
 

 

 University of Groningen

PeakML/mzMatch
Scheltema, Richard A.; Jankevics, Andris; Jansen, Ritsert; Swertz, Morris; Breitling, Rainer

Published in:
Analytical Chemistry

DOI:
10.1021/ac2000994

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A., & Breitling, R. (2011). PeakML/mzMatch: A
File Format, Java Library, R Library, and Tool-Chain for Mass Spectrometry Data Analysis. Analytical
Chemistry, 83(7), 2786-2793. DOI: 10.1021/ac2000994

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

http://dx.doi.org/10.1021/ac2000994
https://www.rug.nl/research/portal/en/publications/peakmlmzmatch(b8c628ab-06c4-4778-8617-42e9ec67fa30).html


Published: March 14, 2011

r 2011 American Chemical Society 2786 dx.doi.org/10.1021/ac2000994 |Anal. Chem. 2011, 83, 2786–2793

ARTICLE

pubs.acs.org/ac

PeakML/mzMatch: A File Format, Java Library, R Library, and
Tool-Chain for Mass Spectrometry Data Analysis
Richard A. Scheltema,† Andris Jankevics,†,‡ Ritsert C. Jansen,† Morris A. Swertz,*,†,§ and Rainer Breitling*,†,‡

†Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,
Nijenborgh 7, 9747 AG Groningen, The Netherlands
‡Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Joseph Black
Building B3.10, G11 8QQ Glasgow, United Kingdom
§Genomics Coordination Center, Department of Genetics, University Medical Center Groningen and University of Groningen, P.O.
Box 30001, 9700 RB Groningen, The Netherlands

Recent years have seen new and exciting metabolomics and
proteomics experiments enabled by an increasing variety and

improved performance of mass spectrometry equipment.1,2

Standardization initiatives such as the mzXML file format3 and
the recently introduced mzML4 have considerably shortened the
development cycle for analysis software, and, as a consequence, a
wealth of data analysis applications has become available, of
which XCMS5 and mzMine6 are commonly used for metabo-
lomics data sets. However, mzXML only standardizes the
description of raw mass spectrometry data. Downstream integra-
tion of analysis tools into suitable analysis pipelines is still
hindered by (i) use of monolithic, black box approaches where
algorithms and resulting (intermediate) data are inaccessible to
the user for verification, (ii) limited ability to check intermediate
results of data processing and limited access to the underlying
context information (e.g., peak shape or neighboring peaks), and
(iii) data format heterogeneity at various steps of the analytic
pipeline, making it difficult to recombine pipeline components to
suit new experiments or technologies, e.g., when changes in
chromatographic conditions or mass accuracy require different
peak picking or filtering modules.

In the literature, a number of initiatives to standardize the
storage of extracted features have already been described, in-
cluding the initiatives developing FeatureXML7 and CMLspect.8

Even though these provide basic support for storage of extracted
chromatogram information, they lack many of the options that
PeakML offers. Additionally, some of their features, such as
FeatureXML’s comprehensive framework for storing protein/
peptide identifications, create unnecessary overhead and restric-
tions in the context of metabolomics experiments.

In order to pick up where the current open formats leave off,
we have developed the PeakML file format, an open and
extensible format for the standardized representation of peak
and meta-information from each step in a downstream analysis
pipeline. The power of PeakML and mzMatch for rapid tool
integration is demonstrated by a collection of small tools9,10 and
the availability of PeakML read and write functionality for
XCMS,5 a widely used data analysis software.11�13 Equivalent
converters can easily be created for other generic mass spectrom-
etry processing tools. This comprehensive collection of com-
ponents is intended to further encourage a modular and
interchangeable design of analysis components, storing data
generated/extracted by each step in a standardized manner.
The added value for algorithm developers is that they can build

Received: January 13, 2011
Accepted: February 25, 2011

ABSTRACT: The recent proliferation of high-resolution mass
spectrometers has generated a wealth of new data analysis
methods. However, flexible integration of these methods into
configurations best suited to the research question is hampered
by heterogeneous file formats and monolithic software develop-
ment. The mzXML, mzData, and mzML file formats have
enabled uniform access to unprocessed raw data. In this paper
we present our efforts to produce an equally simple and powerful
format, PeakML, to uniformly exchange processed intermediary
and result data. To demonstrate the versatility of PeakML, we have developed an open source Java toolkit for processing, filtering, and
annotating mass spectra in a customizable pipeline (mzMatch), as well as a user-friendly data visualization environment (PeakML
Viewer). The PeakML format in particular enables the flexible exchange of processed data between software created by different groups
or companies, as we illustrate by providing a PeakML-based integration of the widely used XCMS package with mzMatch data
processing tools. As an added advantage, downstream analysis can benefit from direct access to the full mass trace information
underlying summarized mass spectrometry results, providing the user with the means to rapidly verify results. The PeakML/mzMatch
software is freely available at http://mzmatch.sourceforge.net, with documentation, tutorials, and a community forum.



2787 dx.doi.org/10.1021/ac2000994 |Anal. Chem. 2011, 83, 2786–2793

Analytical Chemistry ARTICLE

Figure 1. PeakML file format. (A) The format consists of two separate blocks: the header and the peaks block. (B) The header block stores general
information about the contents of the file (e.g., date of creation). Beside this general information, full descriptions on the measurements are provided
(e.g., such as ionization mode, original file, etc.) and how they are organized in sets. Each measurement also contains a measurement-id, which can be
used to link the measurement data to the information stored in the peaks block. The contents of each section can be extended with annotations (label-
value pairs) (C) The peaks block holds all intermediate and result mass spectrometry data. A peak is described by its mass, intensity, measurement-id,
optional scan (for LC-MS data), and optional annotations for a peak. Each peak can be typed as being either backgroundion ormasschromatogram (using
the peakdata element), or as type peakset (using the recursive peak element).



2788 dx.doi.org/10.1021/ac2000994 |Anal. Chem. 2011, 83, 2786–2793

Analytical Chemistry ARTICLE

on off-the-shelf PeakML software components (e.g., for data
loading and visualization) and gain access to a potentially much
larger user community for their tools.

’APPLICATION PROGRAMMING INTERFACE

PeakML File Format.The PeakML file format was specifically
designed to provide an open XML standard for the storage of
hyphenatedmass spectrometry data, of which a summary is given
here. It differs from existing efforts such as mzML in that it
supports common downstream results, ranging from storing
mass chromatograms, background ions,9 and any combination
of either. In order to support the development of automatic
processing software, a comprehensive metadata structure is
provided. Information about the measurements (such as experi-
mental parameters and machine settings) and how they are
organized can be stored in this structure. The XML schema of the
PeakML file format can be divided into two blocks (Figure 1A): a
header block for storing the metadata and a peaks block for
storing peak information.
The header block (Figure 1B) provides the structure for

storing the required metadata for each step divided into four
components (measurements, samples, sets, and applications), each
of which can be extended with annotations supporting controlled
vocabularies.14�16 (i) The obligatory measurements block con-
tains basic information about the measurements collected in the
current analysis, such as names of all the files used, and a link to
the sample description. (ii) The samples block contains informa-
tion on the sample, which is kept to a basic level with an id,
optional label, and annotations. (iii) Multiple measurements can
be organized in a set or set of sets, e.g., all technical replicates for a
certain sample are part of a single set, and the technical replicates
for several related biological replicates are organized as a set of
sets. The sets block contains information on how the measure-
ments are organized in these sets, which can be used by automatic
processing software, such as an RSD filter17 that filters non-
reproducible peaks across technical and/or biological replicates,
and by visualization software, that assigns a single color to all
peaks in a set of technical or biological replicates. (iv) The
applications block contains information about the software
components or ‘steps’ used to produce the file, e.g., a peak

extraction tool would provide information such as its version, the
raw data file, and the expected mass accuracy of the machine in
parts-per-million. This allows for a complete reconstruction of
the entire analysis protocol used and provides an archival trace of
all raw and intermediate data files used to generate the current
data set.
The peaks block (Figure 1C) provides the complete structure

for storing information on one or multiple peaks. As the file
format is focused on hyphenated mass spectrometry data, a peak
is defined here as either a mass chromatogram, a background ion,
or a set of one of these. Background ions9 in PeakML are defined
as analytes present over the whole retention time range (and are
generally of no interest for the biological interpretation), while
mass chromatograms (EICs) are caused by analytes eluting over
a narrow retention time window (and are of interest for the
biological interpretation).
The type of each peak entry is identified by the attribute type

(which supports: masschromatogram, backgroundion, and
peakset), providing an extensible construct for future versions
and backward compatibility. Each entry is opened with summary
information: 'scanid’, 'retentiontime’, 'mass’, ‘intensity’, and
'measurementid’, which can be used to load the entries as a flat
peak table, without the complete trace information. More
annotations can be stored for each peak entry, analogous to
the header entries. The real data for each peak entry is made up of
either a new peak entry (only for type 'peakset’) or a peakdata
entry containing the trace information (for 'masschromatogram’
and 'backgroundion’). The trace information is stored as Base-
64-encoded arrays in little-endian ordering (analogous to the
mzXML and mzML formats), reducing the memory require-
ments. Currently only centroid single mass analyzer mode data
are supported, but facilities for profile data are in place for future
support. Support for additional mass spectrometry data, includ-
ing tandem spectra, lies outside the aim of this format, as this is
covered by other data formats.18

In order to minimize nongeneralizable, application-specific
overhead (e.g., protein identification support) in the format, we
decided to focus solely on extracted feature support. The concept
of annotations provides an extensible platform to add additional
identification information, for which two approaches can be
taken: (1) Storage of the most pertinent information itself, e.g.,

Table 1. File Size Comparison

samplea PeakML data (Mb) number of features or peak sets in PeakML file

cond rep mzXML data (Mb) 1 2 3 1 2 3

1 A 10.4 2.0 9.5 25.8 9504 16909 23926

1 B 12.3 2.3 9.5 25.8 10696 16909 23926

1 C 12.0 2.5 9.5 25.8 11867 16909 23926

2 A 10.1 2.1 9.7 25.8 10027 17556 23926

2 B 12.0 2.3 9.7 25.8 10897 17556 23926

2 C 12.2 2.5 9.7 25.8 12014 17556 23926

3 A 10.9 2.3 8.7 25.8 10865 15131 23926

3 B 12.1 2.1 8.7 25.8 9996 15131 23926

3 C 10.1 1.8 8.7 25.8 8742 15131 23926
a Samples were acquired in centroid mode on a Thermo LTQ-Orbitrap XL instrument. Binary native data were converted to themzXML file format with
ReAdW (a tool of the Trans-Proteomic Pipeline software collection, downloaded from http://tools.proteomecenter.org/wiki/index.php?title=Soft-
ware:ReAdW). A final reduction of file size by 75% is achieved. cond = analytical condition; rep = biological replicate, 1 = PeakML file of the single LC/
MS run after peak detection, 2 = PeakML file of the combined peak sets of biological replicates, 3 = PeakML file of combined peak sets between biological
replicates and conditions.



2789 dx.doi.org/10.1021/ac2000994 |Anal. Chem. 2011, 83, 2786–2793

Analytical Chemistry ARTICLE

as a descriptive text, or (2) storage of a link to an entry in a
companion file containing the complete information (e.g., pro-
tein identification stored in an mzIdentML18 file).
PeakML allows the effective storage of mass chromatograms

(extracted ion chromatograms) for single or multiple measure-
ments, achieving an average data reduction of around 75%.
Typical file sizes for input data in mzXML format and PeakML
data files are shown in Table 1. Examples of PeakML files are
available for download at http://mzmatch.sourceforge.net/
peakml_files.html.
We envision that PeakML will be used in combination with

other formats that describe the whole experimental process
(protocols, biomaterials, experimental variables, hypotheses,
and conclusions). These are the domain of complementary data
models such as FuGE,19 MIAPE,20 and XGAP.21

The PeakML Library. The PeakML Java library defines the
fully documented Application Programming Interface (API) for
handling PeakML data, parsers to load mass spectrometry files,
and other components useful for building mass spectrometry
analysis tools, including (but not limited to) chemistry, math, and
user interface routines, considerably speeding up application
development.
The core of the library consists of classes specific to easily

interact with mass spectrometry data stored in raw and PeakML
file formats (see Figure 2). The base class IPeak defines the
minimal properties of each data element, such as mass, intensity,
scan-number, and retention time; additionally a measurement-id
can be defined to link an instance of IPeak to a Measurement.
From IPeak commonly encountered mass spectrometry data

types are extended including Spectrum, MassChromatogram,
BackgroundIon, ChromatographyMS, and PeakSet. The class
Spectrum defines a single scan of a mass spectrometer, either
in continuous or centroid mode. The classes MassChromato-
gram and BackgroundIon represent amass trace of an analyte in a
hyphenated setup (i.e., GC-MS or LC-MS), extracted from a set
of consecutive spectra. All MassChromogram objects from one
experiment can be stored as a bundle in the class Chromato-
graphyMS. Mass spectrometry data sets are generally quite large,
which can cause problems with the inefficient memory usage of
Java programming objects. To circumvent these limitations, the
class PeakData was introduced, which has memory-efficient
arrays for: scan numbers, retention times, masses, intensities,
and measurement-ids. The classes Spectrum, MassChromato-
gram, and BackgroundIon use this class to store all the data,
minimizing the memory requirements. To ease interaction with
PeakData from the end-programmer, there are two helper classes
Centroid, and Profile to easily interact with stored data.
Next to the data classes, a series of meta data ‘header’ classes

are provided to describe the data sets. In addition a comprehen-
sive set of I/O routines is provided for data loading and writing of
mass spectrometry data in the major open file formats mzData,
mzXML, mzML, next to PeakML. As each of these formats
follows roughly the same format in terms of meta-information,
they can be loaded into the common header classes. The class
Header is the entry point, binding the following classes:Measure-
mentInfo with measurement-specific information, such as asso-
ciated files, uniquely identifiable by a measurement-id also stored
in IPeak; SetInfo that combines multiple measurements into a set;

Figure 2. UML diagram of the mass spectrometry specific interface. The diagram contains two subsets, the mass spectrometry classes and the I/O
classes. (1) The base-class is IPeak, which defines the basic properties of a signal or peak (mass, intensity, scan-id, and retention time, plus a
measurement-id to link it to meta-information on the measurement). These properties are further specialized and extended in the subclasses (e.g.,
retention time for a mass chromatogram is defined as the time where the signal is most intense). The subclass IPeakSet copies and extends on the
behavior of java.util.Vector by providing additional functionality on the list of peaks (e.g., fast binary search on IPeak properties). (2) Each parse method
returns an instance of ParseResult, containing pointers to a Header instance and an instance of type Measurement (either Spectrum, Chromato-
graphyMS, or IPeakSet), which was introduced to identify those classes that can be stored in a file. The class Annotatable (arguably the real base-class)
injects functionality into classes for adding annotations (label�value pairs); this is disabled for the class Peak and all its derivatives to keepmemory usage
at a minimum.



2790 dx.doi.org/10.1021/ac2000994 |Anal. Chem. 2011, 83, 2786–2793

Analytical Chemistry ARTICLE

SampleInfo describes sample specific information, stored in
annotations; ApplicationInfo describes software application-spe-
cific information that was used to produce the data, such as
software name, version, parameters, etc. Additionally, 1-to-1
mappings are provided to the file access libraries of Waters Corp.
and Thermo Fisher Scientific Inc., both of which are only
accessible on Microsoft Windows platforms (due to the imple-
mentation chosen by these manufacturers).
The raw output file from a mass spectrometry run contains

large amounts of meta- and status-information, which is rarely (if
at all) preserved during the transformation process to an open
standard such as mzXML. For further interpretation of the data,
this meta-information can play a key role, providing insight into
the quality of each measurement. For this reason, we additionally
supply the tool ThermoLogViewer, which allows the user to load

multiple RAW-files and compare their logs (see online docu-
mentation at http://mzmatch.sourceforge.net for more
information).
The PeakML library allows for quick access to the content of

data files. As a reference, we used the data files listed in Table 1.
On a Dell Optiplex 780 desktop computer with an Intel Core2
Duo Q9550 CPU and 8 GB of RAM, loading PeakML files
containing features for single LC/MS runs required 2 s. The
initial loading and displaying of a massive PeakML file containing
23 926 peak sets required 13 s. Once loaded into memory, all
extracted ion chromatograms can be accessed instantly.
The mzmatch.R R Package. The PeakML file format enables

the uniform exchange of intermediate and result data between
analysis software from different manufacturers and groups. This
is important because each piece of software has its own unique
strengths and weaknesses. Cherry-picking of components en-
ables researchers to construct a data analysis pipeline specifically
suited to their needs. Use of PeakML can enable such flexible
pipelines, which we illustrate here by integrating PeakML
with the R-package XCMS.5 This package has excellent support
for data processing, statistics, and graph visualization. However,
R is primarily targeted at programmers, potentially locking
nonexpert users out from further data analysis. Moreover, it is
difficult to visualize the extracted peaks such that one can browse
through them and select the peaks of interest (e.g., the getEIC
routines of XCMS are not straightforward to apply). In contrast,
this functionality is easily implemented in the framework
with the PeakML file format, as shownwith the ‘PeakMLViewer’.
The R-package ‘mzmatch.R’ extends XCMS with functionality
for storing data in PeakML files and vice versa, such that these
tools can be connected (see online documentation at http://
mzmatch.sourceforge.net for more information). Because
PeakML includes system-defined annotations (e.g., ‘identifica-
tions’: a comma-separated list of database id’s; ‘relation.id’
and ‘relation.ship’: identifiers for derivative peaks and their
relationships), visualizations beyond the current capabilities of
XCMS are enabled.

’APPLICATIONS

mzMatch. The availability of the PeakML file format makes it
possible to split the components of a processing pipeline into small
tools (peak extraction, alignment, noise filtering, etc., described in
refs 9 and 10) that can easily be connected into various configura-
tions. This principle has been applied to the implementation of the
data analysis pipelinemzMatch (Figure 3; an extensive step-by-step
tutorial on the example pipeline is available at http://mzmatch.
sourceforge.net/tutorial.mzmatch.r.advanced.html). The tools
included are mass chromatogram extraction, matching (called
“grouping” in XCMS), derivative detection,10 noise filtering, nor-
malization, and alignment (see online documentation at http://
mzmatch.sourceforge.net/mzmatch/index.html and http://mzmatch.
sourceforge.net/mzmatch.R/00Index.html). For example, the
“RelatedPeaks”10 tool is very effective in gathering all features
caused by a single analyte (including isomers) and annotating
them accordingly. This means the features are not removed from
the data, but only tagged, allowing for later inspection by the
analyst. It is the responsibility of the analyst to validate the
identity of the peaks with additional, orthogonal biochemical
techniques or internal standards.
In addition, all filter tools discarding signals from the data set,

such as the CoDA-DW22 noise filter mzmatch.filter.NoiseFilter,

Figure 3. An example of a mzMatch pipeline. The mzXML/mzData/
mzML standards changed the data analysis landscape by providing a
common input format but do not provide functionality for breaking up a
data analysis pipeline into small interchangeable components. The
mzXML paper3 proposed the pipeline shown at the top but did not
go into further detail about the setup of a common data analysis pipeline.
The mzMatch pipeline makes effective use of the PeakML file format for
defining small components in a data analysis pipeline. The data in each
file can be picked up by any tool; e.g., in this small example a noise filter
could have been introduced right after the ‘detect peaks’ tool, without
breaking the pipeline.



2791 dx.doi.org/10.1021/ac2000994 |Anal. Chem. 2011, 83, 2786–2793

Analytical Chemistry ARTICLE

also export the discarded signals next to the result data set. Such
behavior provides traceability for the performance of each tool, as
the user can easily verify whether the operation had the desired
effect. It also offers the potential for retrieving signals of interest
lost in one of the filter steps which cannot easily be achieved with
other data processing packages. The RSD filter,17 mzmatch.filter.
RSDFilter, removes signals that were irreproducible in biological
and/or technical replicates. However, when multiple experimen-
tal conditions are used, it can happen that the behavior for signals
in one condition falls outside the specified range of reproduci-
bility, but not in the other(s). Such signals can then be recovered
in all experiments with the recycle bin recovery tool, mzmatch.
util.Recovery.
As described previously, the output of each tool can readily be

used in either XCMS or the mzMatch/PeakML Viewer. Each
tool is command-line-based such that settings can be passed to
the tools as command-line options (e.g., ’-i’ for the input file(s)).
The mzMatch toolbox is designed in such a way that documenta-
tion for each tool can automatically be generated. In addition,
tools can also be automatically exposed in a programming
language (such as the R environment) as functions or a pipeline
workflow environment such as Taverna.23 This has been done to
extend the mzmatch.R library with the mzMatch tools.
PeakML Viewer. A user interface application called PeakML

Viewer (Figure 4) enables rapid visualization, inspection, and
manipulation of the contents of a PeakML file (e.g., manual
selection and/or export of peaks of interest). After a PeakML file
is loaded, the “entry” view gives an overview of all the entries with
the retention time, mass, and intensity. The ordering from the
original file is kept intact, making the results from sorting tools

such as mzmatch.ipeak.sort.RelatedPeaks10 accessible. An entry is
highlighted in bold when it has been matched to a compound
from a database with mzmatch.ipeak.util.Identify (determined by
verifying whether the entry contains the system-defined annota-
tion identification). By clicking on an entry, the associated traces
will be displayed in the graph view and the identifications in the
“identification” view (including the mass deviation in ppm and
the putatively assigned molecular structure when available).
There is an additional tab derivatives, which shows all the
clustered related peaks with their identification as determined
by mzmatch.ipeak.sort.RelatedPeaks (stored in the system defined
annotations relation.id and relation.ship). The “filter” view allows
the user to perform simple operations on the data (sorting and
filtering), for zooming in on the entries of interest. The “trend”
view gives an overview of the intensity levels for each entry
(which in the case of a peakset can for example consist of multiple
mass chromatograms).
All the peaks belonging to the same set are grouped together in

this plot, and the mean, minimum, and maximum values are
displayed. The “sets” view shows all the measurements used and
how they are organized in sets. With the check boxes, all the
peaks from a set or peaks individually can be switched on or off
(i.e., not displayed). The “annotations” view gives an overview of
all the annotations that are available for the current entry.

’DISCUSSION

The PeakML file format enables research groups to transcend
the monolithic development model of mass spectrometry data
analysis software and start building flexible, modular application

Figure 4. Screenshot of the PeakMLViewer. The viewer enables the user to load PeakML files (generated at any point in the analysis pipeline, providing
full control and verifiability of the data processing steps), visualize, and browse through its contents. The interface is divided into seven views, providing
all the information stored in the file. Themost important are the “entry” view, giving an overview of all the IPeak entries stored in the file, and the “graph”
view, giving a visual representation of the data stored for the entry. By using the keyboard (arrow up/down and spacebar for selection), the user can
rapidly verify the contents and select peaks of interest.



2792 dx.doi.org/10.1021/ac2000994 |Anal. Chem. 2011, 83, 2786–2793

Analytical Chemistry ARTICLE

pipelines. The benefits include (i) increased verifiability of the
performance of individual analysis steps, (ii) an easy “rewind”
option to roll back to intermediate steps in the analysis process,
and (iii) the straightforward use of analytical components from
alternative pipelines originally not intended by the software
authors. Moreover, tool developers can have a much broader
user group for their software, because its components can be
more easily recombined to suit the needs of different researchers.
With the PeakML and mzmatch.R libraries, a first successful
integration between data analysis environments created by
different groups has been demonstrated. Of course, PeakML still
has limitations. For example, both PeakML and the mzMatch
toolbox have been developed mostly for metabolomics
experiments,24�26 but their functionality for proteomics experi-
ments is in its infancy. Additionally, adding an indexing mecha-
nism to speed up searches in large PeakML files is desirable. We
would like to invite other groups to join in this open source
development at http://mzmatch.sourceforge.net to enable the
larger mass spectrometry community to share the best data and
tools notwithstanding large variation in research aims.

PeakML/mzMatch highlights:
• Fully documented, complete, and platform-independent
mass spectrometry specific API complete with program-
ming examples.

• Defines the PeakML file format, offering functionality to
store and share processed data for further processing and to
publish verifiable results.

• Supports the major file formats mzData, mzXML, mzML;
provides a 1-to-1 mapping to the file access libraries of
Waters Corp. and Thermo Fisher Scientific Inc.

• Plays well with others by offering the potential to integrate
with other software, as illustrated by the integration
with XCMS.

• Integrated chemistry (e.g., molecular formulas, mass con-
version, periodic table), math (e.g., statistics, wavelet trans-
form, function fitting, and loess and Savitzky�Golay), and
visualization (JFreeChart and SWT for user interface
applications) routines.

• A set of small and agile tools (e.g., mass chromatogram
extraction, combining, noise filtering, normalization) per-
forming defined operations on the data.

’AUTHOR INFORMATION

Corresponding Author
*E-mail: (R.B.) rainer.breitling@glasgow.ac.uk; (M.A.S.) m.a.
swertz@rug.nl.

Notes
Competing Interests
The authors have declared that no competing interests exist.

’ACKNOWLEDGMENT

R.A.S. and A.J. contributed equally to this work. The authors
gratefully acknowledge the efforts and contributions of Elena
Merlo andGeorge Byelas (University of Groningen, TheNether-
lands), Saskia Decuypere and Ruben t’Kindt (Institute of Tro-
pical Medicine, Belgium), Martijn Dijkstra and Marcel de Vries
(University Medical Centre Groningen, The Netherlands),
David Wildridge, Jana Anderson, Isabel May-Vincent, Darren
Creek, Karl Burgess, andMichael Barrett (University of Glasgow,

UK), Fabien Jourdan (INRA, France), and Anas Kamleh and
David Watson (Strathclyde University, UK) for providing data,
testing the software, and suggesting improvements and addi-
tional features. R.B. and R.C.J. devised and supervised the
project. R.A.S. designed and implemented the software architec-
ture and the PeakML file format. A.J. designed and implemented
the XCMS integration and R-tools accompanying the software.
R.S., A.J., M.A.S., and R.B. wrote the manuscript. R.B. is
supported by a Netherlands Organisation for Scientific Research
(NWO) Vidi fellowship. R.A.S. is supported by a NWO Vici
grant to RCJ. M.A.S. is supported by NWO Rubicon
(825.09.008) and The Netherlands Bioinformatics Center. R.B.
and M.A.S. are supported by The Netherlands Proteomics
Center (NPC-GM WP 1.1).

’REFERENCES

(1) Dunn, W. B. Phys. Biol. 2008, 5, 11001.
(2) Han, J.; Danell, R. M.; Patel, J. R.; Gumerov, D. R.; Scarlett,

C. O.; Speir, J. P.; Parker, C. E.; Rusyn, I.; Zeisel, S.; Borchers, C. H.
Metabolomics 2008, 4, 128–140.

(3) Pedrioli, P. G. A.; Eng, J. K.; Hubley, R.; Vogelzang, M.; Deutsch,
E. W.; Raught, B.; Pratt, B.; Nilsson, E.; Angeletti, R. H.; Apweiler, R.;
Cheung, K.; Costello, C. E.; Hermjakob, H.; Huang, S.; Julian, R. K.;
Kapp, E.; McComb, M. E.; Oliver, S. G.; Omenn, G.; Paton, N. W.;
Simpson, R.; Smith, R.; Taylor, C. F.; Zhu, W.; Aebersold, R. Nat.
Biotechnol. 2004, 22, 1459–1466.

(4) Deutsch, E. W. In Proteome Bioinformatics; Humana Press:
Totowa, NJ, 2010; pp 319�331.

(5) Smith, C. A.; Want, E. J.; O Maille, G.; Abagyan, R.; Siuzdak, G.
Anal. Chem. 2006, 78, 779–787.

(6) Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic,M. BMCBioinf.
2010, 11, 395.

(7) Sturm, M.; Kohlbacher, O. J. Proteome Res. 2009, 8, 3760–3763.
(8) Kuhn, S.; Helmus, T.; Lancashire, R. J.; Murray-Rust, P.; Rzepa,

H. S.; Steinbeck, C.; Willighagen, E. L. J. Chem. Inf. Model. 2007,
47, 2015–2034.

(9) Scheltema, R. A.; Kamleh, A.; Wildridge, D.; Ebikeme, C.;
Watson, D. G.; Barrett, M. P.; Jansen, R. C.; Breitling, R. Proteomics
2008, 8, 4647–4656.

(10) Scheltema, R.; Decuypere, S.; Dujardin, J.; Watson, D.; Jansen,
R.; Breitling, R. Bioanalysis 2009, 1, 1551–1557.

(11) Arbona, V.; Iglesias, D. J.; Tal�on, M.; G�omez-Cadenas, A. J.
Agric. Food Chem. 2009, 57, 7338–7347.

(12) Dai, Y.; Li, Z.; Xue, L.; Dou, C.; Zhou, Y.; Zhang, L.; Qin, X. J.
Ethnopharmacology 2010, 128, 482–489.

(13) Lin, H.-M.; Edmunds, S. J.; Helsby, N. A.; Ferguson, L. R.;
Rowan, D. D. J. Proteome Res. 2009, 8, 2045–2057.

(14) Bodenreider, O. Nucleic Acids Res. 2004, 32, D267–270.
(15) Stoeckert, C. J.; Parkinson, H. Comp. Funct. Genom. 2003,

4, 127–132.
(16) Whetzel, P. L.; Brinkman, R. R.; Causton, H. C.; Fan, L.; Field,

D.; Fostel, J.; Fragoso, G.; Gray, T.; Heiskanen, M.; Hernandez-
Boussard, T.; Morrison, N.; Parkinson, H.; Rocca-Serra, P.; Sansone,
S.-A.; Schober, D.; Smith, B.; Stevens, R.; Stoeckert, C. J.; Taylor, C.;
White, J.; Wood, A. Omics 2006, 10, 199–204.

(17) Shah, V. P.; Midha, K. K.; Findlay, J. W.; Hill, H. M.; Hulse,
J. D.; McGilveray, I. J.; McKay, G.; Miller, K. J.; Patnaik, R. N.; Powell,
M. L.; Tonelli, A.; Viswanathan, C. T.; Yacobi, A. Pharm. Res. 2000,
17, 1551–1557.

(18) Eisenacher, M. In Data Mining in Proteomics; Humana Press:
Totowa, NJ, 2011; pp 161�177.

(19) Jones, A. R.; Lister, A. L.MethodsMol. Biol. 2010, 604, 333–343.
(20) Taylor, C. F.; Paton, N. W.; Lilley, K. S.; Binz, P.-A.; Julian,

R. K., Jr.; Jones, A. R.; Zhu, W.; Apweiler, R.; Aebersold, R.; Deutsch,
E. W.; Dunn, M. J.; Heck, A. J. R.; Leitner, A.; Macht, M.; Mann, M.;
Martens, L.; Neubert, T. A.; Patterson, S. D.; Ping, P.; Seymour, S. L.;



2793 dx.doi.org/10.1021/ac2000994 |Anal. Chem. 2011, 83, 2786–2793

Analytical Chemistry ARTICLE

Souda, P.; Tsugita, A.; Vandekerckhove, J.; Vondriska, T. M.; White-
legge, J. P.; Wilkins, M. R.; Xenarios, I.; Yates, J. R., III; Hermjakob, H.
Nat. Biotechnol. 2007, 25, 887–893.
(21) Swertz, M. A.; Velde, K. J.; van der; Tesson, B. M.; Scheltema,

R. A.; Arends, D.; Vera, G.; Alberts, R.; Dijkstra, M.; Schofield, P.;
Schughart, K.; Hancock, J. M.; Smedley, D.; Wolstencroft, K.; Goble, C.;
de Brock, E. O.; Jones, A. R.; Parkinson, H. E.; Jansen, R. C.Genome Biol.
2010, 11, R27.
(22) Windig, W. Chemom. Int. Lab. Syst. 2004, 77, 206–214.
(23) Kuhn, T.; Willighagen, E. L.; Zielesny, A.; Steinbeck, C. BMC

Bioinf. 2010, 11, 159.
(24) Kol, S.; Merlo, M. E.; Scheltema, R. A.; de Vries, M.; Vonk, R. J.;

Kikkert, N. A.; Dijkhuizen, L.; Breitling, R.; Takano, E. Appl. Environ.
Microbiol. 2010, 76, 2574–2581.
(25) t’Kindt, R.; Scheltema, R. A.; Jankevics, A.; Brunker, K.; Rijal, S.;

Dujardin, J.-C.; Breitling, R.; Watson, D. G.; Coombs, G. H.; Decuypere,
S. PLoS Negl. Trop. Dis. 2010, 4, e904.
(26) t’Kindt, R.; Jankevics, A.; Scheltema, R. A.; Zheng, L.; Watson,

D. G.; Dujardin, J.-C.; Breitling, R.; Coombs, G. H.; Decuypere, S. Anal.
Bioanal. Chem. 2010, 398, 2059–2069.


