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ABSTRACT
One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project
is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation
from the EoR. The sensitivity with which this power spectrum can be estimated depends on the
level of thermal noise and sample variance, and also on the systematic errors arising from the
extraction process, in particular from the subtraction of foreground contamination. We model
the extraction process using realistic simulations of the cosmological signal, the foregrounds
and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted
21-cm power spectrum. Detection of emission from the EoR should be possible within 360 h
of observation with a single station beam. Integrating for longer, and synthesizing multiple
station beams within the primary (tile) beam, then enables us to extract progressively more
accurate estimates of the power at a greater range of scales and redshifts. We discuss different
observational strategies which compromise between depth of observation, sky coverage and
frequency coverage. A plan in which lower frequencies receive a larger fraction of the time
appears to be promising. We also study the nature of the bias which foreground fitting errors
induce on the inferred power spectrum and discuss how to reduce and correct for this bias. The
angular and line-of-sight power spectra have different merits in this respect, and we suggest
considering them separately in the analysis of LOFAR data.

Key words: cosmology: theory – diffuse radiation – methods: statistical – radio lines: general.

1 IN T RO D U C T I O N

Studying 21-cm radiation from hydrogen at high redshifts
(Field 1958, 1959; Hogan & Rees 1979; Scott & Rees 1990;
Kumar, Subramanian & Padmanabhan 1995; Madau, Meiksin &
Rees 1997) promises to be interesting for several reasons. Fluctua-
tions in intensity are sourced partly by density fluctuations, measure-

�E-mail: geraint.harker@colorado.edu

ments of which may allow rather tight constraints on cosmological
parameters (Mao et al. 2008). They are also sourced by variations
in the temperature and ionized fraction of the gas, which means
that 21-cm studies may provide information on early sources of
ionization and heating, such as stars or mini-quasi-stellar objects.
The period during which the gas undergoes the transition from be-
ing largely neutral to largely ionized is known as the Epoch of
Reionization (EoR; e.g. Loeb & Barkana 2001; Benson et al. 2006;
Furlanetto, Oh & Briggs 2006), while the period beforehand is
sometimes known as the cosmic dark ages. While the latter has
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perhaps the best potential to give clean constraints on cosmology,
the instruments becoming available in the near future are not ex-
pected to be sensitive enough at the appropriate frequencies to
study this epoch interferometrically. Several, though, are hoped to
be able to study the EoR [e.g. Giant Metrewave Telescope (GMRT),1

Murchison Widefield Array (MWA),2 Low Frequency Array
(LOFAR),3 21 Centimeter Array (21CMA),4 Precision Array to
Probe the EoR (PAPER),5 Square Kilometre Array (SKA)6], but
even so, their sensitivity is not expected to be sufficient to make high
signal-to-noise ratio images of the 21-cm emission in the very near
future. We seek, instead, a statistical detection of a cosmological
21-cm signal, with the most widely studied statistic being the power
spectrum (e.g. Morales & Hewitt 2004; Barkana & Loeb 2005;
Bowman, Morales & Hewitt 2006, 2007; McQuinn et al. 2006;
Pritchard & Furlanetto 2007; Lidz et al. 2008; Pritchard & Loeb
2008; Sethi & Haiman 2008; Barkana 2009). Our aim in this paper
is to test how well the 21-cm power spectrum can be extracted from
data collected with LOFAR, which is currently under construction.
While this is a general-purpose observatory, the EoR project, be-
ing one of LOFAR’s Key Science Projects, has helped to drive
the design of the instrument. We give some details on the param-
eters of the instrument which are relevant to EoR observations in
Section 2.2.

The quality of extraction is affected by several factors: the ob-
servational strategy and the length of observations, which affect
the volume being studied and the level of thermal noise; the array
design and layout; the foregrounds from Galactic and extragalac-
tic sources, and the methods used to remove their influence from
the data (presumably by exploiting their assumed smoothness as
a function of frequency; see e.g. Shaver et al. 1999; Di Matteo
et al. 2002; Oh & Mack 2003; Zaldarriaga, Furlanetto & Hernquist
2004); excision of radio-frequency interference (RFI) and radio
recombination lines; and, for example, the quality of polarization
and total intensity calibration for instrumental and ionospheric ef-
fects. We will not study RFI or calibration here. We will, however,
use simulations of the cosmological signal (CS), the foregrounds,
the instrumental response and the noise to generate synthetic data
cubes – i.e. the intensity of 21-cm emission as a function of position
on the sky and observing frequency – and then attempt to extract the
21-cm power spectrum from these cubes. We generate data cubes
realistic enough so that we can test different observing strategies
and methods of subtracting the foregrounds and look at the effect
on the inferred power spectrum.

We devote the following section to describing the construction
of the data cubes and giving a brief description of their constituent
parts. Then, in Section 3 we discuss the extraction of the 21-cm
power spectrum from the cubes, including our method for subtract-
ing the foregrounds. In Section 4, we present our estimates of the
sensitivity of LOFAR to the 21-cm power spectrum and discuss the
character of the statistical and systematic errors on these estimates.
We conclude in Section 5 by offering some thoughts on what these
results suggest about the merits of different observing strategies and
extraction techniques.

1http://www.gmrt.ncra.tifr.res.in/
2http://www.haystack.mit.edu/ast/arrays/mwa/
3http://www.lofar.org/
4http://web.phys.cmu.edu/∼past/
5http://astro.berkeley.edu/∼dbacker/eor/
6http://www.skatelescope.org/

2 SI M U L AT I O N S

2.1 Cosmological signal and foregrounds

We test the quality and sensitivity of our power spectrum extraction
using synthetic LOFAR data cubes, which have various compo-
nents. The first is the redshifted 21-cm signal which is simulated
as described by Thomas et al. (2009). The starting point for this
is a dark matter simulation of 5123 particles in a cube with sides
of a comoving length of 200 h−1 Mpc. The sides thus have twice
the length of the simulations exhibited by Thomas et al. (2009)
and used in our previous work on LOFAR EoR signal extraction
(Harker et al. 2009a,b), allowing us to probe larger scales. The
assumed cosmological parameters are (�m, ��, �b, h, σ8, n) =
(0.238, 0.762, 0.0418, 0.73, 0.74, 0.951), where all the symbols have
their usual meaning. This leads to a minimum resolved halo mass
of around 3 × 1010 h−1 M�. Dark matter haloes are populated with
sources whose properties depend on some assumed model. For this
paper we assume the ‘quasar-type’ source model of Thomas et al.
(2009), which is better suited to this simulation than one assuming
stellar sources owing to the relatively low resolution, which raises
the minimum resolved halo mass. The topology and morphology
of reionization is different compared to a simulation with a stellar
source model, and the power spectrum is also slightly different. We
might expect quasar reionization to allow an easier detection than
stellar reionization, since the regions where the sources are found
are larger and more highly clustered, producing larger fluctuations
in the signal. This paper is concerned with the extraction of the
power in general, however, and the precise source properties are not
expected to affect our conclusions since the fitting appears to be
relatively unaffected by the difference in the source model (Harker
et al. 2009b).

Given the source properties, the pattern of ionization is computed
using a one-dimensional radiative transfer code (Thomas & Zaroubi
2008), which allows realizations to be generated very rapidly in
a large volume. If the spin temperature is sufficiently large, as
we assume here, the differential brightness temperature between
21-cm emission and the cosmic microwave background is given by
(Madau et al. 1997; Ciardi & Madau 2003)

δTb

mK
= 39 h(1 + δ)xH I

(
�b

0.042

) [(
0.24

�m

) (
1 + z

10

)] 1
2

, (1)

where δ is the matter density contrast, xH I is the neutral hy-
drogen fraction and the current value of the Hubble parameter,
H0 = 100 h km s−1 Mpc−1. The series of periodic simulation snap-
shots from different times is converted to a continuous observational
cube (position on the sky versus redshift or observational frequency)
using the scheme described by Thomas et al. (2009). In brief, the
emission in each snapshot is calculated in redshift space (i.e. tak-
ing into account velocities along the line of sight, which cause
redshift-space distortions). Then, at each observing frequency at
which an output is required, the signal is calculated by interpolat-
ing between the appropriate simulation boxes. We use frequencies
between 121.5 and 200 MHz, so we have a ‘frequency cube’ of a
size of 200 h−1Mpc × 200 h−1Mpc × 78.5MHz. To approximate
the field of view of a LOFAR station, however, we use a square
observing window of 5◦ × 5◦, which corresponds to comoving dis-
tances of around 600 h−1Mpc at the redshifts corresponding to EoR
observations. We therefore tile copies of the frequency cube in the
plane of the sky to fill this observing window and interpolate the
resulting data cube on to a grid with 256 × 256 × 158 points. This
simplified treatment of the field of view implicitly assumes that the
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Figure 1. The rms fluctuation in differential brightness temperature, calcu-
lated at the resolution of LOFAR, in our simulation of the CS is shown as a
function of redshift (solid line). For comparison, we show the rms noise for
an observing time of 600 h per frequency channel, scaled down by a factor
of 6 (dotted line). Note that the vertical axis scale does not start at zero.

station beam is equal to unity everywhere within a square window of
frequency-independent angular size and zero outside. Since we plan
to use only the top part of the primary beam for EoR measurements,
the sensitivity will vary relatively slowly across the field of view.
Our simulations of the CS restrict us to examining angular modes
much smaller than the size of the beam in any case, and so the main
effect of this simplification is to slightly decrease the overall level
of noise compared to a more accurate beam model. As we progress
to using larger simulations of the CS, which let us examine more
angular modes, the effects of the primary beam will become more
important and will be included in future work.

The rms variation in differential brightness temperature in each
slice of this data cube is shown as a function of redshift in Fig. 1.
This rms is calculated at the resolution of LOFAR, which will be
around 4 arcmin for EoR observations, depending on frequency.
Note that the rms fluctuation does not drop to zero by the low-
est redshift in this simulation, indicating that reionization is not
complete there. This delay in reionization comes about because the
source properties are the same as for our earlier, higher resolution
simulations, which contain more resolved haloes (i.e. the minimum
resolved halo mass is lower). The larger simulations therefore have
fewer sources per unit volume. Such late reionization appears un-
realistic given current observational constraints (e.g. Fan, Carilli &
Keating 2006, and references therein) and means that extracting the
power spectrum at low redshift may be more difficult in reality than
we would predict using these simulations. The most stringent test of
our power spectrum extraction occurs at higher redshift, however,
since this corresponds to lower observing frequencies at which the
noise (shown in Fig. 1) and the foregrounds are larger. The power
spectrum evolves less strongly at high redshift, and so we expect
this simulation to perform reasonably well there compared to high-
resolution simulations. It may even be slightly conservative, since
H II regions at high redshift may increase the strength of fluctuations
at some scales.

We use the foreground simulations of Jelić et al. (2008). These
incorporate contributions from Galactic diffuse synchrotron and
free–free emission, and supernova remnants. They also include un-
resolved extragalactic foregrounds from radio galaxies and radio
clusters. We assume, however, that point sources bright enough to
be distinguished from the background, either within the field of
view or outside it, have been removed perfectly from the data. Ob-
servations of foregrounds at 150 MHz at low latitude (Bernardi et al.
2009) indicate that these simulations fairly describe the properties
of the diffuse foregrounds.

2.2 Instrumental response

LOFAR is a radio interferometer which is planned to have fields of
antennas (stations) in several European countries. Its core, however,
is near the village of Exloo in the Netherlands, and it is the stations
in the core area (and perhaps some nearby ‘remote stations’) which
will be used for EoR observations. Each station contains two types
of antenna: low-band antennas (LBAs), optimized for 30–80 MHz,
and high-band antennas (HBAs), optimized for 120–240 MHz. The
LBAs will not be sensitive enough for redshifted 21-cm work,
so we will be concerned only with the HBAs. EoR observations
are expected to take place below approximately 190 MHz (above
z = 6.48).

To improve the uv coverage (at the expense of increasing the
workload of the supercomputer which acts as LOFAR’s correlator),
within each LOFAR core station the HBA antennas are distributed
into two semistations, each of which is then treated as an indepen-
dent station. The antennas are collected into tiles, each of which is
a grid of 4 × 4 dual dipoles. A semistation consists of 24 such tiles,
arranged in a filled circle. A remote station has all 48 of its HBA
tiles collected into a single circle. Each pair of stations provides us
with one baseline.

To include the effects of the instrumental response of LOFAR
we define a sampling function S(u, v) which describes how densely
the interferometer baselines sample Fourier space over the course
of an observation, such that 1/

√
S is proportional to the noise on

the measurement of the Fourier transform of the sky in each uv cell.
In general this sampling function is frequency-dependent, but we
examine the effect of this dependence by comparing to a situation
in which we assume that the uv coverage is the same at all frequen-
cies. This situation could be approximated in practice by not using
data at uv points for which there is no coverage at some frequen-
cies. This would involve discarding approximately 20 per cent of
the data (from the outer part of the uv plane at high frequencies
and from the inner part at low frequencies), increasing the level of
noise and reducing the resolution at high frequencies. Throughout
this paper, S(u, v) is computed under the assumption that 24 dual
stations in the core and the first ring of LOFAR are used to observe a
window at a declination of 90◦. We assume noise levels appropriate
to an observation at the zenith, however. The final LOFAR layout
is likely to include fewer dual stations, and EoR observations will
use some of the more central remote stations, but we will not inves-
tigate different configurations in this paper. The sampling function
and uv coverage at 150 MHz, at which the frequency-dependent
and frequency-independent sampling functions match, are shown
in Fig. 2. The uv tracks are for a 4-h observation. We summarize

u/λ

v/
λ

1000 500 0 500 1000

1000

500

0

500

1000

u/λ
1000 500 0 500 1000

Figure 2. Assumed uv coverage at 150 MHz (left-hand panel): black cells
are those containing at least one observation, i.e. those having S(u, v) > 0.
The right-hand panel shows the density of points in the uv plane, on a linear
grey-scale.
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Table 1. Parameters of our synthetic observations and assumed array layout.

Total effective area at 150 MHz 2.46 × 104 m2

Image noise for a 300 h observation 78 mK
with 1 MHz bandwidth at 150 MHz
Frequency coverage 121.5–200 MHz
Frequency channel width 0.5 MHz
Station beam field of view 5◦ × 5◦
Number of instantaneous baselines 48 × 47
Spatial resolution at 150 MHz ≈4 arcmin

some of the parameters of our simulated observations using this
array layout in Table 1.

To simulate our data in the uv plane, we perform a two-
dimensional Fourier transform on the image of the foregrounds
and signal at each frequency and multiply by a mask (the uv cover-
age) which is unity at grid points in Fourier space (uv cells), where
S(u, v) > 0, and is zero elsewhere. At this point, we add uncorre-
lated complex Gaussian noise with an rms proportional to 1/

√
S to

the cells within the mask. We can then return to the image plane by
performing an inverse two-dimensional Fourier transform at each
frequency. This two-dimensional Fourier relationship between the
uv and image plane only holds approximately for long integrations
with a LOFAR-type array, but we use it here since it allows con-
siderable simplification. The overall normalization of the level of
noise at each frequency is chosen to match the expected rms noise
of single-channel images. Part of the aim of this paper is to check
the effect of different levels of noise on power spectrum extraction.
For reference, we assume that 300 h of observation of one EoR
window with one synthesized beam with LOFAR will give noise
with an rms of 78 mK on an image using 1 MHz bandwidth at
150 MHz. Although this is a somewhat conservative choice, it off-
sets the assumption of a uniform primary beam within the field of
view we are considering, since a more realistic model for the pri-
mary beam would produce a noise rms that increased towards the
edge of the field of view. The level of noise varies with frequency,
being related to the system temperature which we assume to be
Tsys = 140 + 60(ν/300 MHz)−2.55 K.

A much more detailed account of the calculation of noise levels
and the effects of instrumental corruption for the LOFAR EoR
project may be found in Labropoulos et al. (2009).

3 EX T R AC T I O N

3.1 The problem of extraction

In this paper, the main limitation on the quality of power spectrum
extraction which we will consider is the subtraction of astrophysical
foregrounds. One difficulty encountered in this subtraction is simply
that the fluctuations in the foregrounds are much larger than those
in the CS: a subtraction algorithm must ensure that features due
to the signal are not mistaken for relatively tiny features in the
foregrounds. A second difficulty is the presence of noise, which
limits the accuracy and precision with which we are able to measure
the foregrounds and hence the accuracy with which we can subtract
them. The relative importance of these two effects changes with
scale, since the power spectra of the foregrounds, signal and noise
do not have the same shape.

Our foreground subtraction relies on the foregrounds being spec-
trally smooth, i.e. lacking small-scale features in the frequency
direction. Any small-scale features are put down to noise or signal.
Large-scale features due to the CS are more difficult to recover,

since they can easily be confused with foreground features. The dif-
ficulty of recovering the large-scale power is exacerbated because
the fluctuations in the foregrounds become larger compared to the
noise and the signal, making the problem of overfitting more severe.

At small scales, the noise is more of an issue: its power spectrum
becomes much larger compared to the foregrounds and signal, mak-
ing the latter impossible to pick out. The scale dependence of the
contaminants means that there is a ‘sweet spot’: a range of scales at
which both the foregrounds and the noise are small enough relative
to the CS for the prospects for signal extraction to be good.

This fact has implications for choosing an observational strategy
for the LOFAR EoR experiment, because we must trade off the
depth of observation against sky and frequency coverage. A deep
observation of a small area allows foreground fits of higher quality
and is especially beneficial for the recovery of small-scale power. It
limits the size and number of modes that we can sample, however,
which is especially damaging for the errors on the recovered large-
scale power. Conversely, increasing the size of the area surveyed
beats down sample variance and may allow us to probe larger scales,
though note that in the case of radio interferometry the length of
the shortest baselines sets an upper limit on the size of the available
modes. This increase in area is only useful, however, if the noise
levels are low enough to allow foreground fitting to take place.

Examining this trade-off is one of the aims of this work. Before
doing so, we first outline the procedures we have used to fit the
foregrounds.

3.2 Fitting procedure

As we mentioned in Section 2, we consider both the case in which
the uv coverage of the observations depends on observing frequency
and the idealized case in which it does not. For the latter, we always
fit the foregrounds in the image-space frequency cube using the
Wp smoothing method (Mächler 1993, 1995) described in detail in
Harker et al. (2009b) and summarized in Section 3.2.1. This method
requires the specification of a parameter, λ, which governs the level
of regularization: larger values impose a smoother solution. We use
λ = 0.5 for our image-space fitting, since we found this to work
well for extracting the rms (Harker et al. 2009b). Before fitting, we
reduce the resolution of the images, combining blocks of 4×4 pixels
together to generate a 64 × 64 × 158 data cube. Since the unbinned
pixels are smaller than a resolution element of LOFAR (the binned
pixels are slightly larger), and since the relative contribution of the
noise increases at small scales, this does not discard spatial scales
at which we can usefully extract information, but does increase the
quality of the fit, reducing bias.

When the uv coverage is frequency-dependent, however, fitting
in image space becomes problematic, since spatial fluctuations are
converted to fluctuations in the frequency direction, as illustrated
by, for example, Bowman, Morales & Hewitt (2009) and Liu et al.
(2009). Instead, we leave the data cube in Fourier space [or, to
be more precise, (u, v, ν)-space, since we do not transform along
the frequency direction] and fit the foregrounds as a function of
frequency at each uv point before subtracting them and generating
images. The real and imaginary parts are fitted separately, using
inverse-variance weights to take account of the fact that the noise
properties change as a function of frequency. This implies that if a
point in the uv plane is not sampled at a particular frequency, then it
has zero weight and does not contribute to the fit. This is therefore
similar to the method proposed by Liu et al. (2009). We discard
‘lines of sight’ in Fourier space in which the weight is non-zero for
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fewer than 10 points, since the foregrounds are not well constrained
here and we would merely introduce noise into the residual images.

This leaves the problem of which method to use to perform the
fitting in Fourier space. Choosing a method is more awkward than in
image space, since the mean contribution from foregrounds, noise
and signal varies across the uv plane. It may be optimal to vary the
parameters of a fitting method according to the position in the uv

plane. None the less, we obtain reasonable results simply using a
third-order polynomial in frequency to fit the real and imaginary
parts at each point in the plane. We have also used Wp smoothing to
fit the foregrounds in the uv plane. This gives us the freedom to vary
the smoothing parameter, λ, across the plane. Near the origin (i.e.
corresponding to large spatial scales) little regularization is required,
since the contribution from the foregrounds is much larger than that
from the signal or the noise and so they are well measured. Towards
the edges of the plane we need to make stronger assumptions about
the smoothness of the foregrounds to avoid overfitting, and so we
make the value of λ larger. Finding a ‘natural choice’ for λ is
somewhat awkward (see Harker et al. 2009b for further discussion),
so at present we choose a mean value of λ which gives reasonable
results and vary it between lines of sight by making it inversely
proportional to the mean, c̄, of the fitting weights of points along
that line of sight. Specifically, we use λ(u, v) = 280/c̄(u, v), where
c(u, v, νi) = √

S(u, v, νi)/σ im(νi) and σ im(νi) is the rms image
noise at frequency νi expressed in kelvin. Since the noise is typically
a few tenths of a kelvin, and S has values ranging up to around
2.5 × 105, we end up with λ ≈ 15 at the edge of the uv plane and
λ ≈ 0.03 near the centre, for an integration of 300 h. The results
are not sensitive to the precise normalization of λ.

3.2.1 Wp smoothing

Wp smoothing is a non-parametric fitting method which appears
to be very suitable for fitting the spectrally smooth foregrounds in
EoR data sets. It was developed for general cases by Mächler (1993,
1995), and we have described an algorithm for using it for fitting
EoR foregrounds in a previous paper (Harker et al. 2009b). We will
briefly outline its principles here.

The aim is to fit a function f (x) to a series of points {(xi, yi)}
subject to a constraint on the number of inflection points in the
function and on the integrated change of curvature away from the
inflection points. More precisely, define the function hf (x) by

f ′′(x) = sf (x − w1)(x − w2) . . . (x − wnw
)ehf (x), (2)

where sf = ±1 and w1, . . . , wnw
are the inflection points. The

function f we wish to find is that which minimizes

n∑
i=1

ρi(yi − f (xi)) + λ

∫ xn

x1

h′
f (t)2dt , (3)

where the function ρi , which takes as its argument the difference
δ = yi − f (xi) between the fitting function and the data points,
penalizes the fitting function if it strays too far from the data. We opt
to use a least-squares fit, with ρi(δ) = ci/(2δ2) where ci is a weight.
Our choice for ci is given above. The parameter λ controls the
relative importance of the least-squares term and the regularization
term, with larger values giving heavier smoothing.

Mächler (1993, 1995) derives an ordinary differential equa-
tion and appropriate boundary conditions such that the solution
is the function f which we require. We solve it by discretizing it to
give an algebraic system which we solve using standard methods. It
is possible to perform a further minimization over the number and

position of the inflection points, but we have found that solutions
with no inflection points fit the EoR foregrounds well, so we do not
require this extra step.

3.3 Power spectrum estimation

Once we have fit the foregrounds, we subtract the fit to leave a
residual data cube which has as its components the CS, the noise and
any fitting errors. We will mainly be concerned with the spherically
averaged three-dimensional power spectra of the residuals and their
components. These are calculated within some sub-volume of the
full data cube (e.g. a slice 8 MHz thick) by computing the power in
cells and then averaging it in spherical annuli to give band-power
estimates. Each cell contributes only to the annulus in which its
centre lies, i.e. we ignore the fact that the cells have non-zero size.
The annuli are logarithmically spaced, but because we plot the
power against the mean value of k for cell centres lying within an
annulus, the points in figures may not be exactly logarithmically
spaced. Rather than showing the raw power, in our figures we plot
the quantity �2(k) = Vk3P (k)/(2π2) (or the analogous one- or
two-dimensional quantity; see e.g. Kaiser & Peacock 1991), where
V is the volume. This is usually called the dimensionless power
spectrum when dealing with the spectrum of overdensities, though
in this case it has the dimensions of temperature squared. �2(k) is
then the contribution to the temperature fluctuations from modes in
a logarithmic bin around the wavenumber k.

Different systematic effects are important for modes along and
across the line of sight, however. For this reason, we also calculate
the two-dimensional power spectrum perpendicular to the line of
sight (i.e. the angular power spectrum, but expressed as a function
of cosmological wavenumber k) and the one-dimensional power
spectrum along the line of sight. We estimate the two-dimensional
power spectrum at a particular frequency by averaging the power
in annuli. Estimates calculated from one frequency band tend to
be rather noisy, so we usually average the power spectrum across
several frequency bands to give a less noisy estimate. In the one-
dimensional case, we simply calculate the one-dimensional power
spectrum for each line of sight with no additional binning (producing
points linearly spaced in k) and then average these spectra across
all 642 lines of sight [2562 lines of sight in the case of the cubes
fitted in (u, v, ν)-space] to give an estimate for the whole volume.
Typically we consider a volume only ∼8 MHz deep, so that the CS
does not evolve too much within the volume.

To see more clearly the contribution to the power spectrum of the
residuals from its different components, we write the residuals in
Fourier space as

r(k) = s(k) + n(k) + ε(k), (4)

where s is the CS, n is the noise and ε is the fitting error. Then the
power spectrum is given by

P r (k) = 〈r(k)r(k)∗〉|k|=k (5)

= P s(k) + P n(k) + P ε(k) + 〈ε(k)[s(k) + n(k)]∗

+ [s(k) + n(k)]ε(k)∗〉|k|=k, (6)

where the subscript indicates that the averaging takes place over
a shell in k-space and the superscripts label the power spectra of
the different components. The equality on the second line follows
because the signal and noise are uncorrelated so their cross-terms
average to zero. We cannot assume, however, that the fitting errors
are uncorrelated with the signal or noise, which gives rise to the final
term in angle brackets, which may be either positive or negative.
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We may usually expect it to be negative, since we fit away some of
the signal and noise, reducing the size of the residuals. If it is large
enough, the power spectrum of the residuals may even fall below
the power spectrum of the input CS, especially at scales where the
noise power is small.

If we ignore the fitting errors, we may estimate the power spec-
trum of the CS by computing the power spectrum of the residuals
and then subtracting the expected power spectrum of the noise. In
this case, we can make a relatively straightforward estimate of the
error on the extracted power spectrum, as we see in Section 3.3.1.
We have assumed here that the expected power spectrum of the
noise is known to reasonable accuracy. In fact, we will not be able
to compute it accurately enough a priori for real LOFAR data: it
must instead be estimated through observation. It should be possi-
ble to do so by differencing adjacent, narrow frequency channels
(much narrower than those in the simulations used here, where the
data have been binned into 0.5 MHz channels: the estimate would
have to be carried out before this level of binning, using channels
of perhaps 10 kHz). Studying this in more detail in the context of
the LOFAR EoR experiment must be the subject of future work,
though note that this approach has already been applied to char-
acterize the noise in low frequency foreground observations made
with the Westerbork telescope (Bernardi et al. 2010), the GMRT
(Ali, Bharadwaj & Chengalur 2008) and PAPER (Parsons et al.
2009).

3.3.1 Statistical errors

The statistical errors on the extracted power spectrum include
contributions from the noise and sample variance. Considering first
the noise, in the ith Fourier cell the real and imaginary parts of
the contribution to the gridded visibility from the noise, V n

i , are
Gaussian-distributed, with mean zero and variance σ 2

i (say), which
is known. Then |V n

i |2 is exponentially distributed with mean 2σ 2
i

and variance 4σ 4
i . We may estimate the power spectrum at some

wavenumber k by computing

〈P n(k)〉 = 1

mk

mk∑
i=1

|V n
i |2, (7)

where the sum is over all cells within an annulus near k. If the
number of cells in the annulus is sufficiently large, the error on this
estimate is approximately Gaussian-distributed, and we estimate it
as 〈P n(k)〉/√mk , assuming that the different cells are independent
and using the fact that the variance of |V n

i |2 is the square of its
mean. This error translates into an error on the final extracted power
spectrum and can be reduced either by integrating longer on the
same patch of sky (to reduce σ 2

i ∼ 1/τ , where τ is the observing
time) or by spending the time observing a wider area to increase the
number of accessible modes, increasing mk . In the latter case, the
error only decreases as 1/

√
τ .

Though this estimate of the error is useful as a guide for how
the errors behave as the observational parameters change, a more
accurate error bar can be computed in a Monte Carlo fashion by
looking at the dispersion between independent realizations of the
noise, and this is how we compute the errors in practice. Although
the analytic estimate is reasonable, it tends to underestimate the
errors at large scales and overestimate them at small scales.

The power spectrum of our simulation of the CS is calculated
similarly to the power spectrum of the noise. In this case, the error
〈P CS(k)〉/√mk represents the error on our final estimate of the
power spectrum due to sample variance and can only be reduced

by sampling more modes (increasing mk). Unlike the noise, the
fluctuations in the CS are not Gaussian, and so an analytic estimate
of the error is likely to be less accurate. This should not matter too
much at small scales where in any case the error on our extracted
power spectrum is dominated by noise, but on larger scales the
sample variance becomes important. At present, we do not have
enough different realizations of the CS to simulate the errors more
realistically; as noted in Section 2 we must already tile copies of
a single simulation to fill a LOFAR field of view, which limits the
range of scales we can realistically study. These estimates should
therefore be considered an illustration of how we expect the errors to
change as we vary our observational strategy, rather than a definitive
calculation, which is reasonable given the other simplifications we
have made (e.g. adopting a square field of view rather than a realistic
primary beam shape). Error bars on our extracted power spectra
are computed by adding the noise and sample variance errors in
quadrature.

3.3.2 Systematic errors

The terms involving fitting errors on the right-hand side of equa-
tion (6) will bias our estimate of the power spectrum of the CS
unless they can be accurately corrected for, and so contribute to a
systematic error. When analysing LOFAR data, it may be possible
to estimate the size of these terms using simulations similar to the
ones used in this paper. Bowman et al. (2009) have estimated them
for simulations of MWA data through a ‘subtraction characteriza-
tion factor’ fs(k) = 〈P s(k)〉/P s(k). By fitting cubes which include
different realizations of the CS and noise, it should also be possible
to reflect the statistical error introduced by making such a correc-
tion in the error bars. In this paper we do not make this correction,
however: it would be accurate by construction and hence quite unin-
formative. Instead, we plot 〈P s(k)〉 = P r (k) − 〈P n(k)〉 to illustrate
the level of bias we may expect to see if no correction is made. Our
error bars will then reflect errors due only to the sample variance
and the noise. If the estimated power falls below the true power,
we use the estimate of sample variance from the true power, since
this gives a more realistic view of what the estimate of the sample
variance would be if we made a correction for the fitting bias.

We expect any estimate of the bias, or of the statistical error
introduced by correcting for the bias, to be rather uncertain, since
it may depend strongly on the shape of the foregrounds, which is
unknown to the required level of accuracy a priori, and on the details
of the fitting procedure used. It is none the less straightforward to
estimate them for a specific foreground model and fitting procedure.

3.3.3 Cross-correlation

As an alternative to calculating a residual power spectrum and then
subtracting a thermal noise power spectrum, we could obtain the
extracted power spectrum through cross-correlation. That is, we
could split an observing period into two sub-epochs, subtract the
foregrounds from each and then cross-correlate the two. Following
the approach taken to derive equation (6), we can write the residual
in each of the two epochs as

ri(k) = s(k) + ni(k) + εi(k), (8)

where the signal s(k) is the same for the two cases and i ∈ {1, 2}
labels the epoch. Then

〈r1r
∗
2 〉 = P s + 〈sε∗

2 〉 + 〈ε1s
∗〉 + 〈ε1ε

∗
2 〉, (9)
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where the k-dependence is implicit, the angle brackets again indi-
cate an average over a shell in k-space and cross-terms involving the
noise vanish. If the fitting errors are sufficiently small, this cross-
correlation immediately provides us with an estimate of the desired
power spectrum.

This estimator has some apparent advantages. First, we do not
have to know the thermal noise power spectrum to calculate it
(though an estimate of the thermal noise is required to compute error
bars). Secondly, we do not expect it to yield negative estimates of the
power, as may happen when using equation (6). More generally, at
scales where the noise is larger than the signal or the fitting errors,
we would expect the bias of this estimator to be much smaller
than for the one involving autocorrelations, since the cross-terms
involving n and ε on the right-hand side of equation (6) do not
appear.

It is not without disadvantages, however. If we split the observa-
tion into two epochs, the lower signal-to-noise ratio in each epoch
will degrade the foreground fitting, increasing the size of the ε terms.
If, instead, the foreground fitting is done on the full data set before
dividing it into different epochs, then the cross-terms involving n
and ε can no longer be assumed to vanish.

We have conducted preliminary tests of the cross-correlation
method and found that it gives comparable results to the auto-
correlation method at scales where the fitting bias is small enough
for either estimate to be useful. We reiterate, however, that it is
assumed here that the thermal noise power spectrum is known ac-
curately, which unfairly favours using the autocorrelation. We defer
further comparison of the two methods until we have looked fur-
ther into how well the noise power spectrum can be estimated from
observations. In this paper, all our extracted power spectra are com-
puted by subtracting the noise power spectrum from the residual
power spectrum. We would not expect our broad conclusions to
change if we were to use cross-correlation instead.

4 SENSITIVITY ESTIMATES

4.1 Comparison of fitting methods

Examples of extracted power spectra at three different redshifts, for
slices 8 MHz thick, are given in Fig. 3 (points with error bars). From
top to bottom, the central redshift of the slice used in each panel
is 9.96, 8.49 and 7.37, while the mean neutral fraction x̄H I in each
slice is 0.998, 0.942 and 0.614, respectively.

For comparison, we also show the power spectrum of the noise-
less CS cube (solid line), the noise (dashed line) and the residuals
after fitting (dotted line). The extracted power spectrum is the dif-
ference between the residual and noise power spectra and would
be equal to the noiseless CS power spectrum if there were no fore-
grounds. For this figure we use a frequency-independent uv cov-
erage, so the foreground fitting is carried out in the low-resolution
image cube. A noise level consistent with 300 h of observation per
frequency bin of a single (5◦ × 5◦) window using a single station
beam is assumed. It may not be possible to observe the entire fre-
quency range simultaneously, and it may have to be split into two
or three segments (e.g. of 32 MHz width) only one of which can
be observed at once. If we have to use two such segments, then
the 300 h of observation per frequency bin translates to 600 h of
the total observing time. This is a somewhat pessimistic scenario
for the quality of data we may collect after 1 yr of EoR observa-
tions with LOFAR, since it is hoped that several station beams can
be correlated simultaneously to cover the top of the primary (tile)
beam, allowing a larger field of view to be mapped out more quickly.
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Figure 3. Power spectra of the input CS (solid line), the noise (dashed line),
the residuals (dotted line) and the extracted signal (points with error bars) at
three different redshifts. Here we assume that the uv coverage is frequency-
independent, so the foreground fitting is done using Wp smoothing in the
image plane. The noise level is consistent with 300 h of observation per
frequency bin on a single window, using one station beam. The redshift
shown in each panel is the central redshift of an 8 MHz slice from the
frequency cube. This frequency interval corresponds to �z = 0.63, 0.48
and 0.37 for the top, middle and bottom panels, respectively. From top to
bottom, the mean neutral fraction in each slice, x̄H I, is 0.9976, 0.9416 and
0.6140. The missing points in the top panel correspond to k bins at which
the power spectrum of the residuals falls below the power spectrum of the
noise, so that we would infer an unphysical, negative signal power.

It may also be possible to trade off the number of beams against
the width of the frequency window or to spend different amounts
of time on different parts of the frequency range. None the less,
the assumptions of Fig. 3 provide a useful baseline against which
we can compare results for deeper observations or for more realis-
tic (frequency-dependent) uv coverage. It also illustrates the main
features we see in many of our extracted spectra.

For the lowest redshift slice (bottom panel), the recovery appears
to be good: at most scales, the recovery is accurate and has small
errors. At large scales the error bars increase in size because of
sample variance, and it appears that the recovered power spectrum
lies systematically below the input spectrum. This happens because
at large scales, we fit away some of the signal power during the
foreground fitting. If the points at large scales do not appear to
jump around as one would expect given the size of the error bars,
this is because the error bars here are dominated by sample variance,
and so show our uncertainty as to how representative this volume
is of the whole Universe. If, instead, we showed error bars showing
only the uncertainty on our determination of the power spectrum
within this volume, they would be much smaller and would be
visually consistent with the scatter displayed by the points. The
error bars grow at small scales because the noise power becomes
larger compared to the signal power, limiting our sensitivity. We
caution that, as noted in Section 2, the simulation we use represents
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a rather optimistic scenario for low-redshift signal extraction, since
reionization occurs very late.

As we move to higher redshift (middle panel) the situation wors-
ens slightly, with the error bars increasing in size because of the
higher noise levels. More worryingly, the recovered power is lower
than the input power at all scales (though it becomes worse at large
scales as before) which seems to indicate that foreground subtrac-
tion may cause significant bias in our estimate of the signal power
even at intermediate scales. The trend continues as we move to the
highest redshift slice (top panel). We do not plot the recovered power
for a range of scales between k ≈ 10−0.9 and 10−0.3 h Mpc−1. This
is because we infer an unphysical negative power here. In the case
of such points, we plot a statistical upper limit on the power. The
bias from the fitting procedure leads to a situation where these ‘up-
per limits’ lie below the true power or are too small even to show
up on the plot. These upper limits should, then, be taken merely
as an indication of the size of the fitting bias. The larger noise at
lower frequencies (higher redshifts) increases the size of the error
bars compared to the other panels. The combination of this higher
noise and the larger foreground power makes fitting the foregrounds
at high redshift more difficult, as we have seen in previous work
(Harker et al. 2009a,b), leading to the observed bias.

The situation is very similar if the uv coverage is frequency-
dependent but we do our fitting using Wp smoothing in Fourier
space. This case can be seen in Fig. 4, which is otherwise very
similar to Fig. 3 except that we have changed the vertical axis scale
to accommodate the upturn in noise power at high k caused by the
varying uv coverage. The higher small-scale noise coming from the
frequency-dependent uv coverage damages the recovery of power
at the smallest scales, but the fitting using Wp smoothing in Fourier
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Figure 4. Power spectra of the CS, the noise, the residuals and the extracted
signal for the case when the uv coverage is frequency-dependent, we have
300 h of observation per frequency channel with a single station beam, and
the foreground fitting is done using Wp smoothing in Fourier space. The
redshift slices and the colour coding of the lines are the same as for Fig. 3,
but note that we have changed the scale of the vertical axis to accommodate
the upturn in noise power at small scales.

space allows us to recover the power on intermediate and large scales
even better than in Fig. 3. The reason that we fit even better than in
the supposedly more ideal case of Fig. 3 is partly that the noise is
normalized in image space to the expected level for single-channel
images (see Section 2.2), and so the increase in small-scale noise in
the frequency-independent case is compensated by a reduction in
large-scale noise, improving recovery there. It is also the case that
our uv plane fitting is more adaptive, applying less regularization
at scales where the foregrounds dominate and the noise is low.
Unfortunately we do not yet have a well-motivated method to choose
the regularization parameter λ automatically rather than varying it
by hand, but this result suggests that finding a suitable method could
yield even more improvement in the quality of the fitting.

If we use a third-order polynomial fit for the foregrounds rather
than using Wp smoothing, however, the result becomes worse, espe-
cially at high redshift. This is illustrated in Fig. 5, which is identical
to Fig. 4 apart from the fact that polynomial fits are used. While
at low redshift the quality of recovery is visually indistinguish-
able, at high redshift the Wp smoothing of Fig. 4 allows us to
recover an estimate of the power spectrum to higher k. The bias at
low k also seems to be larger for polynomial fitting, which seems to
produce overestimates of the power of the CS at large scales. This
may be due to the fact that a polynomial is unable to match the
large-scale spectral shape of the foregrounds, allowing foreground
power to leak into the residuals. Unlike Wp smoothing, polynomial
fitting does not allow us to smoothly vary the level of regularization
across the uv plane (the only parameter we can tweak is the poly-
nomial order, which is a somewhat blunt instrument) and this may
also contribute to the poorer fit.

We conclude that even though varying uv coverage makes fore-
ground fitting more awkward, we can mitigate its effects with-
out having to discard a large proportion of our data if we choose
our fitting method carefully. At present our scheme for fitting the
foregrounds using Wp smoothing in Fourier space is quite slow,
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Figure 5. As for Fig. 4, except that the foregrounds are fitted using a third-
order polynomial rather than Wp smoothing.
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however, so for the rest of the paper we revert to the case of
frequency-independent uv coverage, for which our image-space
fitting works quickly and reasonably well. Fig. 4 suggests that this
should not affect our comparisons of results using different lengths
of observing time or observational strategies. For actual LOFAR
data, the fitting of the foregrounds should still be much faster than
other steps in the reprocessing of the data, and so we are likely to
use our most accurate scheme (at present, Wp smoothing in Fourier
space) even if it is slow compared to other schemes.

4.2 Different depths and strategies

Having compared the characteristics of different fitting methods, we
now move on to comparing the quality of extraction for different
assumptions about the amount of observing time and for different
observational strategies. We start by showing the extraction for
180 h of observing time per frequency bin, making a total of 360
h of observing time if two frequency ranges are required, in Fig. 6.
This makes it comparable to fig. 12 of Bowman et al. (2009), who
show a simulated power spectrum for 360 h of observation with
the MWA (though spanning a larger redshift range than a panel of
our figure). To make the comparison more illustrative, we show two
error bars for each point, the grey one on the left including both the
noise error and the sample variance and the black one on the right
including only the noise error. For the MWA, these would differ
by less then 10 per cent and would be almost indistinguishable
on this log–log scale (Bowman, private communication). Visually,
the errors for LOFAR without sample variance appear smaller than
those for the MWA at most scales at the lower redshifts, as we may
expect from the larger collecting area. A computation including
the sample variance, however, tends to favour the MWA at small
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Figure 6. As for Fig. 3, but using a noise level consistent with 180 h of
observation per frequency bin on a single window, using one station beam.
We also plot two error bars for each point: the grey one on the left shows
the error from both noise and sample variance as in our other figures, while
the black one on the right shows the error only from noise.
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Figure 7. As for Fig. 3, except we assume that six station beams are syn-
thesized, rather than one.

k owing to its larger field of view. Hence, we explore the effect of
observing multiple independent windows below.

The field of view can also be extended if, as planned, we are able
to synthesize multiple station beams simultaneously. Equivalently,
if we wish from the outset to observe a window larger than the
∼5◦ × 5◦ of a single station beam, multiple beams can be used to
achieve observations of greater depth without using more observing
time. We show the effect of extending the field of view in Fig. 7,
where we assume that we observe for 300 h per frequency bin (as
in Fig. 3), but using six station beams. We model the effect of
using six beams by reducing the errors due to noise and to sample
variance by a factor of

√
6. A realistic primary beam model, and

the incorporation of modes with smaller k, would make the effect
of multiple beams more complicated, but we incorporate the effect
in a way which is consistent with our simplified beam. The most
obvious effect of using multiple beams is at large scales, since here
the increase in the number of available modes reduces the (large)
sample variance errors as well as the noise errors. The noise errors at
high k are also reduced, however. Since the smallest scales we probe
may be comparable to the size of bubbles in the H I distribution, this
improvement may be important for constraining physical models.

This figure also makes it clear what multiple beams do not do.
Increasing the field of view in this way does not increase the signal-
to-noise ratio along each line of sight, and so the foreground fitting
does not improve. The systematic offset at intermediate scales in
the middle redshift bin is still present, and we remain unable to
extract physically meaningful information at high redshifts at these
scales with our current methods. Our CS simulations are of limited
size, so we are unable to demonstrate how the larger field of view
enables us to recover the power spectrum at lower k. The bias we
see at the largest scales in our figures is unlikely to improve as we
go to yet larger scales, however, and so it may be difficult to exploit
the potential afforded by a larger field of view in practice.

We now directly examine the trade-off between spending observ-
ing time to go deeper in a small area and spending it to survey a
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Figure 8. Power spectra of the original and extracted signals, the residuals
and the noise, using the same line styles as Fig. 3. Each panel assumes the
same total observing time (900 h) using six station beams, in an 8 MHz slice
centred at z = 9.96 (with x̄H I = 0.9976), the same redshift as for the top
panel of Figs 3–7. The panels differ in the way in which the observing time
is split between windows: in the top panel we devote all the observing time
to a single window, and in the bottom panel we spread it equally between
five different windows. The middle panel shows an intermediate case. Each
point has two error bars, the one on the right accounting only for noise and
the one on the left also including the effect of sample variance, as in Fig. 6.

larger area. Considering first the situation at the lowest redshifts,
we see from Figs 6 and 7 that after 180 h of observation per fre-
quency channel, the fitting bias has reached a level that reduces
very little with deeper observation. Moreover, with the six station
beams of Fig. 7 the errors at intermediate scales are rather small.
The main effect of deeper observation is then to reduce the errors
only at the very smallest scales. It would clearly be more profitable
to use extra observing time to cover multiple windows and reduce
the large-scale errors which are dominated by sample variance.

At high redshift the trade-off between the depth and number of
windows is more interesting, as we see in Fig. 8. Here, all three
panels show power spectra at the same redshift as the top panel of
our earlier figures (z = 9.9564, with x̄H I = 0.9976). Each point has
two error bars, the one on the right accounting only for noise and
the one on the left also including the effect of sample variance, as in
Fig. 6. The different panels distinguish between different ways of
allocating a fixed amount (900 h) of observing time per frequency
band with six station beams. If we use this time to observe five
different windows (bottom panel), as seems to be preferable at low
redshift, the main effect is to reduce the size of the statistical errors
in a region of the power spectrum (low k) where there is in any
case a relatively large and uncertain systematic correction to be
made for the fitting bias. Meanwhile, the large amount of noise per
window degrades the fitting at intermediate scales. Taking 300 h of
observation per frequency band per window (middle panel) reduces
the bias somewhat and enables recovery of reasonable quality across
a larger range of scales. Only with 900 h of observation of a single
window (top panel), however, are we able to recover a physically

plausible estimate of the power across almost all the accessible
scales. Even at those scales at which the shallower observations
allowed some sort of estimate of the power, the increased depth
reduces the bias from the fitting, so that it becomes comparable to
the statistical error bars.

The tension between optimizing low- and high-redshift recovery
is not the only consideration in deciding how many windows to
observe and for how long. Using multiple windows will help to
control the systematics because we can then compare fields with
different foregrounds and different positions in the sky. If we wish
to observe for a reasonable fraction of the year, we are required
to observe different windows since some may be inaccessible or
too low in the sky during some periods. None the less, a hybrid
strategy in which some windows receive more time than others may
be possible.

Another possible strategy, since the higher redshift bins appear
to benefit more from longer integration times, is to spend longer
observing higher redshifts than lower redshifts. Since we already
split up the frequency range into different chunks which are not
observed simultaneously, this may be possible without excessive
difficulty. We note, however, that for other reasons (e.g. improv-
ing the calibration), it may be desirable not to split the frequency
range into large contiguous chunks, but into two interleaved combs.
This would enforce a uniform integration time across the whole
frequency range. A further problem one may envisage is that the
noise rms would jump discontinuously across the gap between the
two frequency chunks. Unless the noise is well characterized, such
a jump could be confused with a change in the signal rms due to
reionization. It may also complicate the foreground fitting, and so
we test this in Fig. 9. Here we have assumed that we have spent
1200 h on the low frequency chunk (below 160 MHz) and only
300 h on the high frequency chunk. This does not appear to affect
our fitting adversely. Even if we choose to plot the power spectrum
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Figure 9. Power spectra at three different redshifts, using the same line
styles as before. In this case, however, we assume that at frequencies above
160 MHz (corresponding to z ≈ 7.9) we have used 300 h of integration
time, while below 160 MHz we have used 1200 h of integration time, in
each case using one station beam.
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Figure 10. Two-dimensional power spectrum in the plane of the sky, for a
slice 8 MHz thick centred at z = 7.3717 and with x̄H I = 0.6140, for 900 h of
integration with a single station beam. The line styles for the original signal,
noise, residuals and extracted spectrum are as for the previous figures.

in an 8 MHz slice which straddles the cross-over between long and
short integration times, the extraction appears to be stable. If other
factors allow us to use such a strategy, then it appears to be a vi-
able way to make the quality of our signal extraction more uniform
across the redshift range we probe.

4.3 Source of the large-scale bias

Even when we achieve small statistical errors, as for the bottom
panel of Fig. 7, a bias persists on large scales. We look for the
origin of this bias by plotting the power spectrum of modes in
the plane of the sky (the angular power spectrum) in Fig. 10 and
the one-dimensional power spectrum along the line of sight in
Fig. 11. For both of these figures, we consider a slice at low redshift
(as for the bottom panel of Fig. 7) and assume 900 h of observation
per frequency chunk with one station beam.

The extracted two-dimensional power spectrum appears to be-
have similarly to the three-dimensional power spectrum, albeit with
slightly larger error bars because we have fewer modes available.
The bias at large scales persists: we underestimate the power be-
cause we fit away some of the signal and noise. The one-dimensional
power spectrum looks rather different. It is quite accurately deter-
mined because we average over so many lines of sight, and there is
no apparent bias in the extraction. The one-dimensional power spec-
trum does not extend to such large scales as the two-dimensional
power spectrum because we restrict ourselves to quite a narrow fre-
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Figure 11. One-dimensional power spectrum along the line of sight, for a
slice 8 MHz (93.2 h−1 Mpc) deep centred at z = 7.3717 and with x̄H I =
0.6140, for 900 h of integration with a single station beam. The line styles
for the original signal, noise, residuals and extracted spectrum are as for the
previous figures.

quency slice (corresponding to a comoving depth of 93.2 h−1 Mpc)
to avoid evolution effects, but it does extend to scales at which
the two-dimensional power spectrum shows bias. We have exper-
imented with using slices which are twice as thick (16 MHz) and
these still show no significant bias at the largest scales. The one-
dimensional power spectrum extends to smaller scales than the
two-dimensional one, since the spatial resolution is better along
the frequency direction for our 0.5 MHz channels. This resolution,
and the lack of bias, may be useful if we are able to invert the
one-dimensional power spectrum to recover the three-dimensional
power spectrum (Kaiser & Peacock 1991; Zaroubi et al. 2006).

At first sight, it seems somewhat puzzling that although we as-
sume that the foregrounds are smooth in the frequency direction –
we effectively ignore very large-scale power along the line of sight –
the fitting bias manifests itself most clearly in the angular power
spectrum. Note, though, that if our estimate of the foregrounds
along a line of sight is offset by some constant, or by an amount
that is approximately constant within the narrow frequency range
in which we estimate the power spectrum (the fits are always com-
puted across the full frequency range to avoid edge effects), this
does not change the power spectrum of the residuals along the line
of sight at all. If this offset is different between different lines of
sight, though, then this will be apparent in the angular power spec-
trum of the residuals at each frequency. If the offsets at nearby
points are correlated, perhaps because the foregrounds within some
region have a similar shape and strength, then the angular power
spectrum of the residuals on small scales will hardly be affected. At
scales larger than the correlation length of the fitting errors, these
offsets could lead to the bias which we see.

In any case, Figs 10 and 11 suggest that we should consider the
angular and line-of-sight power spectra separately in an analysis of
LOFAR data, though ultimately neither will allow us to constrain
models as tightly as a three-dimensional power spectrum which
includes a contribution from all modes. The line-of-sight power
spectrum appears to be less vulnerable to bias and extends to higher
k, while the angular power spectrum extends to larger scales and may
have greater power to distinguish between models of reionization.
The more sophisticated version of this separation – expanding the
three-dimensional power spectrum P (k, μ) in powers of μ, the
cosine of the angle between a mode and the line of sight (Barkana
& Loeb 2005) – is, unfortunately, not likely to be useful for the
noise levels expected for LOFAR, though we have not yet made
a quantitative investigation of this possibility. Pritchard & Loeb
(2008) have checked this for an MWA-type experiment, using an
optimistic instrumental configuration, and find that it does not have
the required sensitivity. Rather, the separation into powers of μ may
have to wait for SKA or for a futuristic lunar array.

5 SUMMARY AND DI SCUSSI ON

In this paper, we have studied the extraction of the 21-cm EoR
power spectrum from simulated LOFAR data. The simulations al-
low us to compute the statistical errors on the power spectrum
due to thermal noise and sample variance, and these are small
enough to raise the possibility of a significant detection of emission
from the EoR using only a modest amount of observing time. If
we wish to estimate the power spectrum accurately, however, this
becomes more challenging once we take into account the presence
of fitting errors from the subtraction of astrophysical foregrounds.
These errors are correlated (positively or negatively) with the signal
and the noise in general and introduce a scale-dependent bias into
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our estimate of the power spectrum. We anticipate that simulations
such as the ones studied here could be used to estimate and correct
for the bias; this would induce a further statistical error which can
be straightforwardly computed by using multiple realizations of a
simulated observation. Making this sort of correction will always
be uncertain, though, so it is desirable to minimize its size. We have
looked at the extent to which the size of the correction, as well as
the size of the statistical errors, can be reduced by observing for
longer or using alternative observational strategies.

Before that, though, we tested that extraction is still possible if
we do not make the assumption that the uv coverage is independent
of frequency. We find that this necessitates fitting the foregrounds
in the (u, v, ν) cube rather than the image cube, as noted by Liu
et al. (2009). The Wp smoothing method, which we have used
previously to fit the foregrounds in the image cube, can be adapted
to work in the (u, v, ν) cube by fitting the real and imaginary parts
independently for each uv cell and by varying the regularization
parameter, λ, across the uv plane. This yields results comparable to
(in fact, even better than) those we obtain if we assume frequency-
independent uv coverage and then fit in the image cube. We have
also tried using a third-order polynomial to fit the foregrounds in the
(u, v, ν) cube: this yields results which are acceptable, but not as
good as those obtained using Wp smoothing. The main drawback of
Wp smoothing in this case is its speed, especially for ‘lines of sight’
near the centre of the uv plane where it is best to choose a small
value for λ (implying little smoothing). Because Wp smoothing in
the image cube is faster, because the polynomial fitting gives worse
results than Wp smoothing in the (u, v, ν) cube and because Wp
smoothing produces extraction of similar quality in the image and
(u, v, ν) cubes, we have concentrated on results using frequency-
independent uv coverage to explore the different scenarios in this
paper.

We have found that a year’s observations (of, say, 600 h, of which
perhaps 360 could be of a single window) should be sufficient to
detect cosmological 21-cm emission from towards the end of the
EoR. We caution, however, that the approximations employed in
this paper prevent us from treating these numbers as more than
rough estimates. If we wish to study the power spectrum at small or
large scales – away from the ‘sweet spot’ at intermediate k – it will
be important to be able to synthesize multiple station beams. This
allows us to reduce the statistical errors from sample variance and
noise. Unfortunately, however, there appears to be no substitute for
extending the integration time, especially to probe high redshifts
and very small scales. This is because only deep observations can
improve the quality of the foreground fitting and hence reduce the
systematic offset between the true signal and the recovered signal.

Under the optimistic assumptions that we can synthesize six
beams, and that the useful frequency range can be covered using
just two frequency bands (the instantaneous frequency coverage is
limited), 600 h of observation of a single window should be enough
to yield quite precise and accurate power spectra up to z ≈ 9, for
k between approximately 0.03 and 0.6 h Mpc−1. Pushing to the
very highest redshifts accessible with the frequency coverage of
LOFAR’s HBA requires a somewhat longer time: perhaps 900 h
per frequency band, which corresponds to 1800 h of observation if
there are two frequency bands.

With observations of this depth, the limiting factor in the sta-
tistical errors comes from sample variance on large scales, which
can only be reduced by observing a larger area of sky. This is one
of several reasons why the LOFAR EoR project plans to observe
multiple – perhaps five – independent windows. We have already
seen that approximately 600 h per window is required for the ther-

mal noise errors to be small and the bias to be under control for
redshifts less than about 9. For five windows, this corresponds to
3000 h of observation. Comparing the independent windows will
also allow important cross-checks, in particular that systematics are
under control.

To really push towards precise constraints on the power spectrum
towards the start of reionization, the 1800 h per window that we
find yields high quality extraction at z > 10 corresponds to 9000
total hours for five windows. This figure may be reduced if a hybrid
strategy, in which we integrate for a longer time in lower frequency
bands, turns out to be feasible. From the point of view of foreground
fitting and power spectrum extraction, ignoring constraints that may
be imposed by calibration, etc., a hybrid strategy does indeed seem
to be feasible. Of course, we have considered this strategy only from
the point of view of the power spectrum. If deeper observations at
all frequencies would allow us to push beyond the power spectrum,
perhaps into a regime where we can observe individual features in
the distribution of 21-cm emission towards the end of reionization
with a reasonable signal-to-noise ratio, then this would surely be
valuable too.

Other hybrid strategies are also possible, for example ones in
which different windows are observed for different amounts of
time. We have not studied them here since they do not really
impact the fitting and extraction, which is independent for each
window. None the less, they may allow us to obtain high redshift
constraints by observing one window deeply, while simultaneously
allowing us to beat down sample variance errors on large scales
at low redshifts by observing several other windows at reduced
depth.

In any case, our study suggests that as the amount of time spent
observing the EoR with LOFAR is increased, this allows us to
make qualitative improvements to the fitting and to the range of
scales and redshifts we can probe accurately. Deeper integration
does more than simply allow us to shrink our statistical error bars.

This all depends, however, on the robustness of our fitting tech-
niques and more generally on the level of control we are able to
exercise over systematic errors. The Wp smoothing method we
have introduced previously appears to work well when it comes to
extracting the power spectrum. This holds whether we apply it to
an idealized case in which the uv coverage of the instrument is con-
stant with frequency or to a more realistic case in which it varies.
We confirm a suspicion we have expressed previously (Harker et al.
2009b) that the power spectrum may be easier to extract than an
apparently simpler statistic such as the rms of the 21-cm signal:
the fitting errors are scale-dependent and a power spectrum analy-
sis allows us to pick out the scales where our method works best
without being swamped by small-scale noise. Splitting the power
spectrum into angular and line-of-sight components may help us to
test the robustness of our conclusions and perhaps extend the spatial
dynamic range we can probe.

We have assumed here that the power spectrum of the noise is
known to reasonable accuracy, an assumption which will be ex-
amined in future work. We will also study in a future paper how
different strategies alter our ability to constrain the parameters of
reionization models.

Finally, we note that foreground fitting and power spectrum ex-
traction are late steps in the collection and analysis of LOFAR EoR
data. They depend on earlier and probably more difficult steps, such
as instrumental calibration (including polarization, which we have
neglected here), correcting for the ionosphere and the excision of
RFI. The results of this paper only reassure us that the later stages
are unlikely to be the limiting ones.
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