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Abstract
Biliary cholesterol secretion is a process important for 2 
major disease complexes, atherosclerotic cardiovascular 
disease and cholesterol gallstone disease. With respect 
to cardiovascular disease, biliary cholesterol secretion 
is regarded as the final step for the elimination of cho-
lesterol originating from cholesterol-laden macrophage 
foam cells in the vessel wall in a pathway named re-
verse cholesterol transport. On the other hand, choles-
terol hypersecretion into the bile is considered the main 
pathophysiological determinant of cholesterol gallstone 
formation. This review summarizes current knowledge 
on the origins of cholesterol secreted into the bile as 
well as the relevant processes and transporters in-
volved. Next to the established ATP-binding cassette 
(ABC) transporters mediating the biliary secretion of bile 
acids (ABCB11), phospholipids (ABCB4) and cholesterol 
(ABCG5/G8), special attention is given to emerging 
proteins that modulate or mediate biliary cholesterol se-
cretion. In this regard, the potential impact of the phos-
phatidylserine flippase ATPase class Ⅰ type 8B member 
1, the Niemann Pick C1-like protein 1 that mediates 

cholesterol absorption and the high density lipoprotein 
cholesterol uptake receptor, scavenger receptor class B 
type Ⅰ, is discussed. 
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INTRODUCTION: WHAT IS THE 
IMPORTANCE OF BILIARY CHOLESTEROL 
SECRETION?
The liver plays a central role in cholesterol metabolism 
(Figure 1). Hepatocytes not only express a number of  
different lipoprotein receptors including low density lipo-
protein receptor (LDLR), LDLR-related protein (LRP) 
and scavenger receptor class B type Ⅰ (SR-BI), that enable 
them to take up cholesterol from virtually all lipopro-
tein subclasses, but cholesterol is also synthesized de novo 
within the liver in a regulated fashion[1]. In addition to 
these input pathways into the hepatic cholesterol pool, the 
liver is equipped to actively secrete cholesterol via 2 dif-
ferent routes: (1) within triglyceride-rich very low density 
lipoproteins (VLDL)[2,3], thereby supplying peripheral cells 
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with fatty acids, fat soluble vitamins and cholesterol; (2) by 
secretion into the bile either directly as free cholesterol or 
after conversion into bile acids, thereby providing a means 
of  irreversible elimination of  cholesterol from the body 
via the feces[4,5]. In general, the different hepatic cholester-
ol fluxes are interrelated, however, some are also markedly 
separated, as will be discussed later in this review.

Biliary cholesterol secretion itself  is directly linked to 2 
major disease complexes with a high relevance for health 
care systems worldwide, namely atherosclerotic cardio-
vascular disease (CVD) and gallstone disease. In athero-
sclerotic CVD, biliary cholesterol secretion is considered 
the final step in the completion of  the reverse cholesterol 
transport (RCT) pathway[6,7]. The term RCT comprises 
the transport of  peripheral cholesterol back to the liver 
for excretion into bile, most importantly cholesterol ac-
cumulating within macrophage foam cells in atheroscle-
rotic lesions[8]. For RCT an enhanced biliary secretion of  
cholesterol originating from peripheral pools relevant for 
CVD is desirable. On the other hand, increased biliary 
cholesterol secretion is related to biliary cholesterol super-
saturation, which is an important determinant for the for-
mation of  cholesterol gallstones that constitute more than 
90% of  all gallstones[9,10]. Notably, both CVD[11,12] and 
gallstone disease[13] also have a strong inflammatory com-
ponent that plays an important role in the pathogenesis 
of  these diseases. However, an in-depth understanding of  
the metabolic processes and transporters involved in the 
regulation of  biliary cholesterol secretion is important and 
might conceivably reveal relevant targets for the treatment 
of  CVD as well as cholesterol gallstone disease. 

WHAT IS THE ORIGIN OF CHOLESTEROL 
SECRETED INTO BILE?
The most relevant source of  cholesterol secreted into the 
bile is cholesterol derived from plasma lipoproteins, and a 
less relevant source is cholesterol originating from de novo 
synthesis or hydrolysis of  stored cholesteryl ester[14]. High 
density lipoprotein (HDL) appears to be the preferential 
contributor for cholesterol secreted into bile[15]. In humans 
with a bile fistula, cholesterol originating from HDL ap-
peared more rapidly in bile compared with LDL choles-
terol[16]. Additional evidence for a more prominent role of  
HDL over LDL came from experiments demonstrating 
that biliary cholesterol secretion remained essentially un-
changed when plasma LDL cholesterol levels specifically 
were reduced by 26% by means of  LDL apheresis[17]. In 
contrast, reduction in plasma LDL cholesterol resulted 
in a consecutive decrease in biliary bile acid secretion[17], 
thereby lending further experimental evidence to older 
literature suggesting a metabolic compartmentalization 
of  hepatic cholesterol pools with regard to bile acid syn-
thesis vs direct biliary secretion[18,19]. However, definitive 
studies exploring the underlying metabolic pathways are 
still lacking.

It is, however, important to note, that modulation of  

plasma HDL cholesterol levels does not influence mass 
biliary cholesterol secretion, since ATP-binding cassette 
transporter A1 (ABCA1) knockout mice[20] as well as 
apolipoprotein-A-I (apoA-I) knockout mice[21,22] display 
unaltered biliary cholesterol secretion rates. These data 
indicate that specific intrahepatic metabolic and transport 
processes are most relevant and rate-limiting for biliary 
secretion of  cholesterol.

HOW DOES CHOLESTEROL 
ORIGINATING FROM LIPOPROTEINS OR 
INTRACELLULAR SYNTHESIS REACH 
THE CANALICULAR MEMBRANE?
The hepatocyte is a polarized cell with a basolateral (sinu-
soidal) and an apical (canalicular) plasma membrane. Up-
take of  cholesterol from the plasma compartment occurs 
on the basolateral site (Figure 1), while biliary cholesterol 
secretion is an apical process (Figure 2). Hepatic choles-
terol synthesis is carried out intracellularly. This polariza-
tion implies that a means of  transport must exist for ex-
ogenous as well as endogenously synthesized cholesterol 
to reach the site where the biliary secretion process takes 
place. 

Of  note, cholesterol is also used for the synthesis of  
bile acids, and a number of  factors modulating bile acid 
synthesis impact on hepatic cholesterol homeostasis. 
However, the regulation of  bile acid synthesis will not be 
discussed, we refer to recent comprehensive reviews cov-
ering this topic[23,24].

The detailed mechanisms of  intracellular cholesterol 
trafficking in hepatocytes are not understood thus far, 
especially how these relate to biliary cholesterol secre-
tion. However, a few known transport proteins have been 
studied in more detail to test the effect of  gain- or loss-
of-function manipulations on biliary cholesterol secretion. 
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Figure 1  Overview of hepatic cholesterol metabolism in relation to biliary 
sterol secrection. HDL: High-density lipoprotein; BA: Bile acid; LDLR: Low-
density lipoprotein receptor; LRP: LDLR-related protein; NTCP: Na+ taurocho-
late co-transporting peptide; OATP: Organic anion transport polypeptides; SR-
BI: Scavenger receptor class B type Ⅰ; (V)LDL: (Very) low-density lipoprotein.



A prominent example of  such a protein is the Niemann-
Pick type C protein 1 (NPC1) that plays a role in the intra-
cellular trafficking of  lipoprotein-derived cholesterol[25,26]. 
Specifically, NPC1 is involved in moving free cholesterol 
from the late endosomal/lysosomal compartment to the 
cytosol[25,26]. On a chow diet, mice lacking NPC1 expres-
sion had 37% higher biliary cholesterol secretion rates 
compared with controls[27]. However, when fed a 2% 
cholesterol-containing diet, biliary cholesterol secretion 
was significantly decreased in NPC1 knockout mice, 
while it increased 3.7-fold in wild-type controls[27]. These 
results indicated that NPC1 may become critical under 
conditions of  high cholesterol intake. In turn, hepatic 
overexpression of  NPC1 increased biliary cholesterol 
secretion by approximately 2-fold in chow-fed wild-type 
and high cholesterol diet-fed NPC1 knockout mice. How-
ever, no effect was observed in wild-type mice fed a 2% 
cholesterol diet[27]. The interpretation of  this latter result 
is not straightforward, but other cholesterol metabolism 
pathways are also affected by NPC1, and changes in he-
patic cholesterol content may play an additional role in 
explaining the observed phenotypes. Although more work 
is required to provide a detailed understanding of  the 
role of  NPC1, the presently available studies indicate that 
NPC1 is important in regulating the availability of  choles-
terol at the canalicular membrane for the biliary secretion 
process. Also NPC2, which plays a very similar role in 
intracellular cholesterol trafficking[28], is expressed in liver, 
is detectable in bile, and may be involved in the transport 
of  cholesterol destined for biliary secretion. However, 
thus far no mechanistic studies have been performed, 
but a significant increase in hepatic NPC2 expression in 
gallstone-susceptible vs gallstone-resistant mouse strains 
has been reported[29]. Also the expression of  another car-
rier protein, the sterol carrier protein-2 (SCP2), impacts 
biliary cholesterol secretion, with SCP2 overexpression in-
creasing biliary secretion of  cholesterol[30,31] and decreased 

SCP2 expression having the opposite effect[32]. Members 
of  the steroidogenic acute regulatory (StAR) protein fam-
ily of  cholesterol transport molecules may also represent 
candidates to influence biliary cholesterol secretion[33,34]. 
However, thus far it has only been shown that StARD1 
overexpression increases bile acid synthesis[35], while the 
absence of  StARD3 in knockout mice had no impact 
on biliary sterol secretion[36]. In addition to intracellular 
cholesterol transport proteins, enzymes modulating the 
amount of  free cholesterol present within a hepatocyte 
could also be expected to impact biliary cholesterol secre-
tion. While this was shown to be the case for the neutral 
cholesteryl ester hydrolase[37], decreasing ACAT2 expres-
sion had no effect on biliary cholesterol output[38].

WHICH TRANSPORTERS ARE INVOLVED 
IN BILIARY CHOLESTEROL SECRETION?
On the apical membrane several transporters are directly 
involved in the biliary cholesterol secretion process. 
Transporter expression and activity is regulated by tran-
scriptional as well as posttranscriptional mechanisms. 
Important transcriptional regulators are the nuclear hor-
mone receptors liver X receptor (LXR; 2 isoforms LXRα, 
NR1H3, and LXRβ, NR1H2) and farnesoid X receptor 
(FXR, NR1H4), among others. For the specifics of  LXR- 
and FXR-mediated gene regulation we refer to recent 
articles dealing with these topics[23,39-41]. In general, LXR 
is a nuclear receptor activated by oxysterols and functions 
as a sterol sensor exerting control on cholesterol metabo-
lism[39,40]. As a general scheme, LXR activation stimulates 
metabolic processes favoring cholesterol elimination from 
the body, e.g. by increasing biliary cholesterol secretion via 
increased expression of  ABCG5/G8[42] (see below) or by 
increasing the conversion of  cholesterol to bile acids via 
increased expression of  the cholesterol 7α-hydroxylase 
gene, at least in rodents[43]. 

On the other hand, FXR is the nuclear receptor acti-
vated by bile acids and orchestrates an adaptive response 
of  the hepatocyte to altered bile acid levels[23,41]. In chole-
static conditions, FXR induces a downregulation of  bile 
acid synthesis[23], a reduction in bile acid uptake into hepa-
tocytes by decreasing the expression of  the cellular uptake 
receptors[23] and an increased biliary secretion of  bile acids 
by increasing the expression of  specific transporters such 
as ABCB11[44] (see below). 

In general, biliary bile acid secretion is the main driv-
ing force for the secretion of  phospholipids and choles-
terol[45]. Infusion of  bile acids results in a dose-dependent 
increase in biliary cholesterol secretion[46]. However, cho-
lesterol secretion into the bile also critically depends on 
functional biliary phospholipid secretion which is required 
for the formation of  mixed micelles[46]. This is evidenced 
by the Abcb4 knockout mouse, that in the absence of  this 
key biliary phospholipid transporter almost completely 
lacks biliary cholesterol secretion[47,48]. The following trans-
porters are specifically involved in these processes:
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ABCB4
ABCB4 has historically been named multi-drug resistance 
P-glycoprotein 2 (MDR2). ABCB4 functions as a phos-
phatidylcholine (PC) flippase translocating PC from the 
inner to the outer leaflet of  the canalicular membrane[45]. 
Biliary cholesterol secretion is fully dependent on the 
functionality of  ABCB4 and thereby biliary phospholipid 
secretion. In Abcb4-deficient animals, biliary cholesterol 
secretion is virtually absent[47,48]. Furthermore, PC decreas-
es the toxic effects of  bile acids on the canalicular mem-
brane, and Abcb4 knockout mice as well as patients lack-
ing this transporter develop a progressive liver disease[49,50].

ATPase class Ⅰ type 8B member 1
ATPase class Ⅰ type 8B member 1 (ATP8B1) is a P-type 
ATPase that flips phosphatidylserine (PS) from the outer 
to the inner leaflet of  the canalicular membrane result-
ing in a reduction in the PS content and a consecutive 
increase in the sphingomyelin content of  the outer cana-
licular leaflet[51,52]. In humans, mutations in ATP8B1 cause 
severe chronic or periodic cholestatic liver disease[53,54]. A 
mutation resulting in severe liver disease is the glycine to 
valine substitution at amino acid 308 (G308V)[54]. In mice 
carrying the Atp8b1G308V/G308V mutation Atp8b1 is almost 
completely absent, which causes enhanced biliary excre-
tion of  PS and also cholesterol, mainly due to decreased 
rigidity of  the outer canalicular leaflet (see below)[52,55]. 

ABCB11
ABCB11 is classically referred to as the bile salt export 
pump (BSEP; also known as sister of  P-glycoprotein) and 
is mediating biliary secretion of  bile acids[44,56]. A 2-fold in-
crease in ABCB11 expression in transgenic mice resulted 
in increased biliary output of  bile acids[57]. Notably, ex-
pression of  other biliary transporters remained unaltered 
providing additional evidence that biliary bile acid secre-
tion is the driving force for the secretion of  the other lipid 
species into bile[57]. However, in Abcb11 knockout mice, 
there is still substantial residual biliary bile acid secretion 
and the expression of  Mdr1a (Abcb1a) and Mdr1b (Ab-
cb1b) was found to be upregulated indicating a potential 
compensation mechanism[58]. Subsequently, triple knock-
out mice lacking all 3 transporters have been generated 
to prove this concept, and indeed these mice develop an 
extreme cholestatic phenotype[59].

How do these transporters work together in the pro-
cess of  bile formation? First, the specific properties of  the 
canalicular membrane need to be considered, since this 
has to fulfill 2 key functions: (1) withstand extremely high 
concentrations of  bile acids, that are powerful detergents 
able to basically solubilize normal plasma membranes 
resulting in cell death; and (2) still allow for regulated 
secretion of  the different bile components. The answer 
to these questions seems to lie in the asymmetry of  the 
canalicular membrane with a high content of  sphingomy-
elin and cholesterol in the outer leaflet[60]. In membranes 
composed of  glycerophospholipids (PC, PS and phospha-
tidylethanolamine) lipids are loosely packed, the so-called 

“liquid disordered” phase[61,62]. Addition of  sphingomyelin 
and cholesterol induces a more rigid membrane struc-
ture, the so-called “liquid ordered” phase that does not 
allow for the intercalation of  detergents and thereby the 
membrane is rendered increasingly resistant against de-
tergents[61,63,64]. The task of  ATP8B1 in this model would 
be to preserve the rigid structure of  the outer canalicular 
leaflet by inward flipping of  PS. The amphipathic bile 
acids are actively excreted into the canalicular lumen by 
ABCB11, where they form simple micelles in the aqueous 
environment of  the bile[9,46]. Phospholipids are translo-
cated to the outer leaflet of  the canalicular membrane by 
ABCB4 where they are added to the simple micelles re-
sulting in mixed micelles[9,46]. However, the precise mecha-
nism of  how this occurs is still elusive. Subsequently, cho-
lesterol is then taken up into these mixed micelles[9,46]. The 
authentic cholesterol transporters that play a role in this 
process are discussed below.

ABCG5/G8
The transport system contributing quantitatively the major 
amount of  cholesterol secretion into the bile is the obli-
gate heterodimer transporter pair ABCG5/ABCG8[65-67]. 
These are expressed almost exclusively in the liver and the 
intestine, and respective mutations have been identified as 
the disease substrate for sitosterolemia, a rare autosomal 
recessive disorder which is characterized by the accumu-
lation of  plant sterols in blood and tissues[68,69]. This ac-
cumulation is caused by increased sterol absorption from 
the diet and decreased biliary sterol secretion[70,71]. In the 
intestine, ABCG5/G8 secrete absorbed plant sterols back 
into the intestinal lumen, while on the bile canaliculus 
ABCG5/G8 mediate biliary plant sterol as well as choles-
terol secretion into bile[70,71]. Since in healthy individuals, 
plasma plant sterol levels are very low, ABCG5/G8 rep-
resent, under physiological conditions, mainly a transport 
system for cholesterol. This is mirrored by the fact that 
biliary cholesterol secretion in ABCG5 and/or ABCG8 
knockout mice is reduced by 75%[71-73]. In turn, transgenic 
overexpression of  ABCG5/G8 resulted in an increase in 
biliary cholesterol secretion that was directly proportional 
to the copy numbers of  the transgene over a wide range, 
indicating that under these conditions neither delivery of  
cholesterol to the transporters nor the level of  cholesterol 
acceptors within the bile are rate-limiting[74]. In addition, 
ABCG5 and ABCG8 are targets of  the nuclear hormone 
receptor LXRα and the increase in biliary cholesterol 
secretion observed upon LXR activation with endog-
enous or synthetic ligands depends largely on functional 
ABCG5/G8 expression[75]. Interestingly, also the increas-
ing effects of  cholate as well as diosgenin on biliary cho-
lesterol secretion depend on the functional expression of  
ABCG5/G8 and subsequently are not seen in mice lack-
ing either or both of  the transporters[74,76]. Notably, there 
are as yet ill-defined ABCG5/G8-independent pathways 
of  biliary cholesterol secretion[77] (see also below).

With relevance to atherosclerotic CVD, when human 
ABCG5/G8 transgenic mice overexpressing the transgene 
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in the liver as well as in the intestine were crossed into the 
atherosclerotic LDLR-/- genetic background, these mice 
developed significantly less atherosclerosis compared with 
wild-type controls[78]. On the other hand, only hepatic 
overexpression of  ABCG5/G8 does not alter atheroscle-
rosis in LDLR-/- as well as apoE-/- mice[79], unless intestinal 
cholesterol absorption is also reduced by ezetimibe[80]. 
With relevance to gallstone disease, recently specific muta-
tions in ABCG5/G8, namely ABCG5 R50C and ABCG8 
D19H, have been identified in humans and shown to in-
crease the risk for cholesterol gallstone disease[81-83]. Since 
the role of  ABCG5/G8 is to increase biliary cholesterol 
secretion, and cholesterol gallstone formation requires in-
creased amounts of  cholesterol within bile, these respec-
tive mutations are likely to constitute a gain-of-function 
phenotype. However, since these association data were 
obtained in human studies, this concept still requires veri-
fication in an experimental setting that allows determina-
tion of  cause-effect relationships.

Although several studies have shown that the ABCG5/
G8 heterodimer is a key component of  biliary cholesterol 
secretion[70,71], the molecular mechanism by which this 
transporter pair mediates biliary cholesterol secretion at 
the canalicular membrane has not been yet elucidated. 
This lack of  insight is mainly due to the unavailability of  
easy to study model systems such as polarized hepatocyte 
cell lines, or simple and reliable methods to isolate and 
characterize pure apical and basolateral membranes. How-
ever, the currently most accepted model suggests that 
ABCG5/ABCG8 act as a liftase elevating cholesterol just 
sufficiently outside of  the outer leaflet of  the canalicular 
membrane to be extracted by mixed micelles[84]. 

Niemann-Pick C1-like protein 1
The Niemann-Pick C1-like protein 1 (NPC1L1) was origi-
nally identified as a key regulator of  intestinal cholesterol 
absorption and the molecular target of  the cholesterol ab-
sorption inhibitor ezetimibe[85,86]. It is also highly expressed 
in human liver, but not in rodents[87]. In human hepatocytes, 
NPC1L1 is localized to the canalicular membrane[88]. Simi-
lar to its role in the intestine, hepatic NPC1L1 apparently 
facilitates the uptake of  newly secreted biliary cholesterol[89]. 
In NPC1L1 transgenic mice with hepatic overexpression of  
the transgene, a more than 90% decrease in biliary choles-
terol concentration is observed without any effect on biliary 
phospholipid and bile acid levels. Interestingly, treatment 
with ezetimibe normalizes biliary cholesterol concentrations 
in hNPC1L1 transgenic animals[89]. Therefore, particularly 
in humans, ezetimibe supposedly reduces plasma choles-
terol levels by inhibiting both intestinal as well as hepatic 
NPC1L1 activity. However, the regulation of  this important 
cholesterol transporter and modifier of  hepatic cholesterol 
secretion is still incompletely understood.

SR-BI
SR-BI has been characterized as a receptor for HDL cho-
lesterol, mediating bi-directional cholesterol flux, either 

efflux or selective uptake, depending on concentration 
gradients[90,91]. In contrast to ABC transporters, SR-BI 
apparently requires no energy consumption[91]. SR-BI is 
mainly expressed in the liver and in steroidogenic tis-
sue[90,91]. In hepatocytes, SR-BI mediates the internaliza-
tion of  HDL cholesterol without the concomitant catabo-
lism of  HDL apolipoproteins[90,91]. SR-BI is detectable in 
hepatocytes in vivo at both the basolateral as well as the 
apical membrane[92,93]. Since HDL-derived cholesterol is a 
major source of  sterols designated for biliary secretion[15], 
these properties of  SR-BI suggest a potential involvement 
in biliary cholesterol secretion.

Cholesterol uptake from HDL via SR-BI can be in-
creased in 2 different ways, by modulating the properties 
of  the ligand, namely HDL, as well as by changing the 
expression level of  SR-BI. HDL modification by phos-
pholipases decreases its phospholipid content, destabilizes 
the particle and makes the HDL cholesterol ester more 
susceptible towards SR-BI-mediated selective uptake[94-97]. 
Overexpression of  2 phospholipases relevant for human 
physiology in mice, namely group IIA secretory phospho-
lipase A2 (sPLA2)[98,99] and endothelial lipase (EL)[95,97,100] 
has 2 major metabolic effects: (1) in plasma, HDL cho-
lesterol levels decrease significantly, and (2) hepatic cho-
lesterol levels increase[94,101]. While SR-BI expression or 
membrane localization[94,101] was not affected, consecutive 
in vitro studies showed that SR-BI-mediated selective up-
take from sPLA2- or EL-modified HDL was increased by 
77%[94] and 129%[97], respectively, explaining the increased 
hepatic cholesterol uptake rates. However, despite this in-
creased SR-BI-mediated hepatic cholesterol uptake, biliary 
cholesterol secretion in sPLA2 transgenic mice or mice 
with adenovirus-mediated EL overexpression was essen-
tially unchanged compared with controls[94,101]. As a third 
example, the absence of  hepatic lipase also did not affect 
biliary cholesterol secretion, although in this study actual 
SR-BI-mediated uptake of  HDL cholesterol was not 
quantified[102]. Overall, these data demonstrate that biliary 
cholesterol secretion remains unaltered when only the li-
gand, HDL, but not SR-BI expression itself  is modulated. 

In contrast, changes in the hepatic expression level of  
SR-BI directly translate into altered biliary cholesterol se-
cretion rates. SR-BI knockout mice have biliary cholesterol 
secretion rates reduced by 55%[103]. Consistent with these 
data, adenovirus-mediated SR-BI overexpression in the 
liver of  wild-type mice increases gallbladder cholesterol 
content[92] as well as biliary cholesterol secretion rates[93]. 
Interestingly, with relevance to disease, hepatic SR-BI 
overexpression increases reverse cholesterol transport[104] 
and is protective against atherosclerotic CVD, even 
though plasma HDL cholesterol levels are decreased[105,106]. 
In gallstone-susceptible mice, hepatic SR-BI expression 
was higher and associated with biliary cholesterol hyperse-
cretion[107]. In addition, hepatic mRNA as well as protein 
expression of  SR-BI was higher in Chinese patients with 
cholesterol gallstone disease compared with controls and 
even correlated with an increased cholesterol saturation 
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index[108] suggesting that the link between SR-BI and bili-
ary cholesterol secretion might be relevant for human 
pathophysiology as well. In this study, increased expres-
sion of  LXRα was also noted in the livers of  gallstone pa-
tients[108], and previous experimental work suggested that 
modulation of  SR-BI expression results in altered expres-
sion of  LXR target genes[109].

However, increased biliary cholesterol secretion in re-
sponse to SR-BI overexpression was completely indepen-
dent of  LXR as evidenced by the use of  knockout mice[93]. 
Surprisingly, this biological effect was also independent of  
functional expression of  ABCG5/G8, since in ABCG5 
knockout mice hepatic overexpression of  SR-BI increased 
biliary cholesterol secretion rates to the levels of  wild-type 
control mice and thereby normalized the cholesterol secre-
tion deficit caused by absent ABCG5 expression[93]. To a 
certain extent canalicular SR-BI also acts independent of  
ABCB4, since hepatic overexpression of  SR-BI in ABCB4 
knockout mice resulted in significantly higher biliary cho-
lesterol secretion, although in terms of  mass secretion 
this effect was minor, indicating that cholesterol secreted 
via SR-BI still requires mixed micelles as acceptors[93]. In-
terestingly, SR-BI overexpression particularly augmented 
canalicular expression of  the receptor[93]. Since, in SR-BI 
overexpression conditions, increased canalicular SR-BI 
localization was associated with an increased cholesterol 
content of  the canalicular membrane and higher biliary 
cholesterol secretion rates[93], conceivably this biological ef-
fect was mediated by SR-BI. SR-BI requires a cholesterol 
gradient for transport[91], which is, however, constantly 
provided within the canaliculus by the direction of  bile 
flow and the associated transport of  cholesterol away from 
the hepatocyte. It would be interesting and physiologi-
cally relevant to explore whether SR-BI also contributes 
a significant part to the ABCG5/G8-independent biliary 
cholesterol secretion under steady-state conditions and not 
only has an effect in response to overexpression.

It is presently unclear how cholesterol secreted by SR-
BI into the bile reaches the canalicular membrane. One 
possibility could be that SR-BI itself  mediates this trans-
port, since a transcytotic route of  trafficking from the 
basolateral to the apical membrane has been proposed 
for SR-BI in a process that is dependent on microtubuli 
function[110]. However, even under conditions when mi-
crotubuli function and thereby transcytotic transport were 
efficiently abolished in vivo, SR-BI overexpression still sig-
nificantly increased biliary cholesterol secretion[93]. These 
data indicate that microtubuli function is not required for 
the increasing effect of  SR-BI on biliary cholesterol secre-
tion. Other, as yet not characterized pathways, are there-
fore likely to contribute.

WHAT DIRECTIONS SHOULD FUTURE 
RESEARCH TAKE?
In our view, there are a number of  interesting and relevant 
questions that are unresolved and should be addressed by 
future research in the field. The contribution of  SR-BI to 

the ABCG5/G8-independent biliary cholesterol secre-
tion under steady-state conditions would be important to 
know. Related to this, but also extending beyond SR-BI, 
more work appears to be required to identify and delineate 
the intracellular pathways for cholesterol transport that 
contribute to biliary cholesterol secretion. In addition to 
the selective uptake pathway for HDL cholesterol that is 
mediated by SR-BI, a holoparticle uptake pathway has also 
been characterized that is responsible for approximately 
a quarter of  the total HDL cholesterol taken up into the 
liver[97,111-114]. However, whether this pathway contributes 
cholesterol for biliary secretion is currently unknown. Ex-
panding this question, there also appears to be scope for 
assessing the differential contribution of  apoB-containing 
lipoproteins vs HDL in bile acid synthesis and the respec-
tive biliary secretion of  cholesterol and bile acids. Further 
research on these pathways would not only be relevant to 
increase our mechanistic insights into pathophysiology but 
also to define and characterize potential novel therapeutic 
targets for the treatment of  atherosclerotic CVD and cho-
lesterol gallstone disease.

CONCLUSION
Biliary cholesterol secretion is important for 2 major 
disease complexes, atherosclerotic CVD and cholesterol 
gallstone disease. Research thus far has provided valuable 
understanding of  the regulation of  biliary cholesterol se-
cretion. With the identification of  the ABC transporters 
mediating the biliary secretion of  bile acids (ABCB11), 
phospholipids (ABCB4) and cholesterol (ABCG5/G8) 
the major transport proteins for the respective physi-
ological processes have been delineated. However, more 
recently a number of  proteins that modulate or mediate 
biliary cholesterol secretion such as the phosphatidylserine 
flippase ATP8B1, NPC1L1 and SR-BI have gained atten-
tion. Although several proteins are currently known that 
impact biliary cholesterol secretion, further research into 
the mechanisms determining their respective activities as 
well as the routes of  intrahepatic cholesterol trafficking 
and the regulation of  hepatic cholesterol pools is required.
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