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a. Analytical expression for Vm using Stratton. We start with eq. 1 in the main text,

which expresses the current through a rectangular barrier:

I ∝ sinh(
eV τ

h̄
)

To find Vm, we put the derivative in a Fowler-Nordheim plot to zero. Substituting y = 1/V ,

we find:

dln(I/V 2)

d1/V
=

d

dy
(ln(sinh(

eτ

yh̄
)) + 2ln(y))

=
2

y
− eτ

h̄

1

y2
coth(

eτ

h̄y
) = 0.

Thus:

ym =
eτ

2h̄
coth(

eτ

h̄ym

)

By re-substituting ym = 1/Vm, equation 2 in the main text is obtained.

b. Full formulation of the Simmons formula. According to ref [1], a full expression for

the current density, J, through a barrier between two similar metal electrodes over the entire

voltage range is given by:

J = c{Ã + B̃ + C̃}
c =

4πme

h3

Ã = eV
∫ η−eV

0
exp(−A

√
η + φ̄− Ex)dEx

B̃ = −φ̄
∫ η

η−eV
exp(−A

√
η + φ̄− Ex)dEx

C̃ =
∫ η

η−eV
(η + φ̄− Ex)exp(−A

√
η + φ̄− Ex)dEx.

Here, A = (4π∆s/h)
√

2m, where ∆s = s2 − s1 is the width of the barrier at the Fermi

energy of the metal and φ̄ is the average barrier height. In ref [1], parts of the integrands

are neglected. The consequence of this is that for small A and/or small φ, the commonly

used Simmons expression gives unphysical results. Below, we calculate the full integrands.

Ã and B̃ are of the same form:

−
∫ e2

e1

exp(−A
√

η + φ̄− Ex)d(−Ex) > 0

By substituting y2 = η + φ̄−Ex and d(−Ex) = d(η + φ̄−Ex) = dy2 = 2ydy, this becomes:

−
∫ y2

y1

exp(−Ay) · 2ydy
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Here, y1,2 =
√

η + φ̄− e1,2. These integrals can be solved by partial integration [1]. Bound-

aries for Ã are e1 = 0, e2 = η − eV , y1 =
√

η + φ̄, y2 =
√

φ̄ + eV , yielding:

Ã =
2eV

A2
{(A

√
φ̄ + eV + 1)exp(−A

√
φ̄ + eV )− (A

√
η + φ̄ + 1)exp(−A

√
η + φ̄)}.

Boundaries for B̃ are e1 = η − eV , e2 = η, y1 =
√

φ̄ + eV , y2 =
√

φ, yielding:

B̃ = φ̄
2

A2
{(A

√
φ̄ + 1)exp(−A

√
φ)− (A

√
φ̄ + eV + 1)exp(−A

√
φ̄ + eV )}.

Like Ã and B̃, C̃ can again be solved by substituting y2 ≡ η + φ̄ − Ex and d(−Ex) =

d(η + φ̄− Ex) and partial integration.

C̃ = −2
∫ y2

y1

y3exp(−Ay)dy

Boundaries for C̃ are e1 = η − eV , e2 = η, y1 =
√

φ̄ + eV , y2 =
√

φ̄, so that:

C̃ =
2

A
{(φ̄3/2 +

3

A
φ̄ +

6

A2

√
φ̄ +

6

A3
)exp(−A

√
φ̄)

−((φ̄ + eV )3/2 +
3

A
(φ̄ + eV ) +

6

A2

√
φ̄ + eV +

6

A3
)exp(−A

√
φ̄ + eV ))}

Taking all integrals together, we can calculate J. Note that for relatively high and/or thick

barriers, i.e. if A
√

φ± eV À 1, the full expression for J reduces to eq. (26) of reference [1]:

J = J0{(φ− eV/2)exp(−A
√

φ− eV/2)−
(φ + eV/2)exp(−A

√
φ + eV/2)}.

where, J0 = e/(2πhs2).

Figure 1 shows Vm versus 1/d for each of the three equations mentioned above; eq. 26 of ref

[1], (black), eq. 1 (Stratton) in the main text (blue) and the full Simmons expression (red).

For thick barriers all three collapse on a single line. The maximum deviation between the

three is in the order of a few percent for thin barriers (around d = 5Å). These differences

are negligible compared to the spread in the experimental data as discussed in the Letter.

c. The inclusion of an image potential using Simmons. For the calculations including

the image potential it is essential to use the full formulation of Simmons. Eq. 35 of reference

[1] was used to calculate φ̄:

φ̄ =
1

∆s

∫ s2

s1

{φ0 − eV x

s
− 1.15λs2

x(s− x)
}dx.
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Here, λ = e2ln2/8πεrs, where εr is the dielectric constant. s1 and s2 are the positions where

the barrier is equal to the Fermi energy of the metal and were found numerically. Figure 2

shows the dependence of Vm on d for different φ0 (see figure 2a) and different εr (see figure

2b) using these equations.

d. Vm for alkanes using a simple coherent model of molecular transport. In Figure 3

of the Letter, we assumed EHOMO = -4 eV [2]. We also calculated Vm versus d for EHOMO

= -2.14 [3] and -3 eV (see Figure 3a). Vm saturates at a voltage Vsat above d > 9Å for all

three cases. Vsat scales linearly with EHOMO, thereby justifying TVS as a spectroscopic tool

(see Figure 3b).
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FIG. 1: Vm versus 1/d for a barrier with φ=4eV and d= 1nm. Clearly, Vm is roughly proportional

to 1/d using the three equations mentioned above; eq. 26 of ref [1] (black), eq. 1 in the main text

(Stratton, blue) and the full Simmons expression (red).
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FIG. 2: Vm versus 1/d for a) different φ0 (figure 2a, εr = 2.1) and b) different εr (figure 2b,

φ̄ = 4eV ) using the full Simmons expression with image potential.
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FIG. 3: a) Vm calculated using our coherent level model (see main text) for several positions of the

HOMO. For d > 9Å, Vm saturates to a value Vsat b) Plot demonstrating that Vsat scales linearly

with the position of the molecular HOMO level.
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