4
5

(×1) .

In this case the most tachyonic mode gives rise to m2 = −4/5 that is below the B.F.
bound in (3.16), so these AdS4 solutions become unstable under fluctuations of this
mode.

• The normalised scalar field masses and their multiplicities for the four solutions
3(s1,s2) take the values of

1
3

(
19±

√
145
)

(×10) ,
20
3

(×2) ,
14
3

(×3) , 2 (×2) , 0 (×11) ,

whereas those corresponding to the four solutions 4(s1,s2) are given by

20
3

(×1) , 6 (×6) ,
8
3

(×5) , 2 (×4) ,
4
3

(×6) , 0 (×16) .

One observes that all the normalised masses are non-negative so these AdS4 solutions
do actually correspond to stable extrema of the scalar potential.

Therefore, this shows that most of the AdS4 moduli solutions of the N = 4 theories coming
from geometric type IIA flux compactifications are non-supersymmetric and nevertheless
stable even when considering all the 2 + 36 = 38 scalar fields.13

A point to be highlighted is that, in this type IIA case, the SO(3) truncation turns
out to capture the interesting dynamics of the scalars, in the sense that the lightest mode
is always kept by the truncation. This is by no means guaranteed by the consistency of
the truncation. Indeed, as was discussed in the introduction, there are N = 8 examples of
consistent truncations where the non-singlets lead to instabilities of critical points that are
stable with respect to the singlet sector [16]. The situation for the critical points here differs
from this in two respects. Firstly, the non-singlet masses always lie above the lightest mode
in the singlet sector. Moreover, the non-singlet masses are in fact always non-negative.

Another remarkable feature is that the supersymmetric solutions 1(+,+) and 1(−,+) are
not the (stable) ones with highest potential energy. Indeed, the solutions 3(s1,s2) are non-
supersymmetric and still stable with a higher vacuum energy, as can be read from (4.10).
This again differs from the situation in the prototypical N = 8 supergravity with SO(8)
gauging, where the vacuum that preserves all supersymmetry has the highest potential
energy of all known critical points [47].

Finally we want to identify the gauge group(s) G0 underlying these solutions. The an-
tisymmetry of the brackets in (2.4), when restricted to the fluxes compatible with type IIA
geometric backgrounds, allows to write the magnetic generators in terms of the electric ones

Xa
− = −(b1 c0 + b0 c1)

c1 c̃1
Z+a +

b1
c̃1

Z+i , Xi
− =

b1
c1

Z+a , Z−a = Z−i = 0 , (4.14)

13It would be interesting to understand the (dis-)similarities with the non-supersymmetric vacua in

refs [45, 46].
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with pairs (a, i) = {(1, 2), (3, 4), (5, 6)} . Notice that c1 c̃1 6= 0 for all the solutions listed
in table 3. In terms of electric generators, the algebra g0 of G0 is expressed as a twelve
dimensional algebra which is now suitable to define a consistent gauging of the theory. The
brackets involving isometry-isometry generators are given by

[Z+a, Z+b] = [Z+a, Z+j ] = [Z+i, Z+j ] = 0 , (4.15)

and then span an abelian u(1)6 subalgebra of g0. Furthermore, the mixed non-vanishing
isometry-gauge brackets read

[Z+a, X
b
+] = c̃1 Z+c , [Z+i, X

b
+] = c0 Z+c + c1 Z+k , [Z+i, X

j
+] = c1 Z+c , (4.16)

so the isometry generators actually determine an abelian ideal within g0. Accordingly to
the Levi’s decomposition theorem, the algebra g0 can then be written as

g0 = ggauge ⊕ u(1)6 , (4.17)

where ggauge has to be read off from the gauge-gauge brackets after quotienting g0 by the
abelian ideal. They take the form of

[Xa
+, X

b
+] = c̃1X

c
+ + c0X

k
+ , [Xa

+, X
j
+] = c1X

k
+ , [Xi

+, X
j
+] = 0 , (4.18)

so the gauge-gauge brackets are identified with ggauge = iso(3). As a result, the algebra
g0 turns out to be

g0 = iso(3)⊕ u(1)6 ∼ so(3)⊕ nil9(2) , (4.19)

where nil9(2) denotes a nilpotent 9-dimensional ideal of order two (three steps) spanned
by the generators

{
Xi

+ , Z+a , Z+i

}
and with lower central series{

Xi
+ , Z+a , Z+i

} ⊃ {Z+a , Z+i} ⊃ 0 . (4.20)

The main property to be highlighted is that there is an unique gauge group, i.e.,

G0 = ISO(3) n U(1)6 , (4.21)

underlying all the solutions of the IIA geometric theory. This was already noted for the
supersymmetric solution in ref. [12]. As a final remark, none of the generators in the
adjoint representation vanishes at these solutions, so the algebra g0 in (4.19) is actually
embeddable within the so(6, 6) duality group.

The above gauge group has three compact and nine non-compact generators. The
latter are spontaneously broken at all critical points. The corresponding vector bosons in
such cases acquire a mass due to gauge symmetry breaking by absorbing a scalar degree
of freedom. In the scalar mass spectra listed above, there will always be nine scalar fields
that do not correspond to propagating degrees of freedom. Being pure gauge, these do not
appear in the scalar potential and hence have m2 = 0.

In all critical points considered above, the number of scalar fields with m2 = 0 exceeds
nine. This implies that there will always be a number of propagating degrees of freedom
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whose value is not fixed by the quadratic terms in V . Of course there could be higher-order
terms that do give rise to moduli stabilisation, or could lead to a negative potential energy.
However, in contrast to the Minkowski case, such scalar fields do not represent a potential
instability due to the additional contribution from the space-time curvature. Instead, in
Anti-de Sitter one should be worried about fields whose quadratic mass term is at the B.F.
bound, and if possible verify if their higher-order terms give rise to stability or rather to
tachyons. Having no such mass values in our spectra, this issue plays no role here.

The critical point solution of dim = 2. Besides the previous sixteen critical points,
the landscape of the N = 4 type IIA geometric theory still has a dim = 2 piece. In terms
of the flux background, it is given by

c0 = c1 = c̃1 = 0 , a0 = a1 = 0 , b1 = a2 , b0 = −a3 . (4.22)

After three T-dualities along the ηa directions, where a = 1, 3, 5, this type IIA background
is mapped to a type IIB one only involving certain gauge fluxes (see table 1). We postpone
the discussion of this solution to the next section where type IIB backgrounds including
gauge fluxes, O3-planes and D3-branes will be explored in full generality.

5 Non-geometric type IIB flux compactifications

In this final part we study another realisations of the SO(3)-truncation of half-maximal
supergravity in four dimensions. This time it will be in the context of isotropic type IIB
compactifications on T6/(Z2 × Z2) including generalised background fluxes.

5.1 GKP flux compactifications: stability and gaugings

Let us start with the well known type IIB string compactifications including a background
for the gauge fluxes (H3, F3) and eventually O3-planes and/or D3-branes sources in order
to cancel a flux-induced tadpole∫

10d
(H3 ∧ F3) ∧ C4 ⇒ N3 = H3 ∧ F3 , (5.1)

for the R-R gauge potential C4. These compactifications were presented in the seminal
GKP paper of ref. [1] and deeply explored from the moduli stabilisation point of view in
refs [2, 4, 8, 48] among many others.

When compatible with an SO(3) truncation of half-maximal supergravity, these com-
pactifications correspond to having non-vanishing (a0, a1, a2, a3) as well as (b0, b1, b2, b3)
flux components in table 1. The flux-induced superpotential for the resulting STU -models
then reads

WGKP = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 − ( b0 − 3 b1 U + 3 b2 U2 − b3 U3
)
S , (5.2)

and the theory comes out with a no-scale structure [49]. It is worth noticing at this
point that in these IIB models with only gauge fluxes there are no quadratic constraints
from (2.21) to fulfill.
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At the origin of the moduli space, the potential energy arranges into a sum of square
terms hence being non-negative defined

V0 =
1
32
(

(a0 − b3)2 + 3 (a1 + b2)2 + 3 (a2 − b1)2 + (a3 + b0)2
)
. (5.3)

Using the stabilisation of the imaginary part of the modulus T , it can be shown that there
is no solution to the extremum conditions without satisfying V0 = 0 , i.e., any solution will
be a Minkowski extremum. Then the H3 flux background is related to the F3 one via

b3 = a0 , b2 = −a1 , b1 = a2 , b0 = −a3 , (5.4)

and the flux-induced tadpole in (5.1) simply reads

N3 = a2
0 + 3 a2

1 + 3 a2
2 + a2

3 . (5.5)

The κ1 and κ2 values entering the gravitini mass matrix Aij1 in (3.13), and then deter-
mining the amount of supersymmetry preserved at an extremum, are given by

κ1 =
3

4
√

2

√
(a0 − 3 a2)2 + (a3 − 3 a1)2 , κ2 =

3
4
√

2

√
(a0 + a2)2 + (a1 + a3)2 . (5.6)

As a consequence, a generic GKP solution will be non-supersymmetric. However, let us
comment about two interesting limits which give rise to solutions that preserve certain
amount of supersymmetry:

• The first limit is that of taking a0 = 3 a2 and a3 = 3 a1. This limit results in κ1 = 0

and κ2 = 3
√
a2

1+a2
2√

2
so that the solutions preserve N = 1 supersymmetry.

• The second limit is that of taking a0 = −a2 and a3 = −a1. This limit results in

κ2 = 0 and κ1 = 3
√
a2

1+a2
2√

2
so that the solutions preserve N = 3 supersymmetry [48].

Let us now present the mass spectrum of these N = 4 compactifications.14 In terms
of the quantities

M =
1
16

(
9
(
a2

1 + a2
2

)
+ 6 (a0 a2 + a1 a3) + 5 (a2

0 + a2
3)
)

,

N =
1
16

(
5
(
a2

1 + a2
2

)− 2 (a0 a2 + a1 a3) + (a2
0 + a2

3)
)

,

Q =
1
16

√(
(a0 − 3 a2)2 + (a3 − 3 a1)2

)(
(a0 + a2)2 + (a1 + a3)2

)
,

(5.7)

the moduli (masses)2 as well as their multiplicities are given by

M ± 3Q (×1) , N ±Q (×6) ,
1
8
(

(a0 + a2)2 + (a1 + a3)2
)

(×3) , 0 (×21) .

14The numerical values of the eigenvalues of the mass matrix were computed in ref. [50] for some de Sitter

GKP examples corresponding to non-isotropic moduli VEVs.
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Only the third of the above masses is not recovered when considering only the scalars of
the SO(3) truncation. Clearly though, these solutions can never be stable because of the
general presence of flat directions.

The last question we will address is to determine the gauging underlying this GKP
backgrounds. The brackets in (2.4) get now simplified to

[X+
m, X+

n] = F̃mnp Z+p , [X+
m, X−

n] = F̃mnp Z−p ,

[X−m, X−n] = H̃mnp Z−p , [X−m, X+
n] = H̃mnp Z+p .

(5.8)

Even when there are no quadratic constraints for the fluxes to obey, the antisymmetry of
the brackets in (5.8) when substituting (5.4) is guaranteed iff

Z+a = −Z−i , (a0+a2)Z+i = (a1+a3)Z−i , (a0+a2)Z−a = (a1+a3)Z−i , (5.9)

again with pairs (a, i) = {(1, 2), (3, 4), (5, 6)}. As a result, the isometry Zαm generators
span a central extension of a u(1)12 algebra specified by the Xm

α generators in (5.8). Con-
sequently, RAdj [Zαm] = 0 and the antisymmetry conditions in (5.9) are trivially satisfied in
this representation.15 This is the representation of the gauging which has to be embeddable
into the so(6, 6) duality algebra, so the gauging is the abelian group G0 = U(1)12.

5.2 Non-geometric backgrounds: the SO(3, 3)× SO(3, 3) splitting

In this final section we move to study some gaugings which cannot be realised as geometric
type II string compactifications. Specifically, we will focus on those based on the direct
product splitting SO(3, 3) × SO(3, 3) discussed in refs [51–53] and further interpreted as
non-geometric flux compactifications in refs [13, 31].

This splitting implies the factorisation of the gauge group in terms of G1 ×G2, where
furthermore G1 and G2 were chosen in ref. [52] to be electric and magnetic respectively.
This provides the simplest solution to the the second set of quadratic constraints in (2.9)
and moreover a non-trivial gauging at angles which is necessary in order to guarantee mod-
uli stabilisation [54]. In ref. [52] some de Sitter solutions have been found by investigating
the case in which G1 and G2 are chosen to be some SO(p, q), with p + q = 4. Later on
non-semisimple gaugings of the form CSO(p, q, r)×CSO(p, q, r) have been investigated in
ref. [53], but no de Sitter solutions were found.

Let us go deeper into the vacua structure of these CSO(p, q, r)×CSO(p, q, r) gaugings.
In order to do so, we will use the parameterisation of the embedding of each CSO factor
inside SO(3, 3) in terms of the two real symmetric matrices M± and M̃± as explained in
ref. [55]. In the case of the SO(3) truncation, these are given by

M+ ≡ diag
(−a′0 , c̃1 , c̃1 , c̃1

)
, M̃+ ≡ diag

(−a0 , c̃
′
1 , c̃

′
1 , c̃

′
1

)
, (5.10)

together with

M− ≡ diag
(
b′3 , d̃2 , d̃2 , d̃2

)
, M̃− ≡ diag

(
b3 , d̃

′
2 , d̃

′
2 , d̃

′
2

)
, (5.11)

15In other words, the adjoint representation is no longer faithful.
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where the relation between the entries of the above matrices and the embedding tensor
components can be read off from tables 1 and 2. The flux-induced superpotential in (2.30)
then reduces to

WSO(3,3)2 = a0 + b3 S U
3 − 3 c̃1 T U − 3 d̃2 S T U

2

+ a′0 T
3 U3 + b′3 S T

3 − 3 c̃′1 T
2 U2 + 3 d̃′2 S T

2 U .
(5.12)

The antisymmetry of the brackets in (2.4) now translates into

Z+i = Xi
+ = Z−a = Xa

− = 0 , (5.13)

and the resulting twelve dimensional algebra g0 is written as

[Z+a, Z+b] = c̃′1 Z+c − a′0Xc
+ , [Z−i, Z−j ] = d̃′2 Z−k + b′3X

k
− ,

[Z+a, X
b
+] = c̃1 Z+c + c̃′1X

c
+ , [Z−i, X

j
−] = d̃2 Z−k + d̃′2X

k
− ,

[Xa
+, X

b
+] = −a0 Z+c + c̃1X

c
+ , [Xi

−, X
j
−] = b3 Z−k + d̃2X

k
− .

(5.14)

The first set of quadratic constraints in (2.9) gets also simplified and forces the products
M+ M̃+ and M− M̃− to be proportional to the identity matrix.

For the sake of simplicity we will consider the case of having only unprimed fluxes,
i.e. having a type IIB background including gauge (F3, H3) and non-geometric (Q,P )
fluxes. Such backgrounds, although being non-geometric, still admit a locally geometric
description and in accord with ref. [13], they can never give rise to semisimple gaugings.
Their associated flux-induced superpotential takes the quite simple form of

W loc. geom.
SO(3,3)2 = a0 + b3 S U

3 − 3 c̃1 T U − 3 d̃2 S T U
2 . (5.15)

These backgrounds already satisfy all of the quadratic constraints as well as the extremality
conditions for the axions at the origin of moduli space.16 In addition, their corresponding
flux-induced tadpoles are given by

N3 = a0 b3 , N7 = Ñ7 = N ′7 = 0 , (5.16)

where N7, Ñ7 and N ′7 relate to the SL(3)-triplet of 7-branes in a type IIB S-duality invariant
realisation of the theory [56, 57]. In fact, the second condition in (5.16) is actually identified
with N = 4 quadratic constraints since these 7-branes would break from half-maximal to
minimal supersymmetry.

Restricting our search of extrema to the origin of the moduli space, we find five critical
points some of them with novel features compared to the “geometric” results obtained in
the previous sections. Apart from the GKP-like solution appearing when switching off the
non-geometric fluxes, i.e, c̃1 = d̃2 = 0 , the set of extrema of the scalar potential and their
vacuum energy are summarised in table 5. Notice that solutions 3a and 3b are related to
each other by a simultaneous inversion of the S and U moduli fields, i.e., by an element

16This fact points out that the origin of moduli space is an especially interesting point even though it is

not the most general solution since this flux background is not duality invariant.
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ID a0 c̃1 b3 d̃2 V0 B.F.

1 −λ λ −λ −λ −3λ2

8
m2 = −2

3
→ stable

2 λ −λ −λ −λ λ2

8
unstable de Sitter

3a 5λ 3λ −λ −λ −15λ2

8
m2 = −26

15
→ unstable

3b −λ λ 5λ −3λ −15λ2

8
m2 = −26

15
→ unstable

Table 5. Set of extrema of the scalar potential (at the origin of the moduli space) for the SO(3, 3)×
SO(3, 3) embeddable type IIB backgrounds admitting a locally geometric description. We also
present their stability according to the B.F. bound in (3.16).

of the compact subgroup SO(2)3 of the duality group. The critical points labelled by 1
and 2 are invariant under this transformation. This is similar to the Z2 × Z2 structure in
the geometric IIA case. However, in contrast to that situation, the other critical points
in table 5 cannot be related by non-compact duality transformations. Therefore these are
solutions to different theories.

The computation of the gravitini mass matrix Aij1 in (3.13) shows that the solution
1 in table 5 preserves N = 4 supersymmetry whereas all the others turn out to be non-
supersymmetric. The normalised mass spectra for these solutions are as follows:

• The normalised masses and their multiplicities for the solution 1 are given by

4
3

(× 2) , 0 (× 24) , −2
3

(× 12) . (5.17)

The twelve tachyonic modes imply m2 = −2/3 and then satisfy the B.F. bound
in (3.16) ensuring the stability of this AdS4 solution.

• The normalised masses and their multiplicities for the solution 2 are given by

6 (× 10) , 4 (× 18) , −2 (× 2) , 0 (× 8) , (5.18)

so this de Sitter solution is automatically unstable since it contains two tachyons.

• The normalised masses and their multiplicities for the solutions 3a,b are given by

−26
15

(×5) , −4
5

(×9) , − 2
15

(×1) ,
1
15
(

23±√1009
)

(×1) ,

2
5

(×5) ,
16
15

(×1) ,
4
3

(×9) , 0 (×6) ,

so these AdS4 solutions do not satisfy the B.F. bound in (3.16) for fourteen tachyonic
modes hence becoming unstable.
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We would like to point out that in these non-geometric flux vacua the lightest mode gener-
ically no longer belongs to the SO(3) truncation.

Concerning the gauge group underlying these locally geometric type IIB backgrounds,
it is directly identified with

G0 = ISO(3)× ISO(3) , (5.19)

when keeping only unprimed fluxes in the brackets of (5.14). The three different theories
correspond to inequivalent embeddings of this gauge group in the global symmetry group.
All critical points break the non-compact generators of this gauge group, and hence six of
the massless scalars in the mass spectra listed above correspond to non-physical scalars.

As a final remark, we want to highlight that table 5, even though not being exhaustive,
contains interesting solutions such as an example of N = 4 supersymmetric Anti-de Sitter
vacuum and an example of de Sitter solution obtained from a non-semisimple gauging. The
latter is the first example with such a gauge group; all previously constructed de Sitter
solutions are based on semi-simple groups [51, 52].

6 Conclusions

We have presented a general method for an exhaustive analysis of the vacua structure of
isotropic Z2 × Z2 flux compactifications, and applied it to various cases with a single set
of sources. These vacua correspond to critical points of the SO(3) truncation of N = 4
gauged supergravity. Moreover, we have presented the explicit dictionary needed to relate
such half-maximal supergravity theories to N = 1 theories constructed by a given super-
potential. Finally, in appendix A, we present the general vacuum structure of the type IIA
geometric theory in the presence of sources compatible with N = 1 supersymmetry.

One of the main results of this paper is the proof that all geometric IIA vacua belong
to a single theory with gauge group G0 = ISO(3) n U(1)6. Of the four AdS4 critical
points of this theory, one is supersymmetric. The other three are non-supersymmetric and
nevertheless two of them are perturbatively stable. The above statement is actually true
up to the Z2×Z2 symmetry presented in section 4. Furthermore, our full analysis of these
geometric IIA compactifications leads us to conclude that no de Sitter solutions are present
in the N = 4 theory, whereas they are present for N = 1. These were already found in
refs [21, 35], and we show in the appendix A that they are in fact the only de Sitter for
such compactifications.

For type IIB compactifications, the full set of vacua has been studied in the presence
of only gauge fluxes. We provided some relevant examples of solutions to the half-maximal
theory describing a non-geometric type IIB background. The gauge group in this case
is always ISO(3) × ISO(3); however, the different critical points belong to inequivalent
embeddings of the gauge group within SO(6, 6) and hence different theories. Amongst the
critical points of these theories we found a new unstable de Sitter solution.

It would be interesting to better understand some of the surprising features of the
geometric IIA compactification that follow from our classification. Why does this lead to
a unique theory with moduli stabilisation, at least in the SO(3) truncation? Similarly, it
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is intriguing that this truncation captures the scalars that are relevant for the stability
analysis; all other scalars have positive masses. Can one understand why this happens in
the present case, and not in e.g. SO(8) gauged maximal supergravity? Another difference
with that theory is that the supersymmetric vacuum is not the one with highest energy.
These are amongst the open questions that deserve further study. Finally, if possible it
would be very interesting to perform a similar classification for the general non-geometric
IIB compactifications. The few examples that we presented in this paper already indicate
that the landscape of these vacua is much richer.

Note added: upon completion of this manuscript we received the preprint of ref. [58]
which has some overlap with parts of the present paper.
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A Full N = 1 flux vacua of geometric type IIA

The techniques developed to analyse the vacua of the N = 4 theory turn out to be powerful
enough to also work out the complete set of solutions of type IIA geometric backgrounds
compatible with minimal supersymmetry. As we saw in section 2.3, the SO(3) truncation
admits anN = 1 superpotential formulation. In this context it becomes natural to relax the
quadratic constraint in (4.5) which can be understood as the lack of D6-branes orthogonal
to the O6-planes. Namely,

N⊥6 = −a3 c0 − a2 (2 c1 − c̃1) 6= 0 . (A.1)

After this, the theory no longer enjoys N = 4 supersymmetry but it still admits an N = 1
description.17 In this section we will explore its vacuum structure.

We will distinguish between two types of IIA geometric flux backgrounds, namely,
those having only gauge fluxes and those with both gauge and metric fluxes.

Backgrounds only with gauge fluxes. Let us start by fixing the components of the
metric ω flux to zero, namely,

b1 = c1 = c̃1 = 0 . (A.2)

Putting together the first and the second quadratic constraints in (4.3) and the extremality
conditions, and using again the GTZ algebraic method of prime decomposition (details
explained in section 3.1), we obtain a solution space consisting of two pieces:

17Nevertheless, any solution of the N = 1 theory compatible with the absence of such sources can be

embedded into the N = 4 theory.
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ID a0 a1 a2 a3 b0 b1 c0 c1 = c̃1 V0 B.F.

1 0
3λ
2

0
5λ
2

−λ 0 λ 0 −3λ2

32
m2 = −2

3
→ stable

2 0 −3λ
2

0
5λ
2

−λ 0 λ 0 −3λ2

32
m2 = −2

3
→ stable

3 0
√

6λ 0 5λ −4λ 0 λ 0 −λ
2

4
min

4 0 −√6λ 0 5λ −4λ 0 λ 0 −λ
2

4
min

5s1 0 s1 λ λ −2 s1 λ s1 λ 0 −s1 λ 0 −λ
2

16
min

6s1 0 s1
7λ
3

−λ
3
−s1

14λ
3

s1
11λ
3

0 −s1 λ 0 −11λ2

48
m2 = −0.14251→ stable

Table 6. The set of stable AdS4 extrema of dimension 1 in the N = 1 type IIA theory only with
gauge fluxes.

i) The first piece has dimension 2 and it is directly identified with the solution in (4.22)
of the N = 4 theory.

ii) The second piece consists of eight critical points of dimension 1, all of them implying
a non-vanishing tadpole for both

N⊥6 = −a3 c0 6= 0 and N
||
6 = −a3 b0 6= 0 , (A.3)

so they cannot be embedded into the previous N = 4 theory. These moduli solutions
are stable AdS4 vacua which are summarised in table 6. Finally, these solutions of
the N = 1 theory are non-supersymmetric except that labelled by 1 in table 6 which
turns out to preserve N = 1 supersymmetry. The scalar potential induced by the
fluxes of solutions 2 and 4 is respectively related to that one induced by the fluxes of
1 and 3 in table 6 by the transformation

α3 : V (S, T, U ; a1, fi) = −i V ( i S, i T,−i U ; −a1, fi) , (A.4)

where fi refers to all the fluxes left invariant. Such a transformation can also be
viewed at the level of the superpotential as W (S, T, U)→ iW (S, T, U). Unlike those
in the previous section, this transformation modifies the Kähler potential and, as a
consequence, the mass spectrum for the solutions 1 and 2 (also 3 and 4) is different
even when they share the lightest mass. They correspond to completely different
solutions although they look quite similar to each other.

Backgrounds with both gauge and metric fluxes. Let us now allow for backgrounds
with non-vanishing metric fluxes. Putting again together the first and second quadratic
constraints in (4.3) and the extremum conditions, and running the GTZ method of prime
decomposition, we obtain two prime factors of dimension 2 compatible with real fluxes:
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Figure 4. Left: Plot of the potential energy at the extrema, V0 , as a function of the scanning
parameter δ: the point A corresponds to two degenerate and unstable AdS4 solutions; points B and
C correspond to singular points; point D associated to δc ∼ 2.69 is an unstable Minkowski solution.
Right: Plot of the lowest normalised mass in (3.15) as a function of the scanning parameter δ.
After reaching the dS region, the system undergoes an asymptotic behaviour where m2 → −4

3 as
long as δ →∞.
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Figure 5. Left: Plot of the potential energy at the extrema, V0 , as a function of the scanning
parameter δ. Right: Plot of the lowest normalised mass as a function of the scanning parameter δ.
As long as δ →∞, the system undergoes a four-fold asymptotic behaviour with m2 always above
the B.F. bound.

i) The first piece represents a branch of non-supersymmetric solutions which cannot be
embedded into the N = 4 theory (all the solutions come out with N⊥6 6= 0). This
piece implies a0 = a1 = 0 . Without loss of generality, we can set the global scale of V
by fixing c̃1 = 1 in order to exhaustively explore the structure of extrema by varying
the quantity δ ≡ |c0|. It is found to contain an unstable Minkowski solution [35] at
the critical value δc ∼ 2.69 as well as unstable dS ones if going beyond this critical
value (the region with δ > δc presents an asymptotic behaviour). This is depicted
in figure 4.

ii) The second piece can also be explored in terms of the quantity δ ≡ |c0| after fixing
again the global scale of V by the choice c̃1 = 1. It only contains AdS4 solutions
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which are mostly non-supersymmetric18 and cannot be embedded into the N = 4
theory because of N⊥6 6= 0. Nevertheless, some special AdS4 solutions with N⊥6 = 0
do appear at the special values δ = 0 , δ = 1/

√
15 and δ = 1/

√
3, hence being

embeddable into the N = 4 theory. This is depicted in figure 5.
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[58] G. Aldazabal, D. Marques, C.A. Núñez and J.A. Rosabal, On type IIB moduli stabilization
and N = 4, 8 supergravities, arXiv:1101.5954 [SPIRES].

– 37 –

http://dx.doi.org/10.1088/1126-6708/2003/11/022
http://arxiv.org/abs/hep-th/0310187
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0310187
http://dx.doi.org/10.1088/1126-6708/2006/09/011
http://dx.doi.org/10.1088/1126-6708/2006/09/011
http://arxiv.org/abs/hep-th/0606282
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606282
http://dx.doi.org/10.1016/0550-3213(85)90509-7
http://dx.doi.org/10.1016/0550-3213(85)90509-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B262,644
http://dx.doi.org/10.1016/j.physletb.2010.01.064
http://arxiv.org/abs/0912.4440
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.4440
http://dx.doi.org/10.1088/1126-6708/2006/06/006
http://dx.doi.org/10.1088/1126-6708/2006/06/006
http://arxiv.org/abs/hep-th/0601128
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0601128
http://dx.doi.org/10.1088/1126-6708/2007/02/003
http://dx.doi.org/10.1088/1126-6708/2007/02/003
http://arxiv.org/abs/hep-th/0612072
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0612072
http://arxiv.org/abs/1101.5954
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1101.5954

	Introduction
	N=4 supergravities from flux compactifications
	General review of N=4 gauged supergravities
	The SO(3) truncation
	Relation to flux compactifications

	Analysis of critical points
	Combining dualities and algebraic geometry techniques
	Supersymmetry breaking and full mass spectrum

	Geometric type IIA flux compactifications
	Full vacua analysis of the N=4 theory

	Non-geometric type IIB flux compactifications
	GKP flux compactifications: stability and gaugings
	Non-geometric backgrounds: the SO(3,2) x SO(3,3) splitting

	Conclusions
	Full N=1 flux vacua of geometric type IIA

