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Single cell metabolomics
Matthias Heinemann1,2 and Renato Zenobi3

Recent discoveries suggest that cells of a clonal population

often display multiple metabolic phenotypes at the same time.

Motivated by the success of mass spectrometry (MS) in the

investigation of population-level metabolomics, the analytical

community has initiated efforts towards MS-based single cell

metabolomics to investigate metabolic phenomena that are

buried under the population average. Here, we review the

current approaches and illustrate their advantages and

disadvantages. Because of significant advances in the field,

different technologies are now at the verge of generating data

that are useful for exploring and investigating metabolic

heterogeneity.
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Introduction
Quantitative metabolomics, the technology for large-scale

quantification of intracellular metabolite concentrations, is

a powerful tool in systems biology research that has

recently led to a series of interesting findings (e.g.

[1–4]). Because of the metabolome’s chemical diversity,

mass spectrometry (MS) is the analytical method of choice

[5]. In addition to analytical challenges, quantitative meta-

bolomics as required for addressing (systems) biology

questions poses significant challenges in sample proces-

sing. One important challenge is the need to preserve the

original metabolome during sample processing, which is

often difficult because of the presence of enzymes in the

sample and the fast metabolic turnover rates.

For sensitivity reasons, current metabolomics methods

require samples that contain a large number of cells.

However, cell populations are not necessarily homo-

geneous. Besides genetic differences, several other

sources for population heterogeneity exist, of which sev-

eral are also known to cause metabolic differences.

Today, methods capable of resolving differences in

metabolite levels on the single cell level are provided,

within limits, by molecular sensors such as FRET sensors

[6,7] or aptamer-based technology [8�,9]. Both types of

molecular sensors, however, are difficult to develop, are

limited to specific analytes, and quantitative analyses (e.g.

in terms of mol/L) are hardly possible with them. Laser-

induced fluorescence, as introduced by Dovichi for single

cell proteomics, is limited to fluorescent compounds or

labelled species [10,11]. In addition, all these existing

methods share the limitation that they can never be

extended to the ‘‘-omics’’ level, that is to measuring a

large number of metabolites at the same time. They will

thus not be applicable to discovery type research and

research that requires a large number of metabolites to be

measured in the same cell.

Because of the success of mass spectrometry in popu-

lation-level metabolome analyses, the analytical com-

munity has recently made great strides towards single

cell level metabolite analyses (for a review, see [12]). So

far, however, hardly any new biological insight has been

generated from these endeavours. In this Current Opinion
paper, we will thus not only review the current status of

MS-based single cell metabolomics but also discuss which

of the different approaches will have the best chance to be

useful for addressing (systems) biological questions. We

intend to update the interested biology community on

how far single cell metabolomics has been developed by

analytical chemists, and help the analytical community to

guide their efforts towards the needs of the future users in

(systems) biology.

Why single cell metabolomics?
The metabolome is arguably the most sensitive measure

of a cellular phenotype [13]. Thus, metabolomics is not

only an essential experimental tool for metabolism-

related research: we anticipate that it will also become

a powerful tool for general screening studies, because of

its potential to uncover phenotypic differences in a very

sensitive manner. The power of metabolomics can be

exploited in population-level measurements, but as cell

populations are not necessarily homogeneous, it will be

even more informative to measure at the single cell level.

There are multiple reasons for cellular heterogeneity:

cells can be genetically different, can experience a differ-

ent microenvironment, might have had a different

history, are in different developmental or cell-cycle
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stages, or of different age. Because techniques probing

metabolism at the single cell level are still largely lacking,

the research community has almost no knowledge about

the metabolic phenotypes of individual cells in hetero-

geneous populations. However, from a limited number of

experiments with sorted cell populations and from some

other reasoning, it is clear that significant differences in

the metabolome are to be expected. For example, from

population-level metabolomic measurements on cell-

cycle-synchronized yeast cells, it was found that signifi-

cant changes in gene regulation and metabolite levels

occur during the cell cycle [14]. Also, the age of a yeast

cell was argued to influence the metabolic phenotype in

clonal cells: In cells that were sorted according to their

age, dramatic metabolic differences were found [15–17].

Synchronizing as well as sorting cells likely affects the

metabolome, due to fast metabolic turnover rates.

Typical sorting methods do not account for any metabolic

changes that occur during the process, such that the

available measurements might not reflect the original

metabolome. Thus, even such studies, where information

on the metabolic phenotypes of certain subpopulations

already exists, would also tremendously benefit from

single cell metabolomics technology.

In addition to the abovementioned sources for hetero-

geneity, stochasticity-induced phenotypic heterogeneity

was identified a few years ago as an additional source of

cell-to-cell variability [18,19]. Because of low copy num-

bers of specific biomolecules, certain processes at the

gene and protein expression level are inherently stochas-

tic and can cause random fluctuations in the abundance of

biomolecules. These fluctuations can be exploited by a

number of regulatory feedback mechanisms to create

multiple distinct and coexisting phenotypes even from

isogenic cells in the same environment and in cells with

the same history (cf. reviews cited above). The two

prerequisites for stochasticity-induced phenotypic

heterogeneity [20,21] are met in practically every biomo-

lecular network. Thus it is very likely that the currently

known cases of such heterogeneity merely represent the

tip of the iceberg of all of these cases [22].

In fact, this type of heterogeneity was also found to occur

in metabolic systems: the well-known lactose utilization

system in Escherichia coli was found to display an ‘‘all or

none’’ type of behaviour, where single cells stochastically

transit between the two states [23]. Another example is

the galacatose ultilization network in yeast displaying

bimodal patterns in the expression of the GAL family

genes responsible for galactose metabolism [24]. A recent

report about the presence of several global feedback loops

overarching metabolic and transcriptional regulation in E.
coli [25] indicates that in fact many more metabolically

different stable phenotypes could be uncovered — if we

were only able to experimentally probe metabolism of

individual cells. Metabolically different phenotypes may

underlie the medically highly relevant microbial pheno-

types of persister cells [26], dormant cells [27] or small

colony variants [28].

Overall, a technology to measure metabolite levels in

single cells would be an excellent tool for firstly discovery

of metabolic differences in individual cells (for which

likely semi-quantitative methods will be sufficient) and

secondly system biology endeavours that aim at generat-

ing an understanding about the emergence of such phe-

notypic or genetic heterogeneity (for which likely more

quantitative methods will be required).

Challenges for single cell metabolomics
Single cell metabolomics poses enormous challenges:

First, it has to deal with minute quantities of analytes.

In E. coli, a bacterium with about 1 fL of volume [29],

even highly abundant glycolytic intermediates, which are

present in the low mM concentration range, require

detection sensitivity in the low attomole range. In the

budding yeast, with a volume of about 65 fL [29],

amounts in the two- to three-digit attomole range must

be detected. In mammalian cells, with a 500 fL volume

[29], metabolites would be expected in the two-digit

femtomole range (assuming similar metabolite concen-

tration levels as in microbes). Compared to the metabolite

amounts that are typically used for classical population-

level metabolomics (nanomoles), single cell metabolo-

mics for E. coli has to handle amounts that are approxi-

mately 109 times lower. Unlike in single cell genomics

and proteomics, amplification of analyte and/or highly

sensitive fluorescence measurements on labelled com-

pounds cannot be used for single cell metabolomics.

Recently, the limits of detection for metabolites using

mass spectrometry have been lowered from typically

femtomoles to the low attomole range which is the range

that is required for single cell metabolomics [30��]. How-

ever, even if such small quantities can be detected,

quantification is still problematic, and so is handling of

the minute sample quantities (originating from an indi-

vidual cell). Transfer of a cell (content) to the mass

spectrometer, ideally without any losses, harbours signifi-

cant challenges, especially because the sample processing

needs to conserve the original metabolome (which can,

for example, be distorted if enzymatic activity is still

present in the sample). Furthermore, quantitative ma-

ss-spectrometric analyses typically require the metab-

olites to be separated from cell debris, proteins, and

salts, to reduce ion suppression.

In order for a single cell metabolomics technology to be

useful for (systems) biology research, it is important that

the technology can either measure a wide range of

metabolites such that the technology could be used for

phenotypic screening on the single cell level or can

measure and quantify fewer metabolites in a targeted
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manner. Further, the technology should reproducibly

provide at least semi-quantitative data. For this, it is

important that not only the actual analysis step is quan-

titative, but also the sample processing is done in an

appropriate way. Finally, because single cell metabolo-

mics technology is expected to reveal differences be-

tween few individual cells, the technology also needs

to generate sufficient measurement throughput to allow

meaningful statistical analyses of the data will.

MS-based approaches for single cell
metabolomics
On the population level, mass spectrometry has become

the key enabling technologies for metabolomics, providing

high-resolution data. In recent years, an increasing number

of papers have been published on the topic of MS-based

single cell metabolomics. Almost exclusively, papers on

this topic have appeared in analytical journals and have

focused on the technology development; real biological

insight has not yet been generated. In the following, we will

illustrate the different approaches pursued (Figure 1) and

will discuss to what extent these technologies have the

potential to generate data relevant for (systems) biology.

(a) Sampling the cell contents with a micropipette, followed by
injection into a mass spectrometer using a nano-electro-
spray ionization (nano-ESI) source. This approach,

which is probably only suitable for very large cells, has

been pursued by Masujima [31] who also coined the

term ‘‘live single cell video-mass spectrometry’’ for it,

to indicate that the cytoplasm, or in some cases even

subcellular material, is sampled under a video

microscope with a small pipette that can then be

directly used for generating ions via nano-ESI.

Although the same group has presented some

(unpublished) work on robotic handling of the

pipetting process, this approach is hardly amenable

to high-throughput operation: only a few cells can

be measured per hour. Unless the throughput can be

dramatically improved, this approach will thus not

really be relevant for systems biology, because it will

be likely impossible to generate statically sound data

on cellular heterogeneity. On the other hand, this is

the method that has so far yielded by far the greatest

variety of signals, with more than a dozen signals that

were clearly distinct from the abundant background

signals. For example, metabolites such as histamine,

serotonin, and leukotriene B4 could be detected in

individual mast cells. Identification by tandem mass

spectrometry was done off-line, on samples stemming

from a large number of cells. In addition to

metabolites, enzymes are also sucked into the needle,

such that distortion of the original metabolome can be

an issue.

(b) Sample preparation on a microfluidic chip, followed by
deposition on a sample plate for (matrix-assisted) laser
desorption/ionization (MALDI or LDI) mass spectrom-
etry. For this approach, single cell organisms are first

processed on a microfluidic chip with steps for

quenching, lysis, and separation of metabolites from

the rest of the cell content. The cell content is then

transferred to a mass spectrometer with a suitable

interface. Conceptually, this approach represents a

downscaling of the classical metabolomics approach.

The complete setup has not yet been realized, but

many different units required for the microfluidic

chip have been developed separately, such as lysis

(see, for example, [32]), impedance-based cell size

measurement [33], CE separation (e.g. [34]). Also, it

has already been demonstrated for metabolites

including UDP, ADP, GDP, UTP, ATP, GTP,

acetyl-CoA, and butyryl/isobutyryl-CoA that the

sensitivity for MALDI-based MS detection of

metabolites will be sufficient to reach the single

yeast cell level [30��] and a suitable technology for

sample deposition (‘‘writing’’ onto a MALDI plate)

was also proposed [12,35,36] allowing for convenient

off-line mass-spectrometric analysis. Coupling of the

28 Analytical biotechnology

Figure 1

Schematics of the four MS-based approaches for single cell metabolomics.
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microfluidic device to an ESI MS [37�,38] is also

possible, which, however, requires on-line MS

analysis. Once the overall operation of this technol-

ogy has been demonstrated, it is likely that this

technology has the potential to generate high-

throughput data in an automated way.

(c) Sample arraying. In this approach, suitable for single

cell organisms, a sample plate for LDI or MALDI is

covered by a solvent-repelling (‘‘omniphobic’’) coat-

ing that has been patterned to form a dense

checkerboard arrangement of hydrophilic recipient

sites approximately 50–200 mm in size, matched to

the size of the laser focus. These spots are ‘‘anchors’’

for small volumes of liquid that will automatically

form a checkerboard pattern of quite monodisperse

sample droplets after spreading a cell suspension onto

this patterned plate. If an appropriate concentration

of cells is used, spreading of the sample will result in

the deposition of �1 cell (in rare cases, two cells) per

recipient site. An advantage of this approach is that

the size of the cells to be analyzed may be distinctly

smaller than the recipient site. The plate can be

cooled to stop the metabolism instantaneously upon

applying the cell suspension. Application of a

MALDI matrix in an organic solvent will then lyse

the cells and extract the compounds of interest for

analysis by MALDI. So far, high-abundance metab-

olites (e.g. ADP, GDP, UTP, ATP, GTP and GDP-

Glc) have been detected by negative ion mode

MALDI-MS in small algae and in single yeast cells.

We have hints that this sample presentation mode

also facilitates quantitation, because the signals from

recipient sites containing two cells are about twice as

high as from those with only one cell. This approach

provides true high-throughput operation: the sample

deposition is an automated, parallel process, and the

readout of the spectra is fast, limited only by the

speed of the MS instrument (�2 spots per second,

that is analysis of 1000s of cells/hour) [39��].
(d) Imaging mass spectrometry. Many modern mass spec-

trometers have imaging capabilities, with a spatial

resolution of typically�50 mm (MALDI or LDI), and

�1 mm (secondary ion mass spectrometry, SIMS), as

well as relatively fast acquisition speed [40�,41].

Unless the cells are much smaller than 50 mm,

MALDI-MS imaging thus has the capability to

yield single cell analyses of compounds including

metabolites. Imaging MS is most often applied to

analyzing tissues. Interesting work in this area has

been published by various groups. Sweedler and

coworkers have pioneered the quantitative analysis of

neurotransmitters and neuropeptides in single

neurons of rats and the sea snail Aplysia californica
[42]; the latter, however, are really gigantic. Inter-

esting sample preparation protocols have been

developed by the same group [43�]. Another recent

example is MS imaging of the distribution of

secondary flavonoid metabolites such as kaempferol,

quercetin, isorhamnetin, and their glycosides in

individual plant tissue cells [44]. A spatial resolution

of 10 mm was reached with state-of-the-art LDI

instrumentation. SIMS imaging of cells is capable of

even higher spatial resolution, but has not really been

extended to detecting metabolites. With this tech-

nology the distribution of ions such as Na+, K+, Ca2+,

as well as cationized cholesterol, lipids, or their

fragments, that is molecules present at cell surfaces

has usually been imaged [41]. It remains to be shown

that SIMS imaging will also be able to detect

intracellular metabolites. SIMS is notorious for

suffering from ionization matrix effects, and such it

seems unlikely that it will yield quantitative data.

Conclusion
The importance of metabolism for health and disease is

currently being rediscovered, and combined with the

recent discovery of stochasticity-induced phenotypic

bistability as one source of population heterogeneity, it

is clear that technologies for metabolomics on the single

cell level will be required.

The analytical field has started to develop technologies

for MS-based single cell metabolomics, as seen from the

increasing number of publications in this area. However,

so far, all efforts in single cell metabolomics seem to

remain only within the analytical community. The chal-

lenge for the near future will be to bring together the

efforts of the analytical community with current interests

in the area of (systems) biology, such that the techno-

logical efforts can be guided towards the needs of future

users in biology. Here, the analytical community will

likely face requests for proper sample handling pro-

cedures (i.e. procedures that conserve the original meta-

bolome) and for targeted measurement of certain specific

metabolites. In current single cell metabolomics papers

often rather exotic classes of metabolites were reported —

presumably simply because these were the only metab-

olites that were easily detected. For application of single-

cell metabolomics technology to biological research, how-

ever, it likely will be necessary to specify metabolites (or

metabolite classes) to be measured.

We feel that ultimately the approach to couple a micro-

fluidic unit to a mass spectrometer has the highest poten-

tial to deliver relevant data for systems biology. Here, the

major challenges will be — apart from solving the quanti-

fication issue — to integrate all the single steps into a

whole system. We hope that within the next two or three

years such systems will become available.
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