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1) ChIP-seq data preparation  

a. siRNA-mediated knockdown and chromatin immunoprecipitation 

For the human basal transcription factor data, Hela tk- cells were transfected with a 

mixture of siRNAs (Dharmacon) targeting either BTAF1 or GAPDH mRNA. Two days 

later, subconfluent cultures of HeLa tk- cells were cross-linked by addition of 1% 

formaldehyde in PBS for 10 minutes at 37°C. Cells were lysed in buffer (50 mM Tris-

HCl pH 7.9, 1% SDS, 10 mM EDTA, 1 mM DTT, and protease inhibitors). The lysate 

was sonicated 8 times for 30 seconds in a Bioruptor (Diagenode, Belgium) resulting in 

DNA fragments of 200 to 600 bp. Soluble material was supplemented with 0.1% Triton 

X-100 and 0.1% Na-deoxycholate and incubated for 6 hours with Dynabeads coupled to 

antibody against TBP (SL30). Samples were processed as previously described 

(Vermeulen et al., 2007). DNA concentration was measured using PicoGreen dsDNA 

reagent kit. In parallel knock-downs were controlled on both protein and RNA levels.  

 

b. Library preparation 

Chromatin was additionally sheared for 6 minutes using Covaris sonicator (6 x 16 mm 

AFA fiber Tube, duty cycle: 20%, intensity: 5, cycles/burst: 200, frequency sweeping) to 

obtain suitable shorter fragments (75-125 bp). After fragmentation, fragments were blunt-

ended and phosophorylated at the 5'-prime end using the End-it Kit (Epicentre) according 

to the manufacturer’s instructions. Ligation of double stranded adapters compatible with 

SOLiD sequencing was performed using Quick ligation kit (New England Biolabs) with 

750 mM P1 ds and P2 ds adaptor (Applied Biosystems), 11.7 µl of 2x Quick ligation 

buffer, 1 µl Quick Ligase (NEB) in total volume of 23.4 µl. Samples were purified using 

Ampure beads (Agencourt) and run on a native 6% polyacrylamide gel. Fragments 

ranging from 140 to 180 bp were excised; the piece of gel containing DNA fragments 

was shredded and dispersed into 400 µl of Platinum PCR Supermix with 750 mM of each 

P1 and P2 PCR primer, 2,5 U of Pfu (Stratagene) and 5 U Taq (Bioline). Prior to ligation-

mediated PCR the sample was incubated at 72O C for 20 minutes in PCR mix to let the 

DNA diffuse out of the gel and to perform nick translation on non ligated 3'-ends of DNA 

fragments. After 17 cycles of amplification the library was purified using Ampure beads 

and was quality checked on 2100 Bioanalyzer (Agilent) for the absence of possible 

adapter dimers and heterodimers. 

 

c. Templated beads preparation 

To achieve clonal amplification of library fragments on the surface of sequencing beads, 

emulsion PCR (ePCR) was performed according to the manufacturer’s instructions 

(Applied Biosystems). 600 pg of double stranded library DNA was added to 5.6 ml of 

PCR mix containing 1x PCR Gold Buffer (Applied Biosystems), 3000 U AmpliTaq Gold, 

20nM ePCR primer 1, 3 µM of ePCR primer 2, 3.5 mM of each deoxynucleotide, 25mM 

MgCl2 and 1.6 billion SOLiD sequencing beads (Applied Biosystems). PCR mix was 

added to SOLiD ePCR Tube containing 9 ml of oil phase and emulsified using ULTRA-

TURRAX Tube Drive (IKA). Emulsion was dispensed into 96-well plate and cycled for 

60 cycles. After amplification emulsion was broken with butanol, beads were enriched 

for template positive beads, 3'-end extended and covalently attached onto one quadrant of 



sequencing slide and sequenced using SOLiD system version 2 to produce 35 bases long 

reads. 

 

2) Comparison with other clustering algorithms  

a. Example data results 

Clustering or classification methods are common in high-dimensional data problems and 

have been extensively employed in array-based gene expression analysis (Quackenbush, 

2001), and more recently in DNA methylation profiling (Marjoram et al., 2006; 

Houseman et al., 2008; Siegmund et al., 2004). Their primary purpose is to group signals 

based on similar intensity patterns. The unique feature of the classification approach 

outlined here is that the clustering procedure itself is highly structured and consistent 

with alternative biological models that could have generated the data. The best fitting 

model therefore provides potentially valuable insights into the global behavior of 

chromatin modifications across conditions (e.g. tissues). This dimension of our approach 

has no counterpart in existing methods, and it is difficult to find meaningful grounds for 

comparison. Nonetheless, to provide some type of reference, we compare the 

performance of one of our models (model 2) with three commonly employed clustering 

algorithms in biological analysis, hierarchical clustering, K-means partitioning, and the 

model-based multivariate normal clustering as implemented through the Mclust R 

package (Fraley and Raftery, 2007). Details concerning the specification of these 

alternative methods are provided in the methods section. 

First we considered the datasets discussed above and applied each of the 

alternative methods to these data. We found that the classification results vary quite 

substantially between these methods (Figure S3), and do not appear to agree well with 

our biological expectations of the distribution of the data. This may be in part attributable 

to the relatively small number of RDE, which are difficult to detect without sensible 

constraints in the classification procedure, especially when sub-sampling of the data is 

involved (see below). However, based on these clustering results alone we cannot draw 

any firm conclusions about the relative merits of each of these methods as the ‘state of 

nature’ is unknown. We therefore extended the comparison to several simulated datasets. 

 

b. Simulation results 
We generated two types of datasets (A and B).  Dataset A was simulated directly from 

model 2, and hence fully met the distributional assumptions of this model. In contrast, 

dataset B deliberately violated the assumption of bivariate normality of the RDE 

components (see below). We applied each of the alternative classification methods to 

these data and compared their performance directly to model 2. For each data example 

we report a component-specific false positive and false negative rate (+/- standard errors) 

based on 50 simulation replicates (see below). The results from this comparison are 

shown in Figure S4.  As expected model 2 performs well in the case of dataset A, but 

also appears to maintain a reasonable false positive and false negative rate for dataset B. 

The alternative methods considered here consistently reported exaggerated false positive 

or false negative rates. This trend is particularly apparent for components 3 and 4 (the 

two RDE components), which we predicted to be difficult to detect due to their small 

size. We also noticed substantial variation in the classification obtained with hierarchical 

clustering as well as multivariate clustering of the Mclust package. While this may be 



directly attributable to the sub-sampling scheme that is necessary for the efficient 

implementation of these two methods, in the case of  Mclust it may also stem from the 

built-in model-selection procedure (see below), whose best-fitting model may not 

consistently approximate the true model.  

 

c. Implementation details for  alternative algorithms 

Mclust: We utilized the multivariate modeling R package mclust as an alternative model-

based classification approach (Fraley and Raftery). In this package, we made use of 

mclust’s extensive model selection procedure, which compares several models with 

different covariance constraints. The best model is automatically selected based on its 

BIC value and used to obtain a final classification of the data. Application of this package 

to very large datasets proves to be quite inefficient and parameter estimates were 

therefore obtained from a random subset of the data  (N = 2000), as recommended by the 

authors (Fraley and Raftery, 2007). 

 

Hierarchical clustering: Hierarchical clustering was perform using the standard R (R 

Development Core Team) function, hclust (default settings), followed by the function 

cutree to extract four separate clusters.  Since the algorithm requires the specification of a 

distance matrix, large sample sizes become prohibitive. The same random subset of the 

data as above (N = 2000) was therefore used to obtain an initial clustering of the data.  

However, in the case of hierarchical clustering there is no ‘direct’ way to move from the 

classification of the subsample to the full sample. We solved this problem by estimating 

bivariate normal parameters for each of the clusters detected in the subsample and used 

these estimates along with empirical mixing weights corresponding to the relative size of 

the clusters to the whole dataset. 

 

K-means clustering: The K-means algorithm was implemented via the R (R Development 

Core Team) function kmeans with a specification for a four cluster solution. Since the 

solution is very dependent on the initial bivariate cluster centers, a set of 1000 random 

starting values for the cluster centers was chosen.  

 

d. Implementation details for simulation analysis 
We generated two types of datasets (A and B), each of dimension (n x d = 30000 x 2).  

Dataset A was simulated from model 2, and hence fully met the distributional 

assumptions of this model. In contrast, dataset B included violations to the assumptions 

of bivariate normality of the RDE components by letting the observations wj be drawn 

from the bivariate skewed normal distribution (Wuertz), with the skew in the direction 

away from the diagonal. This situation may be encountered when the differences between 

the two conditions are very strong for several regions within the RDE components. The  

precise parameter specifications for each of these simulation models are provided below. 

We generated 50 replicates of datasets A and B and applied the different classification 

methods at each simulation run. For the l
th

 simulation run ( ,..., )l = 1 50  and the i
th

 mixture 

component ( ,..., )i = 1 4 , we determined the False Positive rate (FP) and the False 

Negative rate (FN) as FP T D Dl il il il= − ∩1 #( )/#  and FN T D Tl il il il= − ∩1 #( )/# , where T 

and D denote the sets of true and detected component memberships, respectively. 

Estimates FP$  and FN$  as well as their standard errors SEFP
$  and SEFN

$ , were obtained 



empirically by considering the expected values and the standard deviations of the 

simulation distributions. As the component indexing may vary from run to run (label-

switching problem), care was taken to convert the component labeling in accordance with 

the expected spatial location of the cluster means in the scatterplot (see Figure 1, Figure 

S1). For each clustering method we made the following specifications: 

 

Parameter settings for simulation study: Dataset A was directly generated from model 2. 

The variance-covariance matrices Σ1, Σ2, and Σ were equivalent to the estimated 

variance-covariance matrices from the Arabidopsis methlation data. The mean vector, µ, 

and the mixing weights λ1 , λ 2 , λ 3  and λ 4 were defined arbitrarily, and were fixed at µ = 

(µ1, µ2) = (-0.5,1), λ1 0 7= . , λ 2 0 28= . , λ 3 0 01= . , λ 4 0 01= . . The variance-covariance 

matrices Σ1, Σ2, and Σ = Σ3 = Σ4 were set at: 

 

1 2

0.59 0.54 0.33 0.28 0.56 0.42
        

0.54 0.59 0.28 0.33 0.42 0.56

     
Σ = Σ = Σ =     

       
 

The parameter specifications for dataset B were equivalent to those for dataset A, except 

that the random values wj were not drawn from a mixture of bivariate normal 

distributions but from a mixture of bivariate skewed normal distribution, as implemented 

through the fMultivar package in R. To define this distribution, the skewness parameter 

a = ( , )α αx y  for components 3 and 4 were taken to be, a = −( , )3 3  and a = −( , )3 3 , 

respectively. This had the effect of producing skewness away from the diagonal of the 

bivariate plot, which is consistent with the idea that many regions in RDE components 3 

and 4 show large differences, while the bulk of the data in those components shows a less 

divergent pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3) Annotation-based genome partitioning: An example 

 

a. Implementation details 

In the main text we discussed an annotation-based genome partitioning strategy (Section 

2.1.6). This approach uses information about particular sequence contexts in the analysis 

framework. We illustrate this approach using the mouse promoter methylation data. 

Specifically, we explored the effect of distinguishing between promoters that are 

classified as CpG islands, high CpG content (but not CpG island), and low CpG content. 

This partitioning strategy may be useful insofar that it has been argued that ChIP-chip 

signals can influenced by the CpG content of particular probes or sequences (Roys et al., 

2007). The resulting signal distributions may therefore require fitting distributions with 

means and  variances that are specific to each probe or sequence set.  

The three different promoter classes considered here were obtained as follows: 

We first selected promoter sequences that met the CpG island criterion according to 

Takai, and Jones (2002), see Figure A. When plotting a histogram of the CpG content of 

the remaining promoter sequences, we noticed a bi-model distribution (see Figure B). 

This suggested to us that there are probably two additional populations of promoter 

sequences, one corresponding to high CpG content (but not CpG island) and the other 

corresponding to low CG content. We used univariate normal mixture classification 

scheme to assigned these remaining promoter sequences to the high and low CpG content 

groups.  All together this resulted in three annotation sets. Their respective sample sizes 

are shown in the Table below.  

 

High CpG

Low CpG

CpG islands

A B

 
 

 

b. Model comparisons 

For each annotation set we fitted our three mixture models (model 1, model 2 and model 

3), and selected the best fitting model. The ‘composite’ log-likelihood (as well the AIC 

value) were compared to a full model in which no distinction was made between the three 

annotation sets.  From this analysis we find overwhelming evidence against partitioning 

the data into different sequence contexts (AIC full data = 656143 versus AIC portioned 



data = 1328802) .  This means that in the case of the promoter mouse methylation data, a 

simultaneous treatment of all promoters provides more information. 

 

 

 
Annotation sets n Best fitting model Total parameters log-likelihood AIC

Full data 371694 model 3 14 -328057.8 656143

CpG islands 42164 model 3

high CpG content 164289 model 3

low CpG content 165241 model 3

42 -664358.9 1328802

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4) Supplemental Tables 

 
Below we provide a representative summary of available methods for ChIP-chip (Table 

S1) and ChIP-seq (Table S2) analysis. We classified these methods based on the 

following criteria (see columns). 

 

1. Author: author of original publication. 

2. Year: year of publication. 

3. Name: name of the algorithm, if applicable. 

4. ChIP sample comparisons: Does the method have capabilities to perform formal  

comparisons between two or more ChIP-samples. 

5. Input-normalized data: Does the method handle Input-normalized data. 

6. Method: Which data analytic approach is taken. Here we distinguish between global  

    clustering, window-based, and hybrid (Hidden Markov Models). 

7. FDR: Does the method allow for FDR control. 

8. Application: Is the application of the method specific to a particular platform or  

    chromatin modification, or can it be applied generally. 

 

From each of the two tables we chose two methods that would be best suited for a 

comparison with our mixture modeling approach. As we have pointed out in the main 

text of the manuscript, most available methods are designed for the analysis of single 

ChIP experiments. This makes it difficult to formally compare them with our approach. 

To make the comparison as meaningful as possible, we focused on general methods that 

could be applied to Input-normalized data,  and that could be compared on the basis on 

an FDR score.  We highlight in yellow those that could be considered for this purpose. 

Among them, we choose ChIPmonk and ChIPmix for the ChIP-chip data, and 

CisGenome and SISSRs for the ChIP-seq data 

 

 

Table S1: ChIP-chip methods 

 
Author Year Name ChIP sample     

comparisons

Input-normalized    

data

Method FDR Application 

Siegmund et al. 2004 none* yes no Global clustering no specific 

Buck et al. 2005 ChIPOTle no yes Window-based yes general

Ji et al. 2005 TileMap yes yes Hybrid yes general

Li et al. 2005 none no yes Hybrid no specific

Marjoram et al. 2006 none* yes no Global clustering no specific

Andrews 2007 ChIPmonk yes yes Window-based yes general

Keles 2007 TileHGMM no yes Window-based yes specific

Down et al. 2008 Batman no yes Window-based no specific

Houseman et al. 2008 none* yes no Global clustering no specific

Martin-Magniette 2008 ChIPmix no yes Global clustering yes general

 
* A clustering approach that applies to the very special Methyl-light technology. In this case, the signal distribution is quite different 

from that seen in on other platforms. It involves a two-part distribution with a single spike peak around zero and a Gaussian 

distribution for positive signal values. The resulting datasets are also considerably smaller. 

 

 



Table S2: ChIP-seq methods 

 
Author Year Name ChIP sample     

comparisons

Input-normalized    

data

Method FDR Application 

Johnson et al. 2007 PeakFinder no yes Window-based no general

Albert et al. 2008 GeneTrack no no Window-based no general

Fejes et al. 2008 FindPeaks no no Window-based yes general

Jothi et al. 2008 SISSRs no yes Window-based yes general

Valouev et al. 2008 QuEST no yes Window-based yes general

Zhang et al. 2008 MACS no yes Window-based yes general

Ji et al. 2008 CisGenome no yes Window-based yes general

Rowzowsky et al. 2009 PeakSeq no yes Window-based yes general

Zang et al. 2009 SICER no no Window-based no specific

Xu et al. 2009 ChIPDiff yes no Hybrid no specific

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5) Calculation of False Discovery Rate (FDR) and False Positive Rate (FPR) for 

RDE mapping 

 

When focus is on detecting RDE, our parametric classification approach can be 

conveniently used to calculate a conservative False Discovery Rate (FDR) or False 

Positive Rate (FPR).  To see this, define ( )d= = −D w x y , so that D  represents a new 

variable measuring the differences between sample vectors x  and y . Since the estimated 

membership probabilities of each pair jw  are known, the membership probabilities of 

D j  are also known. We treat the conditional mixture distribution { }1 2
ˆ* | C C= ∈ ∪D D D  

as the null distribution of no differentially enrichment, where 
1C  and 

2C  denote 

component 1 (RSNE) and component 2 (RSE), respectively, and ∈̂  is an estimated 

membership based on the highest posterior probability loading. Given a set of lower and 

upper quantiles, 
lq%  and 

uq% , we have a conservative estimate of the FDR and FPR as 

follows: 

( ) ( )FDR | # * # * # #u l u lq q q q≈ > + < > + <q D D D D% % % % %  

and 

FPR | # * # *u lq q≈ > + <q D D% % % , 

 

respectively, where and ( ),u lq q=q% % % . Values for lq% and uq%  can then be chosen to control 

the FDR or FPR at a desired level. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6) Supplemental Figures 

 

Figure S1 
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Figure S1. Data generation and distributions. 

Panel A shows the familiar univariate case: ChIP-chip or ChIP-seq data is obtained from 

a single tissue (e.g. stem cells), possibly by pooling from several biological replicates. 

The INPUT-normalized signal distribution reveals the characteristic bimodal shape, with 

one distribution consisting of signals from enriched regions (light-grey) and the other of 

non-enriched regions (dark-grey). Several mixture modeling approaches have been used 

for the analysis of this type of univariate data. In the bivariate (or multivariate) case 

(Panel B), univariate methods are no longer appropriate. When comparing chromatin 

profiles of two samples, the goal is to distinguish Regions with Differential Enrichment 

(RDE, green and red) from Regions with Shared Enrichment (RSE, light-grey), and 

Regions with Shared Non-Enrichment (RSNE, dark-grey). In absence of differential 

enrichment, as it should be the case with two technical replicates, the signals of the two 

samples should highly correlate and cluster along the diagonal of the bivariate scatter 

plot. Systematic off-diagonal departures are evidence for chromatin differences, and raise 

the need to account for them in a modeling context (see Figure 1 in the main text).  



 

Figure S2 
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Figure S2. Univariate and bivariate distributions of three example datasets.  

Shown are the univariate and bivariate distributions of three example datasets. Panel A: 

ChIP-chip Arabidopsis data (see main text) comparing genome-wide DNA methylation 

profiles between a wild type plant (x-axis) with that of a mutant plant (y-axis). Panel B: 

Mouse ChIP-chip data (see main text) comparing genome-wide promoter methylation in 

different cell types. For illustrative purposes we focus on the comparison of germ cells 

(x-axis) with sperm cells (y-axis). Panel C: Human genome-wide ChIP-seq data 

comparing TBP distribution in an experimental cell line with a knock-down for TBP-

associated factor BTAF1 (x-axis) with that of control cells with GAPDH knock-down (y-

axis). In each data example, the univariate distributions (top) refer to quantile normalized 

signals, and it therefore suffices to show the distribution of only one sample.  It should 

become clear that for the ChIP-chip data examples the distributions are largely consistent 

with the conceptual framework set out in Figure S1 and Figure 1.  

 

 

 

 

 

 

 

 

 



 

Figure S3 
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Figure S3: Classification results of the three data examples using alternative 

clustering methods. 

Shown are the classification results of the three real data examples discussed in the text 

using alternative clustering methods. (A) Arabidopsis methylation data, (B) Mouse 

promoter methylation data, (C) Human basal transcription factor data. The results appear 

to vary quite substantially across methods. This may be attributable to the relalively small 

RDE components that are difficult to capture without sensible constraints in the 

classification procedure, especially when sub-sampling of the data is involved (see text).  

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S4  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4: Simulation comparison with other methods. 

Shown are the simulations results for two types of datasets: (A) the data is generated 

directly from model 2 and hence all the distributional assumptions are met; (B) the 

distributional assumptions of model 2 are deliberately violated by letting data points be 

drawn from a bivariate skewed-normal mixture for RDE components 3 (red) and 4 

(green). For each these two datasets the classification performance of model 2 (1), Mclust 

(2), hclust (3) and K-means (4) (x-axis) are compared over 50 independent simulation 

replicates (see text). From these simulation replicates we estimated the expected false 

positive (FP) and false negative rate (FN) (y-axis, ranging from 0 to 1) as well as standard 

errors (error bars). The results show that model 2 provides consistently low FP and FN 

compared to other methods, even in the situation considered here where the model 

assumptions are violated. Noticeably, Mclust (2) and hclust (3) show large variation 

across simulation runs, particularly for RDE components 3 and 4. This may be 

attributable to the small mixing proportions of these components and a result of the sub-

sampling that is required to implement these methods for large datasets. 
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