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a b s t r a c t

Background: It is increasingly recognized that healthcare is a complex system with limited
resources and many interacting sources of both positive and negative feedback. Discrete-
event simulation (DES) is a tool that readily accommodates questions of capacity planning,
throughput management and interacting resources. As a result the use of DES in informing
healthcare decision making is increasing. However, understanding when and how to build
a DES model and use it for policy making is not yet a common knowledge.
Methods: The steps in building a DES model will be demonstrated using a real-world exam-
ple, i.e., pediatric ultrasound screening for hip dysplasia. The main components of a DES
model such as entities, resources and queues will be introduced and we will examine ques-
tions such as referral schedule, number of ultrasound machines and type of screeners and
how these entities interact. Finally a review of the statistical techniques appropriate to DES
will be provided.
Conclusion: Discrete-event simulation is a valuable tool in the policymakers armentarium.
It can be used effectively to analyze and understand complex healthcare systems and policy
problems such as population screening.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Simulation is any activity where an actual or proposed
system is replaced by a functioning model that approxi-
mates the same cause and effect relationship of the “real”
system. It is a tool of investigation that is most appropriately
used when for reasons of cost, ethics or feasibility real-
world trials and experiments cannot be conducted [1]. We
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use simulation best to generate evidence and support for
decisions and policy making or to generate understanding
of processes when actual experimentation is not possible.
The most common types of computer simulation models
used to inform health care decision making have been deci-
sion trees and Markov models [2].

Discrete-event simulation (DES) traces its origins to the
field of operations research where it had been primarily
used in industrial planning [5]. As the method has evolved
it has been applied to a more and more diverse settings
and has recently made inroads into healthcare. For example
cardiovascular diseases [3,4], screening [6–8], public health
and policy [9,10], cost effectiveness studies [11–14], pedi-
atrics [16,17] and epidemiology [15]. DES differs from trees
and Markov’s in several ways. Most importantly it is one of
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Fig. 1. Current situation for screening and ultrasound (US) screening.

the few methods that allow entities within a system, e.g.,
patients to interact and compete with each other. For exam-
ple, two or more end-stage liver patients may compete for
a donor liver when one becomes available [18]. In addition,
unlike most Markov models, the timing of each interaction
can be independent of fixed length Markov cycles and com-
pletely stochastic. Each interaction between entities can
create a change in the state of the system. DES is a method
best used when a decision strategy or the system being
modeled involves competition for resources, the timing of
events is not known a priori and when examining the inter-
dependence between events or the flow of information or
entities (e.g., patients) is important.

While DES is beginning to be used for health care deci-
sion and policy making [17,19–21] when and how to apply
DES, as opposed to other methods, is not well known to
the healthcare community. This article describes a clini-
cal example and explains where and why DES is used and
walks through the steps from problem conception to work-
ing model to analysis. In this process we will look closely at
the components of a DES model and how they are assem-
bled for use in health care policy making.

We will proceed in 4 steps: first, the conceptual model
and problem narrative, second the framing of the question,
third, building the actual DES model and fourth statistical
analysis appropriate to DES. Throughout this paper we will
describe and illustrate each step with examples based on
our ongoing study on the implementation possibilities of
ultrasound screening for developmental dysplasia of the
hip (DDH) in the Netherlands.

2. Step 1: conceptual model and problem narrative

A common first step in building a DES model is to cre-
ate a problem narrative or conceptual model. The process
of creating a narrative description of the problem lets the
problem stakeholders and decision makers provide direct
input into the model and (structurally) validate what the
modeler proposes to build. It is important in this collabo-
rative process to incorporate sufficient detail to satisfy the

needs of the modeler (e.g., number of resources in the sys-
tem, probability of certain events, causal relationships and
costs) and the needs of the stakeholders, reflecting their
understanding and intuition about the problem. Once com-
plete, the narrative model is then instantiated as a process
map of the system and serves as a reference point for further
discussion and refining the problem description.

2.1. Example: pediatric ultrasound screening for hip
dysplasia

“Is implementing ultrasound screening for develop-
mental dysplasia at infant health care centers (IHCs) in
the Netherlands feasible and cost-effective?”. Screening for
developmental dysplasia of the hip (DDH) is performed
in many countries [22]. Early detection helps avoid pro-
gressive pain and loss of function and ultimately total hip
replacement later in life. Currently, in the Netherlands,
screening is performed at the IHCs via physical exam. How-
ever, alternatively screening with hip ultrasound at the
age of 3 months may significantly lower the number of
false positives and be cost-effective [23,24]. The primary
stakeholders in this question are the national child health
service, health policy makers, the parents of the children,
the children and clinicians (nurses and physicians in IHCs).
Each year approximately 180,000 children are born in the
Netherlands. Each IHC serves a fixed catchment area of chil-
dren. IHCs are open only during normal office hours.

Hip ultrasound presently is reserved for children
referred by their IHC physician because of abnormal phys-
ical findings. The optimal time for a hip ultrasound for
screening is in children 3 and 4 months of age. After 4
months, the likelihood of getting the child to undergo a hip
ultrasound drops substantially. Before 3 months of age the
sensitivity and specificity of hip ultrasound is poor.

Several strategies to increase access to hip ultrasound
screening have been implemented or are currently being
explored. One alternative strategy being tested in two
regions in the Netherlands comprises training local IHC
nurses and physicians to conduct the ultrasound screening
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(see Fig. 1). In this strategy, one ultrasound machine (lap-
top) is available to each region and must circulate among
the IHCs. A major difference between this and the base-
line national screening program is that all children involved
receive hip ultrasound screening as part of their routine
3-month consultation. What remains to be defined is the
optimal configuration of these resources. For example, how
often should the ultrasound machine be transported to
each IHC and what level of skill (accuracy) do the current
clinicians need to have for this strategy to be (cost-) effec-
tive?

3. Step 2: framing the question

Framing takes the conceptual model of the system and
articulates the questions the model needs to address in a
meaningful and answerable way. When framing a question
using simulation models, one must keep foremost in mind
two things. First, pay attention to what is important to the
stakeholders. This is in part understood in the process of
creating the project narrative. A model generates the kind
of output for which it is designed. Second, define relevant
outcome measures. The outcome measures largely define
the most appropriate type of model to use and how the
model should be structured. The model frame should also
consider the available resources and tools in the hands of
the decision makers, and the time frame in which the ques-
tion must be answered. Finally, to avoid ambiguity it should
be as specific as possible.

3.1. Example: framing the pediatric ultrasound question

The stakeholders needs and interests were to a large
extent identified through creating the project narrative.
The next step is choosing meaningful outcome measures
for the problem. In this case, these are the number of
eligible patients screened, time to screening, the screen-
ing false positive and false negative rate, short-term and
long-term morbidity and cost. Next the problem needs
to be constrained to the available resources and time. An
analysis that assumes infinite resources will likely be mean-
ingless to decision makers. So the question that needs to
be answered here is whether there are there sufficient
resources in the Netherlands: human (radiologists, radio-
graphic technicians, nurses and physician man-hours),
physical plants (hospitals and/or IHCs), and financially
(budget) to perform this screening within the time-window
desired for the current patient volume? If so, what is the
optimal combination of these resources? What timeframe
are the decision makers interested in, e.g., a single year’s
budget or the lifetime health of the population being exam-
ined. The nature of this problem demands a modeling
method that can help answer questions about cost, resource
allocation and timing, i.e., a type of problem for which DES
is well suited.

4. Step 3: building the DES model

4.1. M/M/1 – the paradigmatic model

The simplest, most constrained and most paradigmatic
model for DES is the M/M/1 or single server model. This

model represents a system with a single source of arriv-
ing entities and a single resource/server for which these
entities compete. Both the arrival rate of entities and the
time it takes to process these entities are Markovian, i.e.,
independent and without memory [25,26]. A very simple
example is a bank teller with arriving customers. While
most DES become rapidly more complex as the number of
entities and resources increase and as these components
are allowed memory, the M/M/1 provides useful lessons
about the behavior of systems that can be applied to more
complex models.

4.2. Model components

There are 3 main classes of objects in a DES; entities,
resources and queues. Entities are self-contained objects,
for example, patients, physicians, organs for transplant,
medical records, etc. The entities are the moving parts of
the DES model. An easy rule-of-thumb to determine which
elements in a system are entities and which are resources
in a DES model is to ask the question “who is doing the
waiting (for a service)?”

Resources are facilities or entities that provide a service
to a dynamic entity, for example, hospital beds, operating
rooms, physicians, etc. Resource utilization is defined as the
total time a resource is occupied divided by the total time
it is scheduled to be available.

Finally, queues are waiting lists that an entity request-
ing the use of a resource enters if the resource requested
is already occupied. An entity waits in the queue until the
resource is available. Queues have their own logic and rules
called a queue disciplines [26]. For example, a queue may
follow a First In/First Out logic as in lines of people waiting
for a bank teller, Last in/First out as in passengers getting on
and off an airplane or Highest Value First as in emergency
room triage. Using this information the optimal number
of servers or fixed resources can be calculated. Queuing
models can take many forms depending on the number of
resources available and what assumptions are made about
the inter-arrival rate and service rate [26].

Common inputs are the distribution of times between
events, e.g., patient arrivals to a medical service such as
ultrasound examination or an emergency department. The
time interval for a transition in a discrete-event model
is really the event (t0) to event (t1) time. When oper-
ationalizing the problem it is convenient to break it up
into functional blocks which most DES software platforms
readily allow. The first step is to map out each process
described in the project narrative, then break these pro-
cess into smaller and smaller blocks until one comes to the
lowest functional unit in the system. The advantage of oper-
ationalizing the system model into the smallest possible
components is that it gives detailed control over simulation
processes.

Most DES languages are object oriented and come with
preset objects with which to help build models, for exam-
ple, Create, Queue, Seize, Relay, Release (see below). The
example that we present was built using Arena/SIMAN,
though there are many other DES languages one might use.
It is also possible to use generic programming languages
such as C++ [27].
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4.3. Model inputs

The main model inputs in most health care scenarios
will be arriving individual entity objects, usually patients.
Entities enter the system through instantiation, i.e., a new
instance of the entity object is created. This is usually per-
formed by class of objects dedicated to this task, usually a
module named Create or Make. Creation of these entities
may occur at either fixed intervals or stochastically, based
on some underlying probability distribution. The interval
function, f(t0–t1), in which these entities are created is
usually chosen to fit the nature of the problem and can
be derived from historic data or a hypothetical distribu-
tion.

Once a new instance of an entity is created it can be
assigned attributes, specific to the entity created, for exam-
ple, a new blank entity may be assigned age, gender and
blood type. Attributes can also be used to record the enti-
ties’ history in the model, or characterize how the entity
will respond to a variety of circumstances within the model
and potential be modified in response to interactions in the
system.

With DES it is not only possible to assign and cre-
ate different populations with distinct characteristics, but
it is also possible to let them compete for the same
resources.

4.3.1. Example: model inputs
When comparing screening or therapeutic strategies,

the modeler must be able to examine their effectiveness
in different subject populations. In most DES models, the
incoming entities, in our case newborns, are the subject
population, as well as, the primary input. We can vary the
characteristics of the subject population by varying the
attributes of the entities as they arrive in the system. As
entities enter into the system they are assigned different
values for their attributes, such as health state, age, and
gender. The value of these variables and attributes can be
absolute relative to the model, e.g., time of entry into the
system, or come from a distributions specific to the popula-
tion (discrete [.49 male, .51 female], travel time = lognormal
(10, 2)). In our example model these attributes define the
risk profile of the children.

The scenarios we initially examine are, first, a gen-
eral screening scenario where everyone in the population
is included regardless of risk profile. Second we look at
screening strategies targeting different risk strata. Finally,
we also include the populations coming from different
environments, e.g., urban, rural, affluent, poor, in the
Netherlands. Each of these populations has different risk
factors, such as, travel distance, attendance rate/propensity
to keep or miss appointments, availability of resources, etc.
These attributes can also be used to record or track the
experience and the specific entity or a group of entities
as it travels through the system. This makes tracking the
accumulating costs and benefits to individuals and cohorts
easy. The specific timing and characteristics of the enti-
ties running through the model can be created in the DES
language itself or can be imported from a spreadsheet
file.

4.4. Using resources

A resource in DES, typically involves the following
sequence of operations: queue, seize (or get), delay and
release. The queue is where the entities wait for a service.
The seize operation is where the arriving entity obtains
exclusive use of a unit of capacity of the resource. The delay
operation is the time it takes for the serving process to run
its course. The release operation frees the unit of capac-
ity of the resource which the entity had seized making it
available for the next entity to seize.

While running the model, the entities may use different
resources at different times for different durations. It is pos-
sible that a single entity can seize more than one resource
at the same time. For example, a patient entering an emer-
gency room will ‘seize’ a bed. In addition, the patient can
also seize the attention and services of one or more doctors
and/or nurses for varying periods of time, since it is the
combination of these resources that provides the relevant
service. The patient can then release or retain control of
these resources for varying lengths of time. The next patient
must wait for the necessary resources to be released.

Just like entities, resources can be assigned individual
characteristics. For example, the time it takes to complete
a process or how much capacity it has. These can be abso-
lute numbers coming from previous studies or distributions
representing the uncertainty underlying certain numbers.
Cost per unit time can also be assigned for purposes such
as cost-effectiveness analyses.

4.4.1. Example: using resources
There are many instances in this system where enti-

ties compete for resources. For example the ultrasound
machines, can only be at one IHC at any given time. This
means that when it is in use at one IHC people at other
IHCs will have to wait. In essence the capacity of the IHC
to perform ultrasound screening is 1 when the machine
is on site and 0 when it is elsewhere. The rooms in the
IHC are also limited resources, not being dedicated solely
for ultrasound screening purposes. Other clinical and non-
clinical activities compete for the use of the same room.
Another example is the screeners who perform the ultra-
sound examination. To increase this capacity means more
training. Training also implies that this resources capacity
will change over time assuming the retention rate of new
screeners is greater than their retirement. Optimization in
this problem means maximizing a conjoint resource capac-
ity at the right time in the right place while minimizing cost.
For national implementation it is also important to include
in the model the specific population and geographic char-
acteristics of the regions in which these IHCs are located.
Different travel times and different numbers of IHCs there-
fore must be included. Furthermore, when children go to
hospital for treatment they consume time, not only from
their specialist during the consult, but also time that their
parents spend instead of working (see Fig. 2).

4.5. Process pathways

The path that entities follow in a DES is not necessarily
known a priori. It can be influenced by random local events,
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Fig. 2. Example of model components.

memory of past events or changes in the system caused
by other entities moving through the system. A DES model
may also be used to model recursive and random events.
Specifically, with DES it is possible to reenter the same path
in the same run. The chance for each of the different path-
ways can be assigned either by stochastic distributions or
fixed probability values.

4.5.1. Example: process pathways
In our example there are 4 different pathways (see

Fig. 3). In our model children will reenter the same path
if parents do not show up for the ultrasound screening, but
will attend after a reminder. Note that the reminder itself
can be a entity, for example, a letter.

4.5.1.1. The breakdown of the input process in detail. The
inputs in our model are the children born in a given region,
for example, a region may average 5 children born each day.
The inter-arrival time of these children may be described
using a random exponential function with a mean of 5/day.
Next the children are assigned values for their attributes
(e.g., time in, gender, health state).

4.5.1.2. The breakdown of the detection process in detail. (1)
Children arriving at the IHC. The screening process starts
when children arrive at the IHC. The first part of this process
is planning. Children need an appointment in their third
month. Planning consists of matching an available building
(room), screener and an ultrasound machine to the patient
3 months hence. Once an available time slot or appoint-
ment is set, children receive an invitation. The second part
of the screening process is the attendance of the child at
the screening location. If parents do not show, a new invi-
tation must follow. Resources used are parents’ time (since
we use a societal perspective), planning department, trans-
portation costs, travel time, ultrasound machine, screener
and room (overhead).

(2) Ultrasound-scan. During the ultrasound-scan con-
sumables such as ultrasound-gel and towels are used. For
each appointment 10 min is needed and for this period of
time all the above-mentioned resources (room, screener
and machine) are simultaneously in use.

(3) Screening result. The screening result can be DDH+,
DDH−, or indeterminate. With DDH− no additional action
is taken and the patient exits the system. With DDH+ the
consult is delayed 5 min as the screener must give an expla-
nation and write a referral letter. Resources released upon
completion of the examination are: room, screener, ultra-
sound machine and parents. If the consult is indeterminate,
another consult is made and the child is put back in the
scheduling pathway.

(4) Treatment. Treatment is initiated when the screening
result is confirmed by the specialist. If the specialists con-
tradicts the initial ultrasound screening result, indicating a
false positive at the IHC, an unnecessary consultation and
trip to the hospital results. If the screening result is con-
firmed by the specialist, treatment is initiated. Resources
that are used are the specialist, ultrasound-scanner in the
hospital, parents’ and treatment costs.

4.5.1.3. The breakdown of the output process in detail. The
output for this model is the cost-effectiveness of the pol-
icy, i.e., the total cost divided by the number of children
detected and treated for DDH. With many simulation pack-
ages it is possible to read and write into spreadsheet files
or other types of files, readily allowing calculations such as
cost-effectiveness.

4.6. Validation

Verification and validation are important aspects of
building a (simulation) model. Verification refers to
whether the model is performing properly, i.e., does the
computer model closely resemble the conceptual model.

Fig. 3. Model pathways.
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Validation refers to whether the model is an accurate rep-
resentation of the real system. This is checked by comparing
the operational model with the real system [28] using
current or historical data of a real system. Validation of sim-
ulation models of non-existent or proposed systems is less
straightforward. One way of validating these models is to
test parts of them against sub-systems in existing systems
[27]. Another is to check the models behavior against expert
consensus.

5. Step 4: statistical analysis/experimentation

A primary purpose for building a simulation model is
to use it to experiment and compare alternative scenar-
ios. This allows identifying the optimal scenario as judged
by some output criteria. The statistical tests used to com-
pare scenarios are determined by the types of outcome
measures used. In DES the most common output types are
observational and time-weighted. Observational outputs
are equally weighted observations usually related to the
entities history. Examples are counts, waiting times, flow
times, and inter-arrival times. Time-weighted observations
are usually related to the overall state of the system. One
can think of time-weighted output as average behavior over
a period of time, for example, average queue length, status
of resources (busy, idle, etc.) and number of entities in the
system over the run-time of the model. When comparing
two strategies standard statistical tests, such as t-tests, may
be applied.

The equivalent of an experimental sample, used for sta-
tistical analysis, in DES models is usually the value of the
output measure for a single model run. For example, one
can use the number of patients treated or the average queue
length at the end of single model run as a sample. These val-
ues will vary from run to run as DES models are typically
largely stochastic. The length of the run depends in large
part on the whether or not the system being modeled is a
terminating or non-terminating system. A terminating sys-
tem is a system with a well-defined beginning and end, for
example, an outpatient clinic. This opens in the morning
and closes in the evening. A non-terminating system is a
system that does not have a clearly defined beginning or
end, for example, a 24/7 emergency room.

The appropriate number of runs, the sample size, is
dependent on the variability of the observational outputs
being examined. However, as in any situation where one
uses simulation to compare strategies it is important not to
arbitrarily increase your sample size to achieve a likewise
arbitrary level of accuracy [25]. With terminating systems
data loss will occur since some entities will not complete
their run. Therefore, for testing scenarios enough runs must
be completed to reduce the chance that distributions of
values for a given element could adversely affect a given
single run’s result, and therefore, a large number of runs
will diminish the outlier effect and produce a more nor-
mally distributed set of output indicator data.

Also in simulation model analysis, data from multiple
sources are integrated into a single explanatory and func-
tional model. Because of the synthetic nature of simulation
models care must be taken in choosing and understand-
ing the quality of the data being used and making clear its

source and assumptions. For example, it is usually prefer-
able to use empiric data ahead of expert opinion to obtain
probability distributions. Conversely, one of the intrinsic
strengths of simulation models is the ability to interpolate
missing data. However, the actual relevance of particular
data set depends on the accurate modeling of the data
measured. The variance and average values likely will be
known for a given data element, based on their real-world
data distribution. Thus a minimum number of runs will
be needed to ensure representativeness. Data on processes
that are uncommonly used in a given model will be subject
to greater error. This will require either more actual data
collected to reduce data dispersion or conversely implies
the risk introducing a great deal of variance in the model.

Computer simulation and decision analysis problems
are usually optimization problems rather than straight-
forward and standard hypothesis testing situations. When
testing competing scenarios, each of which represent com-
peting hypotheses as to which strategy is better, there
are significant similarities to randomized-controlled tri-
als. Determining confidence intervals for these problems,
however, is somewhat different and depends on the unit
of analysis (i.e., the total output from a single run of the
model). The unit of analysis in turn depends on the length
of the model run and this depends on the nature of the
system: terminating or non-terminating.

Determining the number of model runs needed for
statistically significant differences between systems and
strategies is empiric. One of the most common methods is
to start with the definition of a performance measure, for
example, patient flow time or average queue length. Next,
this is followed by a pilot study of the model. Just like a real-
world pilot study, where a few patients are exposed to the
intervention and their behavior is measured, for the DES a
small number of model runs is performed and the output
measured. This pilot, like a real-world pilot study before
a randomized-controlled trial, allows the investigator to
estimate the average value of the system output and its
variance. This average value and variance can then be used
to calculate the sample size (the number of model runs)
for your experiment using standard techniques. The num-
ber of replications should be kept to the minimum needed
to demonstrate differences between strategies, both mini-
mizing computational overhead and the risk false accuracy.

5.1. Example: 2 competing strategies and statistical
analysis

To demonstrate simply how DES can be used to exam-
ine the outcome(s) of different (competing) scenarios we
present a simplified version of our model incorporating the
variables travel time, consult time and probability of adher-
ence with the scheduled visit. It also shows the results of
a t-test for attendance rate for two competing implemen-
tation strategies. The first policy is aimed at reducing the
travel time, at the expense of a longer consultation dura-
tion, for example, at their local IHC. The second strategy
travel time is longer but the consult duration is shorter. For
example, where all the parents have to travel to a central
screening location. There is a longer travel time but on the
other hand less waiting time and consultation time. The
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Table 1
Example of statistical analysis.

Scenario 1 Scenario 2

Travel time (2×) Normal (10, 5) Normal (15, 3)
Wait time Normal (3, 5) Normal (3, 3)
Consult time Triangular (10,

12, 15)
Triangular (9,
10, 12)

Number of runs 1000 1000
Number of children 2500 2500

Mean attendance rate 95.4 79.4
Standard deviation 0.5 5.5
Minimum 94 62
Maximum 97 97
Confidence interval 95% (95.3–95.4) (79.1–79.8)
t-Test attendance rate > 85% T = 0.0 T = 1.0

outcome for comparing these strategies is the attendance
rate. The model was run 1000 times to evaluate the aver-
age attendance rate for both policies. Since we assumed
that for nationwide implementation an attendance rate of
85% would be required, a t-test is performed to see which
of the strategies attains that goal, i.e., performs signifi-
cantly above or below 85% attendance. We assumed that
parents would not attend if total expected time surpasses
50 min.

The results (Table 1) indicate that a policy using a cen-
tralized screening center to reduce overhead will increase
travel time and reduce parental attendance.

6. Conclusion

In this paper we introduced DES and a real-world exam-
ple as a vehicle to describe how to construct and analyze
a DES model. One first starts with a narrative or concep-
tual model with the aide of the problem stakeholders. This
in turn facilitates the framing of the problem in a relevant
and answerable way with the tools and resources available.
As in the example problem, DES is most readily applicable
when the problem or the system being studied involves
competition for resources, where the timing of events a
priori is not known, or when examining the interdepen-
dence between events or the flow of information or entities
(e.g., patients) is important. Finally, DES provides very use-
ful outcome measures such as wait time, flow time, and
resource utilization; metrics that are increasingly impor-
tant in healthcare problems.

A major advantage of DES is that it allows designers,
and decision and health policy makers to, as it were, make
mistakes and work out design errors on a model rather
than on the actual system. Thus the costs of correcting sys-
tems errors will be minimized dramatically as projects go
from concept to design to implementation and operation
[1]. However, when one does use simulation, the choice of
method should suit the demands of the problem. In the
case of optimizing the allocation of resources and timing
of a screening procedure such as ultrasound, DES is a very
appropriate method.

DES presents policymakers with an effective tool to sup-
port selection or redirecting of implementation strategies.
With DES policymakers can ‘play’ with capacity restrictions
and assess the effect on outcomes related to costs and effec-
tiveness or time elements (such as waiting time).
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