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Equations of the optimized-effective-potential method in a basis set representation are solved with the use of the
incomplete Cholesky decomposition technique. The resulting local potential is expanded in terms of the products
of occupied and virtual Kohn-Sham orbitals thus avoiding the use of auxiliary basis sets. It is demonstrated that,
for a sufficiently large orbital basis set satisfying the condition of linear dependence of these products, stable and
numerically accurate solutions of the OEP method can be obtained with the use of the suggested computational
approach.
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I. INTRODUCTION

Orbital-dependent functionals in density functional theory
(DFT) [1] provide seamless connection with wave function
theory thus showing great promise regarding systematic and
controllable improvement of the accuracy of the Kohn-Sham
(KS) DFT method [2,3]. Treatment of orbital-dependent
functionals in DFT requires the use of the optimized effective
potential (OEP) technique for obtaining a local multiplicative
Kohn-Sham potential [4–20]. In the OEP formalism, variation
of the total energy functional is carried out with respect to a
local multiplicative KS potential that under assumption of a
fixed particle number is equivalent to the Hohenberg-Kohn
variational principle [3]. Using the exchange-only energy
functional the variation leads to an integral equation [4] that,
in real space, possesses a unique and well-defined solution for
atoms and molecules [5–7]. However, the use of finite basis
sets of localized functions in the OEP method leads to a non-
uniqueness of the solutions and, for the exchange-only case
(xOEP), a collapse of the xOEP energies to the Hartree-Fock
(HF) energies is possible [15,18]. In Ref. [18], it has been
shown that a faithful solution of the OEP or xOEP equations
can only be obtained with the use of a finite basis set that
guarantees linear dependence of the set of products of occupied
times unoccupied KS orbitals.

Currently, the popular implementation of the OEP
method employs two basis sets whereby an orbital basis set is
used to expand the KS orbitals and an auxiliary basis set is used
for the optimized potential [13,16]. Because a straightforward
use of finite basis sets in OEP leads to an ill-conditioned linear
algebraic problem [8,9,19], there were suggested various ways
to circumvent it by using regularization techniques [19] or by
designing the auxiliary basis set in a balanced way with respect
to the orbital basis set [16]. Practical utility of these approaches
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however depends critically on the choice of regularization
technique and its pertinent parameters [19] or on the choice
of auxiliary basis set thus hard-wired into the computational
scheme [16]. It is therefore desirable to formulate the OEP
method in such a way that stable and accurate solutions
can be found for any meaningful orbital basis set without
using external conditions or parameters. Such a computational
scheme will be of great practical use, because it will enable one
to employ orbital-dependent density functionals on a regular
basis.

In this work, we will demonstrate that with the use of the
incomplete Cholesky decomposition (ICD) technique [21] the
OEP equations can be solved in an arbitrary orbital basis set
satisfying the condition of linear dependence of the products
of occupied and virtual KS orbitals. No auxiliary basis set
for expansion of the potential is employed. An arbitrarily
small positive number can be chosen as the threshold δ for
discriminating linearly dependent from linearly independent
orbital products in the ICD method. Thus, the orbital basis
set remains the only degree of freedom in setting up an OEP
calculation and, with the basis sets of increased size, the xOEP
total and orbital energies converge to the exact values.

II. THEORY

The OEP equations in basis set representation can be
derived from direct minimization of the energy functional with
respect to the local potential [18–20]. In this derivation, one
necessarily starts with expanding the exchange-correlation part
of the optimized potential

V σ
xc(r) =

∑
µ

fµσ (r)w̃µσ , (1)

in terms of a suitable set of expansion functions [11,13,16–19],
where w̃µσ are the expansion coefficients and σ stands for
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spin. It is convenient to define these functions via Eq. (2)
[8,11,17,20],

fµσ (r) =
∫

gµσ (r′)
1

|r − r′|dr′, (2)

where gµσ are square integrable functions. Note that the
expansion functions fµσ are not necessarily square inte-
grable, because the local KS potential does not possess this
property. The correct asymptotic behavior of the optimized
potential [14,22] is fixed by requiring that the condition
〈φHOMO|V xc

σ − V̂ xc,nl
σ |φHOMO〉 = 0 is fulfilled for the highest

occupied molecular orbital (HOMO) of the system [23],
where the nonlocal exchange-correlation operator is defined as
δExc[{φqσ }]

δφpσ (r′) = V̂ xc,nl
σ φpσ (r′) with Exc[{φqσ }] being the orbital-

dependent exchange-correlation energy (the Hartree-Fock
exchange energy in the exchange-only case). Here and below
we use indices i,j, . . . for occupied orbitals, a,b, . . . for virtual
orbitals, and p,q, . . . for general (occupied or virtual) orbitals.

Requiring the stationarity of the total energy with respect
to the local potential V σ (r) = Vext(r) + ∫

ρ(r′)
|r−r′|dr′ + V σ

xc(r),
where Vext(r) is the external potential and the second term
is the Coulomb potential of the electron density, is then
equivalent to finding a minimum of EOEP with respect to
the expansion coefficients w̃µσ . Assuming a real orbital
basis and using the definition of the scalar product, (f |g) ≡∫

f (r) 1
|r−r′|g(r′) dr dr′, the minimization of EOEP leads to the

condition (3):

∂EOEP

∂w̃µσ

= 2
∑
ia

∫
φiσ (r′)

[
V xc

σ (r′) − V̂ xc,nl
σ

]

×φaσ (r′)dr′ (gµσ |φaσφiσ )

εaσ − εiσ

= 0, (3)

where the KS orbitals φpσ are the solutions of one-electron
equations [− 1

2∇2 + V σ (r)]φpσ (r) = εpσ φpσ (r). Introducing
the matrix Mµ,ia = (gµσ |φaσφiσ )/

√
εaσ − εiσ and the vector

wnl
ia = ∫

φiσ (r)V̂ xc,nl
σ φaσ (r)dr/

√
εaσ − εiσ , Eq. (3) can be

written in matrix form as [20]

∇ŵEOEP = 2MM†w̃ − 2Mwnl = 0 , (4)

where w̃ is the vector of the expansion coefficients. Of
note, Eqs. (3) and (4) are projections of the OEP equations∑occ

i ψ[V xc
σ ; r]φi(r) = 0 [14,23] onto the set of functions gµσ

where the aforementioned definition of the scalar product is
used.

In this work, we employ the products of the occupied
and virtual KS orbitals as a natural expansion basis gµσ =
φjσφbσ /

√
εbσ − εjσ in Eqs. (1) and (2) [8,12,17,20]. With

this choice, the matrix elements Mµ,ia reduce to the two-
electron integrals over the KS orbitals divided by the orbital
energy differences. Because the φjσφbσ products do not yield
potentials fµσ with the “monopole” asymptotic decay, a
function that yields −1/r asymptote should be included into
the expansion set, for example a g(r) = 1

N
ρ(r) function that

leads to the Fermi-Amaldi potential. Note that this choice of
the potential expansion functions differs from the commonly
adopted expansion of the OEP in terms of an auxiliary basis
set [13,16,19]. Because the products of the occupied and virtual
KS orbitals should be linearly dependent [18], the matrix MM†

becomes singular and Eq. (4) cannot be solved by matrix
inversion. Following the argument by Harriman [24,25], only
the linearly independent functions fµσ (r) [or gµσ (r)] span
the kernel space of a local multiplicative operator and can
be used in the expansion of the OEP. The linearly dependent
functions, which correspond to zero (or near zero, in finite
accuracy arithmetics) eigenvalues of the metric matrix M,
span the null space and do not contribute to the expansion of
a local operator [17,18,24,25]. In principle, the singular value
decomposition (SVD) technique, or regularized SVD, [19]
can discriminate the kernel space and the null space of a
local operator. However, with the above choice of the gµσ

basis, this makes it necessary to diagonalize a matrix of very
large dimension. A more economic and numerically stable tool
is provided by the ICD method [20,21,26], which is related
to a partial Gram-Schmidt orthogonalization in which every
vector linearly dependent with the already orthogonalized
subspace of vectors is skipped [20,21,26]. ICD is capable
of on-the-fly exclusion of linearly dependent eigenvectors
from the expansion space of a singular positive semi-definite
matrix A via considering only diagonal elements of the lower
triangular Cholesky matrix L, A = LL† [20,21,26]. Provided
that a diagonal matrix element is below a threshold δ, the
corresponding column-vector in L is neglected. The use of
ICD for solving equations (4) should lead to substantial com-
putational savings, because only a limited number (<Nocc ×
Nvirt) of the eigenvectors of M contribute to the expansion
of the OEP Eq. (1) [20]. In practical applications of the
method, this number shows near-linear scaling with the system
size [20].
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FIG. 1. (Color online) Deviations ��E = [ExOEP(ICD) −
EHF)] − [ExOEP(NUM) − EHF(NUM)] of the xOEP–HF energy dif-
ferences for neon (upper panel) and CO (lower panel) from the
numeric xOEP–HF energy differences as a function of the ICD
threshold δ. Red curves (shown with diamonds in top panel and
left-pointing arrows in bottom panel) give the number of expan-
sion functions as a function of δ. The total number of totally
symmetric occupied-virtual orbital products is given with dashed
lines.
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TABLE I. Total xOEP and HF energies of atoms and diatomic molecules (in hartree units) obtained with basis sets of varying size in
comparison with the accurate numeric values.

Basis set xOEP(NUM)a xOEPb HFb HF(NUM)c xOEPd HFd

Be cc-pVTZ −14.572 39 −14.572 87
cc-pVQZ −14.572 46 −14.572 97
cc-pV5Z −14.572 54 −14.572 43 −14.573 01 −14.573 02

Ne aug-cc-pVQZ −128.542 51 −128.543 75 −128.542 44 −128.544 13
aug-cc-pV5Z −128.545 28 −128.546 79 −128.545 11 −128.546 79
aug-cc-pV6Z −128.545 53 −128.545 46 −128.547 06 −128.547 10 −128.545 38 −128.547 06

Mg cc-pVTZ −199.610 67 −199.613 35
cc-pVQZ −199.611 61 −199.614 23
cc-pV5Z −199.611 63 −199.611 61 −199.614 61 −199.614 64

Ar aug-cc-pVQZ −526.812 16 −526.816 81
aug-cc-pV5Z −526.812 29 −526.817 35
aug-cc-pV6Z −526.812 34 −526.812 51 −526.817 49 −526.817 51

Kr aug-cc-pVTZ −2752.041 65 −2752.052 23
aug-cc-pVQZ −2752.043 58 −2752.054 72
aug-cc-pV5Z −2752.043 03 −2752.043 23 −2752.054 92 −2752.05498

LiH cc-pVTZ −7.986 71 −7.986 96
cc-pVQZ −7.986 99 −7.987 22
cc-pV5Z −7.986 91 −7.987 97 −7.987 33

Li2 cc-pVTZ −14.870 81 −14.871 44
cc-pVQZ −14.870 83 −14.871 49
cc-pV5Z −14.870 76 −14.870 80 −14.871 55

BH aug-cc-pVQZ −25.129 76 −25.131 34
aug-cc-pV5Z −25.129 75 −25.131 56
aug-cc-pV6Z −25.129 63 −25.129 67 −25.131 59

CO aug-cc-pVQZ −112.784 19 −112.789 10 −112.783 55 −112.789 32
aug-cc-pV5Z −112.785 34 −112.790 69 −112.784 91 −112.790 71
aug-cc-pV6Z −112.785(3)e −112.785 36 −112.790 87 −112.790 91

aAccurate real space values from Refs. [6] and [7].
bThis work.
cAccurate real space values from Refs. [30] and [31].
dCited from Hesselmann et al. [16].
eThe first unconverged digit is given in parentheses.

III. RESULTS AND DISCUSSION

The described equations were implemented in the MOL-
PRO2008.2 suite of programs [27] and solutions of the OEP
equations (4) in exchange-only approximation (xOEP) were
obtained for a number of atoms and molecules using the
standard basis sets. To guarantee linear dependence of the
products of occupied and virtual KS orbitals, the correlation-
consistent valence-polarized basis sets of Dunning [28] were
used in an un-contracted form. First, the dependence of the
xOEP atomic and molecular energies on the choice of the
threshold δ in ICD was investigated. In these calculations,
the largest available basis sets were used, that is cc-pV6Z or
cc-pV5Z, if the former were not available.

Figure 1 shows the deviations ��E = [ExOEP(ICD) −
EHF] − [ExOEP(NUM) − EHF(NUM)] of the so-obtained
xOEP–HF energy differences from the accurate numeric
values for neon [6] and carbon monoxide [7] and the number
of the xOEP expansion functions N as a function of the
threshold δ. For large values of δ, the expansion space of the
xOEP is rather small thus leading to relatively large (within
a few millihartrees) deviations ��E = [ExOEP(ICD) −
EHF] − [ExOEP(NUM) − EHF(NUM)] from the target numeric
xOEP–HF energy differences. Decreasing the value of δ leads

to extension of the xOEP expansion space and to a much
better (within 10–100 µhartree) agreement with the numeric
xOEP energies (see also Table I). Furthermore, the deviations
remain (nearly) constant when δ is varied between 10−6

and 10−20. Beyond the latter value provided that ε � 0 no
noticeable variation of the xOEP energy was obtained in our
calculations. Thus, the ICD procedure applied to Eq. (4) yields
numerically stable solutions of the xOEP equation (4) with the
energy in a very good agreement with the accurate real space
methods [6,7].

For neon and CO, the obtained optimized exchange
potentials are plotted in Figs. 2 and 3. Comparison with
the exact exchange potential for neon [29] shows that the
ICD–xOEP method yields a smooth potential that shows only
tiny deviations from the exact curve. For carbon monoxide,
the exact exchange potential could not be found in the
literature and a comparison was not possible. However, the
calculated xOEP (see Fig. 3) does not show the unphysical
wiggles reported by Staroverov et al. [15] and is in a
good agreement with the exchange potential obtained by
Hessellmann et al. [16] with the use of auxiliary basis
set.

The atomic and molecular xOEP total energies calculated
with the ICD threshold δ = 10−10 are collected in Table I for
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FIG. 2. (Color online) Exchange potential for Ne from the exact
real space calculations (solid line) [29] and from the ICD–xOEP
calculations (dashed line).

basis sets of varying size. For comparison, Table I also gives the
xOEP energies obtained by Hesselmann et al. [16] with the use
of balanced auxiliary basis sets. Note that the orbital basis sets
used by Hesselmann et al. are augmented with a few extra basis
functions and this leads to certain deviation from the total HF
(and xOEP) energies obtained in the present work with the use
of standard orbital basis sets. The results in Table I show that
the accurate numeric xOEP energies are gradually approached
with the basis sets of increasing size. Because the value of the
ICD threshold δ is chosen such that it does not affect the xOEP
energies, the basis set remains the only variable parameter in
our xOEP calculations. Note that the xOEP energies reported
in Table I are noticeably different from the HF energies. This
demonstrates that, in the case of linearly dependent products

V
 (

a.
u.

)
x

z (a.u.)

y (a
.u.)

C
O

FIG. 3. (Color online) Exchange potential for CO from the ICD–
xOEP calculation. The molecule is oriented along the z axis and the
potential is plotted in the yz-plane. Positions of the atoms are shown
with arrows.

of the occupied and virtual orbitals, there is no one-to-one
mapping between densities and density matrices, i.e., many
different density matrices can lead to the same density [24].
Thus these results confirm the conclusion of Görling et al.
[18] that only the orbital basis sets that provide the linear
dependence of the products of occupied and virtual KS orbitals
can be used in the OEP calculations.

To demonstrate the utility of the suggested technique in
the calculation of bigger molecules, a number of polyatomic
molecules were calculated with the basis sets of varying size.
With the increasing size of the basis set, the ICD–xOEP
energies reported in Table II gradually converge to a limiting

TABLE II. Total xOEP and HF energies (in hartree units) and xOEP–HF energy differences (in millihartrees) of polyatomic molecules
obtained with basis sets of varying size.

Basis set xOEPa HFa �Ea xOEPb HFb �Eb

NH3
c aug-cc-pVQZ −56.221 58 −56.224 02 2.44

aug-cc-pV5Z −56.222 26 −56.224 88 2.62
aug-cc-pV6Z −56.222 28 −56.224 98 2.70

H2Oc cc-pVQZ −76.063 92 −76.066 01 2.09 −76.063 61 −76.066 13 2.52
cc-pV5Z −76.064 96 −76.067 31 2.35 −76.064 78 −76.067 31 2.53
cc-pV6Z −76.065 02 −76.067 44 2.42

C2H2
c aug-cc-pVQZ −76.850 43 −76.854 65 4.22 −76.850 02 −76.854 72 4.70

aug-cc-pV5Z −76.851 14 −76.855 57 4.43 −76.850 88 −76.855 73 4.85
aug-cc-pV6Z −76.851 11 −76.855 68 4.57

C6H6
d cc-pVTZ −230.766 54 −230.779 79 13.25 −230.766 75e −230.782 76e 16.01e

cc-pVQZ −230.776 34 −230.793 37 17.03
cc-pV5Z −230.778 20 −230.796 55 18.35

C5H5Nf cc-pVTZ −246.763 21 −246.777 39 14.18
cc-pVQZ −246.774 46 −246.792 44 17.98
cc-pV5Z −246.776 53 −246.795 86 19.33

aThis work.
bTaken from Ref. [16] unless noted otherwise.
cGeometry is taken from Ref. [16].
dExperimental geometry from Ref. [33] is used.
eTaken from Ref. [32]. Note that the HF optimized geometry was used in this work.
fGeometry optimized with MP2/cc-pVTZ method is taken from Ref. [33].
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TABLE III. xOEP and HF orbital energies of Ne, diatomic molecules, and pyridine (in hartree units). The uncontracted aug-cc-pV6Z
(cc-pV5Z) basis set is used unless noted otherwise. The experimental ionization potentials are given in the last column for comparison.

System orbital xOEP(NUM)a xOEPb xOEPc HFb −IP(exp.)

Ned 1s −30.820 0 −30.820 6 −30.820 0 −32.772 4
2s −1.718 1 −1.718 5 −1.718 1 −1.930 4
2p −0.850 7 −0.850 7 −0.850 7 −0.850 4
3s −0.192 2 −0.188 0 −0.197 1 0.047 5
3p −0.114 2 −0.110 4 −0.122 6 0.046 4

LiH 1σ −2.069(4)e −2.066 4 −2.445 2
2σ −0.301 5(9) −0.301 6 −0.301 7
3σ −0.158 1 −0.003 9
1π −0.126 9 0.028 0

Li2 1σg −2.01(3) −2.003 8 −2.453 1
1σu −2.01(3) −2.003 5 −2.452 8
2σg −0.181 8(3) −0.181 8 −0.181 9
2σu −0.125 8 0.0049
1πu −0.113 6 0.023 1

BH 1σ −6.812 6(5) −6.809 8 −7.686 2
2σ −0.577(4) −0.576 7 −0.648 1
3σ −0.347 29(7) −0.347 1 −0.348 4
1π −0.247 8 0.033 4
4σ −0.089 2 0.096 9

CO 1σ −19.066 6 −20.664 5 −19.934f

2σ −10.235 3 −11.360 0 −10.879
3σ −1.330 8 −1.521 5 −1.407 5g

4σ −0.757 6 −0.804 5 −0.724 7
1π −0.661 2 −0.640 3 −0.621 4
5σ −0.553 2 −0.553 −0.554 9 −0.514 9
2π −0.267 0 −0.269 0.100 7

C5H5N 2b1 −0.373 5 −0.384 5 −0.373 0h

11a1 −0.349 5 −0.420 1 −0.359 4
1a2 −0.348 6 −0.348 2 −0.346 9
3b1 −0.166 0 +0.096 8

aAccurate real space values from Refs. [6] and [7].
bThis work.
cCited from Hesselmann et al. [16].
dThe uncontracted aug-cc-pV6Z basis set augmented with a single set of diffuse functions as suggested by Hesselmann et al. [16] is used in
this calculation.
eThe first unconverged digit is given in parentheses.
fThe experimental ionization potentials are taken from Ref. [34].
gThe experimental ionization potentials are taken from Ref. [35].
hThe experimental ionization potentials are taken from Ref. [36].

value. The �E = [ExOEP(ICD) − EHF] energy differences
increase with the basis set size thus confirming the conclusion
that linear dependencies of the occupied-virtual products play
a crucial role for obtaining the faithful solutions of the OEP
equations in finite basis sets. It is gratifying that the total xOEP
energies and xOEP–HF energy differences obtained in this
work with the use of large basis sets are in a good agreement
with the results of alternative implementation of the finite basis
set OEP method [16].

The orbital energies of Ne atom, diatomic molecules
and pyridine obtained in the present xOEP calculations are
collected in Table III and compared to the xOEP energies
obtained in the real space calculations [6,7], to the results from
Hesselmann et al. [16], to the Hartree-Fock orbital energies and
to the available experimental ionization potentials. The orbital

energies obtained in the present xOEP calculations are in a
very good agreement with the results of real space calculations
which demonstrates that the exchange potentials obtained in
the present work accurately reproduce the shape of the exact
real space potentials (see also Fig. 2). Similar to the total xOEP
energies, the orbital energies show almost no sensitivity to the
choice of the ICD threshold δ which demonstrates the numeric
stability of the method. It is noteworthy that the energies of
frontier orbitals of pyridine are in a very good agreement with
the experimental ionization potentials. Furthermore, the order-
ing of the 11a1 (nitrogen lone pair) and 2b1 (π -type) orbitals is
correctly reproduced by the ICD–xOEP method whereas the
HF method yields a wrong ordering of these orbital energies as
can be judged from comparison with the experiment. Because
the expectation values of the Fock operator calculated over the
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xOEP orbitals are very close to the HF orbital energies, it is
the optimized exchange potential that accounts for the correct
ordering of occupied orbitals in pyridine.

IV. CONCLUSIONS

In conclusion, solutions of the exchange-only OEP method
in finite basis set representation are obtained with the use
of the incomplete Cholesky decomposition technique. For
the first time, using the occupied-virtual orbital products as
an expansion basis, numerically stable and accurate xOEP

solutions are obtained in excellent agreement with the exact
real space solutions. The obtained xOEP energies show
almost no dependence on the ICD threshold δ employed
to discriminate the linearly independent expansion functions
(kernel space of the OEP) from the linearly dependent ones
(null space of the OEP) [24,25]. Thus the basis set used to
expand the KS orbitals remains the only external parameter in
the present implementation of the OEP method. This brings
the OEP method to equal ground with the standard methods of
wave function theory where the basis set size is the decisive
factor for obtaining accurate results.
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[16] A. Hesselmann, A. W. Götz, F. Della Sala, and A. Görling,

J. Chem. Phys. 127, 054102 (2007).
[17] C. Kollmar and M. Filatov, J. Chem. Phys. 127, 114104 (2007).
[18] A. Görling, A. Hesselmann, M. Jones, and M. Levy, J. Chem.

Phys. 128, 104104 (2008).
[19] T. Heaton-Burgess, F. A. Bulat, and W. Yang, Phys. Rev. Lett.

98, 256401 (2007).
[20] C. Kollmar and M. Filatov, J. Chem. Phys. 128, 064101 (2008).
[21] J. A. Meijerink and H. A. van der Vorst, Math. Comput. 31, 148

(1977).

[22] F. Della Sala and A. Görling, Phys. Rev. Lett. 89, 033003 (2002).
[23] F. Della Sala and A. Görling, J. Chem. Phys. 116, 5374 (2002).
[24] J. E. Harriman, Phys. Rev. A 34, 29 (1986).
[25] J. E. Harriman, Phys. Rev. A 27, 632 (1983).
[26] N. Beebe and J. Linderberg, Int. J. Quantum Chem. 12, 683

(1977).
[27] MOLPRO is a package of ab initio programs written by H.-J.

Werner and P. J. Knowles, with contributions from J. Almlöf,
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S. Blügel, and D. Marx (John von Neumann Institute for
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