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ORIGINAL ARTICLE Reproductive genetics

Genome-wide association study in
premature ovarian failure patients
suggests ADAMTS19 as a possible
candidate gene
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background: Spontaneous premature ovarian failure (POF) occurs in 1% of women and has major implications for their fertility and
health. Besides X chromosomal aberrations and fragile X premutations, no common genetic risk factor has so far been discovered in POF.
Using high-density single nucleotide polymorphism (SNP) arrays, we set out to identify new genetic variants involved in this condition.

methods: A genome-wide association study involving 309 158 SNPs was performed in 99 unrelated idiopathic Caucasian POF patients
and 235 unrelated Caucasian female controls. A replication study on the most significant finding was performed. We specifically focused on
chromosomal areas and candidate genes previously implicated in POF.

results: Suggestive genome-wide significant association was observed for rs246246 (allele frequency P ¼ 6.0 � 1027) which mapped to an
intron of ADAMTS19, a gene known to be up-regulated in the female mouse gonads during sexual differentiation. However, replication in an
independent Dutch cohort (60 POF patients and 90 controls) could not confirm a clear association (P ¼ 4.1 � 1025 in a joint analysis). We
did not observe strong evidence for any of 74 selected POF candidate genes or linkage regions being associated with idiopathic POF in Caucasian
females, although suggestive association (P , 0.005) was observed for SNPs that mapped in BDNF, CXCL12, LHR, USP9X and TAF4B.

conclusion: We observed a possible association between POF and a SNP in a biologically plausible candidate gene. Although limited by
sample size, this proof-of-principle study’s findings reveal ADAMTS19 as a possible candidate gene for POF and thus a larger follow-up study is
warranted.
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Introduction
Spontaneous premature ovarian failure (POF) is a common disorder in
women, with a prevalence of 1% (Coulam et al., 1986). POF is charac-
terized by secondary amenorrhea before the age of 40 years along with
post-menopausal gonadotrophin levels (FSH . 40 IU/l) and very low
or undetectable anti-Müllerian hormone (AMH) levels (Knauff et al.,
2009). POF not only truncates the patients’ fertile lifespan, but also
has major implications for their long-term health (i.e. osteoporosis, car-
diovascular health and cognition). POF is usually due to premature
exhaustion of the primordial follicle pool. Although an association
with auto-immunity and macroscopic genetic aberrations has been
demonstrated, the aetiology of the great majority of spontaneous
POF cases remains unknown (Goswami and Conway, 2005).

Since family history has been shown to be the best predictor for
early menopause and strong associations have been disclosed
between the menopausal ages of mothers and daughters, sisters and
twin pairs, idiopathic POF is most likely due to genetic factors
(Cramer et al., 1995; Torgerson et al., 1997; Snieder et al., 1998;
Treloar et al., 1998; de Bruin et al., 2001; van Asselt et al., 2004a).
The incidence of familial POF is reported to be between 4 and 31%
(van Kasteren et al., 1999; Vegetti et al., 2000).

Cytogenetic abnormalities involving the X chromosome have been
identified in some POF patients, in particular XO mosaicism and X
chromosomal re-arrangements (macrodeletions and translocations)
(Schlessinger et al., 2002). The only common genetic risk factor (preva-
lence .1%) described in POF is being a carrier of a Fragile X premuta-
tion (FMR1). Sixteen percent of these carriers suffer from POF, whereas
in POF patients the prevalence of Fragile X carriership is reported to lie
between 3 and 15%, depending on familial distribution (Conway et al.,
1998; Allingham-Hawkins et al., 1999; Wittenberger et al., 2007).

Recently two familial linkage studies identified POF loci on Xq21.1–
Xq21.3.3 (in a gene named POF1B) and on 5q14.1–5q15 (Lacombe
et al., 2006; Oldenburg et al., 2008). Linkage analysis in sibling pairs
discordant for menopausal age previously performed by our group
resulted in two suggestive linkage regions on 9q21.3 and again on
Xp21.3 (van Asselt et al., 2004b). Many other POF candidate genes
have been suggested. These were mostly identified in single patients
or families, small patient groups, isolated populations or through
animal knock-out models (see Supplementary Table S1).

Using high-density oligonucleotide genotyping platforms, it is now
possible to screen millions of single nucleotide polymorphisms
(SNPs) throughout the genome of a single individual or cohort; the
so-called genome-wide association studies (GWAS). Via GWAS it is
possible to identify common genetic variants contributing to suscepti-
bility to genetically complex (or polygenic) diseases such as diabetes,
hypertension, Crohn’s disease, neurological and psychiatric disorders
(Manolio et al., 2008). We designed a GWAS using SNP arrays to
identify predisposing genetic risk factors in a well-phenotyped set of
POF patients and controls.

Materials and Methods

Study population and sample collection
From October 2004 onwards, a nationwide, standardized, systematic
screening protocol has been applied to women with suspected POF visiting

the outpatient clinics of 10 Dutch hospitals. This protocol was approved by
all the local institutional review boards and written informed consent was
obtained from all participants. Screening included a questionnaire regarding
fertility, family history and climacteric complaints, a transvaginal ultrasono-
graphy, and blood withdrawal. Blood samples were also collected in
10 ml EDTA tubes. DNA was isolated using a salting-out procedure and
frozen at 2808C until genotyping experiments were conducted.

POF was defined as at least one episode of spontaneous secondary
amenorrhea for more than 120 days (4 months), along with two measured
serum FSH levels .40 IU/L, before age 40 years, and AMH levels below
the menopause threshold of 0.086 mg/L (van Disseldorp et al., 2008). All
patients presented with spontaneous menarche, with no history of che-
motherapy, pelvic radiotherapy/surgery, or other medical conditions
known to be associated with POF. All patients were Caucasian. Their kar-
yotypes were obtained and they all underwent FMR1 premutation screen-
ing. Those with an abnormal karyotype (also including low 45,X/46,XX
mosaicism) were excluded from the current analysis. Patients with more
than 40 CGG repeats in the promotor region of the FMR1 gene were
also excluded.

DNA samples from population control women with an age at meno-
pause above 53 years were selected from the GOAL (Genetics of
ovarian ageing by linkage-analysis) study cohort, further referred to as
OldMP (van Asselt et al., 2004b). These Caucasian women had at least
12 consecutive months of spontaneous secondary amenorrhea. Genotyp-
ing data from 181 healthy Dutch female controls (mean age 60.8+
10.3 years) were added from a GWAS in amyotrophic lateral sclerosis
to increase study power, further referred to as FemC (van Es et al.,
2008). No menstruation history of these women was obtained. These
two groups formed the control cohort for the current study in Phase I.

For the replication study (Phase II), we genotyped the SNP identified in
Phase I in 60 additional POF samples and 90 OldMP females. Of the POF
cases, 19 were recruited from the ongoing research protocol in the UMC
Utrecht and nine from Phase I samples with low genome-wide call rates
(,95%). An additional 32 POF samples were recruited from the GOAL
cohort, in which women with a very early age at menopause had also
been genotyped.

Genotyping methods
In Phase I, POF cases and OldMP women were genotyped using Illumina
Infinium II Hapmap370 SNP duochips v.1.1 April 2007 (Illumina, San
Diego, CA, USA). All experiments in Phase I were carried out at the
Complex Genetics Group in the UMC Utrecht according to the manufac-
turer’s protocol. In short, 750 ng of DNA per sample was whole-genome
amplified, fragmented, precipitated and resuspended in the appropriate
hybridization buffer. Denaturized samples were then hybridized on Illu-
mina BeadChips at 488C for a minimum of 16 h. After hybridization, the
BeadChips were processed for single base extension reaction and
stained. Chips were then imaged using the Illumina Bead Array Reader.

For Phase II (replication) the most significant SNP from Phase I was gen-
otyped in the Genetic Department, UMC Groningen, using Taqman allelic
discrimination assays. PCR was carried out with mixes consisting of 15 ng
of genomic DNA, 1 � AbSolute QPCR ROX mix (AbGene Mix, Thermo
Scientific) and 1 � assay mix (Applied Biosystems, Foster City, CA, USA)
and ultraPURE distilled water (Dnase, Rnase Free, Gibco) in a 5 ml reac-
tion volume in 384-well plates (Applied Biosystems). PCR conditions
were as follows: denaturation at 958C for 15 min, followed by 40 cycles
of denaturation at 958C for 15 s, and annealing and extension at 608C
for 1 min. Allelic PCR products were analysed on the ABI Prism
7900HT sequence detecting system using SDS 2.3 software (Applied Bio-
Systems). Primer sequences for ADAMTS19 was TCTCTTGTCTC
ATTTGGGCACTTTA[G/T]AAATTTGTGGATGGCTATTTATTGG.
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Statistical analyses and quality control
Once all samples for the GWAS had been genotyped, various quality
control procedures were employed. For each sample, normalized bead
intensity data was used in BeadStudio v3.0. to call genotypes. Samples
that had an overall call rate ,95% were removed. SNPs that had a call
rate ,95%, a minor allele frequency (MAF) in the controls ,1%, or
showed deviations from Hardy–Weinberg equilibrium (HWE) in the con-
trols (Exact HWE P-Value ,0.001) were removed from subsequent
analyses.

To test for association we used Prioritizer GWA (Franke et al., 2006),
and employed a single marker test, comparing allele count frequencies
between cases and controls. Significance of association was determined
by using an allele count x2 test (1 df). As over 300 000 tests were per-
formed, we corrected for multiple testing. First, Type I errors were ascer-
tained by a quantile–quantile (Q-Q) plot, generated by plotting the
observed ordered null-allele associations against the ordered expected
associations (see Fig. 1). Then we fitted a line to the lower 90% of the dis-
tribution, of which the slope (linflation) denotes either the inflation or defla-
tion of the test statistic.

Subsequently we determined what nominal single SNP P-Value
corresponded to a P ¼ 0.05, after correction for multiple testing. A
commonly used threshold for deeming a SNP association genome-wide
significant is P ¼ 5 � 1027 (Wellcome Trust Case Control Consortium,
2007). We established through 200 permutations of the affection status
labels of our samples that a nominal P ¼ 2.0 � 1027 corresponds to
a genome-wide significance of P ¼ 0.05 on the Infinium II Hap370
platform.

For the replication analyses, we carried out Cochran–Mantel–Haenszel
allele count x2 association tests using SPSS 16.0.1 with two clusters: Phase
I (Infinium assay), Phase II (TaqMan assay). All P-values are two-tailed.

As we observed no evidence for bias in the test statistics as the Type 1
error rate (linflation ¼ 1.017) was not inflated, we present uncorrected
statistics throughout this paper.

Power calculations
Power calculations for the GWAS were performed using the Genetic
Power Calculator (http://pngu.mgh.harvard.edu/�purcell/gpc/) based
on our sample size, the average observed MAF for SNPs present on the
Illumina HumanHap370 (26%), under the assumption of a multiplicative
model and a POF prevalence of 1 per 100 (Coulam et al., 1986). Using
these parameters the genome-wide scan was 80% powered to detect
an allelic association with P , 2.0 � 1027 (which corresponds to a
genome-wide significance of P ¼ 0.05 when taking linkage disequilibrium
(LD) into account, determined using permutations) and an odds ratio
(OR) of 2.85 (see also Table I).

Linkage regions analysis
Similar to the candidate gene analysis, we first determined the most signifi-
cant SNP (allele count 1 df x2 P-value) for each of these loci and then per-
formed a permutation analysis, assuming that only one variant was
responsible for the observed linkage signal. By permuting affection status
labels 500 times (which leaves the LD structure intact), we could empiri-
cally determine the significance of association for each of these SNPs, cor-
recting for the fact that linkage regions can differ in size and in the number
of SNPs that map in them.

We also employed another procedure (allelic heterogeneity), in which
we assumed that multiple independent, but common, variants within each
of these loci might have contributed to the observed linkage signal. For
each of the loci we determined the product of the individual allele frequency
P-values for all of the SNPs that mapped in these loci. Subsequently we per-
muted the affection status labels 500 times, and in each permutation we
compared the permuted product of allele frequency P-values against the
observed product P-value, enabling us to determine a significance of
P-values, although assuming allelic heterogeneity.

Functional candidate gene analysis
We selected 74 candidate genes based on one of the three following cri-
teria: (1) incidental finding in POF patients, (2) previously tested in POF
patients or (3) animal knock-out model showed a POF-like phenotype
and the gene involved had a human homolog (see Supplementary Table
S1). For each of these candidate genes, we determined whether associated
SNPs were present that either mapped within these genes or were in
strong LD with SNPs within these genes (R2. 0.25). SNPs which are in
LD with SNPs within these genes were included, because these SNPs
might tag for a causal variant that maps within these genes.

We then determined the most significant SNP for each gene (through an
allele frequency P-value) and performed a permutation analysis, enabling us
to empirically determine the significance of each candidate gene. The reason
for this procedure was that the number of SNPs can differ considerably per

Figure 1 Q-Q plot of observed versus expected P-values.
linflation ¼ 1.017, suggesting no inflation of the test statistic.

........................................................................................

Table I Overall statistical power of study

MAF OR Power %
(P 5 0.01)

Power %
(P 5 2.0 3 1027)

0.26 3 100 89

0.26 2.83 100 80

0.26 2.5 100 54

0.26 2 92 11

Power shown was calculated for 99 cases and 235 controls, assuming a MAF of 0.26,
which corresponds to the mean MAF of all SNPs present on the oligonucleotide array.
Results are shown for four different ORs with the expected power: P ¼ 0.01 or P ¼
2.0 � 1027 (genome-wide significance).

2374 Knauff et al.
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gene, because genes vary in size and LD patterns differ. This is particularly
true for SNPs that map within or very close to the major histocompatibility
locus on chromosome 6, where LD patterns are very extensive and many
SNPs might tag the same causal variant. As such, by permuting affection
status labels 500 times (leaving the LD structure intact), we empirically
determined the significance of association for each of these candidate
genes while controlling for LD and the number of SNPs.

Results
In total, 108 POF samples and 60 OldMP samples were genotyped using
the Illumina HumanHap370 BeadChip. Nine POF samples and 6 OldMP
samples were excluded from analysis because their call rates fell below
95%. Ninety-nine POF cases (Table II) and 235 controls (54 OldMP and
181 FemC) were included for further analysis. All the POF patients had
AMH values below the menopause threshold, and most had undetect-
able AMH levels. No related individuals were identified after comparing
all the samples. In total 309 158 SNPs passed our quality control (Exact
HWE P-value .0.001 in the controls, MAF in the controls .0.01, call
rates for controls .95% and for cases .95%). Three SNPs were not
genotyped correctly upon visual inspection, and were excluded from
further analysis. A Q-Q plot analysis indicated no inflation of the test
statistics (Fig. 1) as the linflation ¼ 1.017.

One SNP achieved near genome-wide significance after correction
for multiple testing (A P-value ,5 � 107 is considered to reflect
genome-wide significance (Wellcome Trust Case Control Consortium,
2007), permutation analysis of our data indicated a genome-wide signifi-
cance threshold of P-value ,2 � 1027). SNP rs246246 was associated
with an allele frequency P-value of 5.98 � 1027. rs246246 SNP maps to
an intronic region of a gene named ADAMTS19, in a 200 kb block of LD
on chromosome 5q31, which also includes the small KIAA1024L gene
on 5q23.3 with unknown function (Fig. 2).

Since thyroid peroxidase auto-antibodies (anti-TPO) were present
in 25% of the POF samples we stratified for anti-TPO in relation to
rs246246 genotype. No relation could be identified using a two
tailed Fisher’s exact test (P ¼ 0.283).

We performed a small-scale replication study in Phase II covering
60 additional POF cases and 90 additional controls. Apart from geno-
typing rs246246 in the replication cohort, we also genotyped six
random individuals from Phase I to ensure both SNP genotyping plat-
forms generated the same genotype for each individual (concordance
rate ¼ 100%). No significant difference in MAF between cases and con-
trols from the replication cohort was observed (MAFcases ¼ 0.05 and
MAFcontrols ¼ 0.0556), resulting in P ¼ 0.83. A joint analysis (Skol
et al., 2006) of Phases I and II using a Maentel–Haenszel test resulted
in P ¼ 4.05 � 1025. Table III presents an overview of the descriptive
statistics and results for SNP rs246246 in Phase I/Phase II and the
joint analysis. An overview of all SNPs from Phase I with a P , 0.05
can be found in Supplementary Table S2.

In each of the three POF associated linkage regions (Xq21.1–
Xq21.3.3, 5q14.1–5q15 and 9q21.3), SNPs were identified that had a
nominal P-value ,0.01. However, none of these findings remained signifi-
cant after the permutation analysis, irrespective of the model assumed.

Candidate analysis of the most significant SNP revealed 29 candi-
date genes with a nominal P-value ,0.05. After permutation, five
genes (BDNF, CXCL12, LHR, USP9X and TAF4B) showed a nominal
P-value ,0.05 on gene level, which is more than expected by
chance (0.05 � 74 ¼ 3.7).

Discussion
To our knowledge, this is the first reported GWAS in POF using SNP
arrays. Our results suggest that the gene ADAMTS19, located on
chromosome 5q31, may be involved in POF. This finding will need
to be replicated in a larger and independent study population.

ADAMTS19 is a member of the large ADAMTS (a desintegrin-like
and metalloprotease with thrombospondin type 1 motif) family of
metalloproteases (metal-binding enzymes). ADAM proteins are
responsible for the proteolytic cleavage of many transmembrane pro-
teins and the release of their extracellular domain, and seem to play an
important role in gonad formation and function (Tousseyn et al., 2006;
Tamai and Nishiwaki, 2007). In a previous study on gene expression
differences between embryonic XX and XY mouse gonads using
cDNA subtraction, ADAMTS19 was shown to be significantly
up-regulated in XX gonads at the moment of sex differentiation.
Using whole-mount in situ hybridization abundant expression of
ADAMTS19 was noted during the embryonic phase of gonadal devel-
opment (Menke and Page, 2002). These findings provide a biological
plausibility to ADAMTS19 as a possible candidate gene for POF.
Other ADAMTS proteases are also widely involved in female repro-
duction; gonad formation is disrupted in Caenorhabditis elegans when
the ortholog of ADAMTS-9 and 20 is mutated, while female homozy-
gous ADAMTS1 knock-out mice had a reduced number of ovarian fol-
licles (Shindo et al., 2000). Furthermore, ADAMTS proteins seem to
play a role in ovulation processes as well as in folliculogenesis
(Richards et al., 2005; Brown et al., 2006).

The near genome-wide significance of a SNP in a study with a rela-
tively small number of patients and that it mapped to a plausible can-
didate gene like ADAMTS19 (Phase I) were the reasons to perform a

........................................................................................

Table II POF patient phenotype characteristics
(n 5 99)

Mean+++++SD %

Age at screening 36.5+7.3

1st FSH (IU/l) 82.4+29.5

2nd FSH (IU/l) 79.7+38.1

Age at menarche (years) 13.2+1.6

Age at amenorrhea (years) 31+8.1

Familial clusteringa (%) 19

46 XX karyotype (%) 100

FMR1 repeats n , 40 (%) 100

Caucasian (%) 100

AMH below menopause thresholdb (%) 100

Undetectable AMH (%) 93

Positive anti-TPO antibodies (%) 25

Adrenal antibodies (%) 2

POF ¼ premature ovarian failure; FSH ¼ follicle stimulating hormone; FMR1 ¼ Fragile
X mental retardation 1; AMH ¼ anti-Müllerian hormone; anti-TPO ¼ anti-thyroid
peroxidase.
aDefined as at least two first- or second-degree female family members with POF
(including the index patient).
bMenopause threshold for AMH is ,0.086 mg/L (van Disseldorp et al., 2008).

ADAMTS19 as candidate in POF 2375
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validation study in an independent subset of patients and controls
(Phase II).

A weakness of our study is that for Phase II, the cases were less
extensively phenotyped than in Phase I, since these samples were
taken from the GOAL cohort (van Asselt et al., 2004b). This group
was only phenotyped as POF via their last recorded, spontaneous,
menstruation date. It is possible that this phenotypic heterogeneity
interferes with the results, although there was no statistical significant
difference between the heterozygosity incidence. The 90 control
samples in Phase II were again selected from the OldMP cohort and
all had a history of spontaneous menstruations beyond the age of
52 years. Despite these limitations, we feel encouraged by the initial
robust Phase I results and think the novelty of these preliminary find-
ings are of interest for the scientific community.

Since POF is considered a complex genetic condition involving mul-
tiple genes, our genome-wide SNP data allowed us to investigate

associated SNPs in POF candidate genes identified in previous
studies (see Supplementary Table S1). After permutation analysis
five candidate genes showed higher P-values than expected. All five
have been labelled as possible candidate genes via animal models
showing a POF or POF-like phenotype. Brain-derived neurotrophic
factor (BDNF) maps on chromosome 11p13. Ovaries of BDNF
knock-out mice show loss of follicular organization, preceded by
massive oocyte death (Paredes et al., 2004). Chemokine (C-X-C
motif) ligand 12 (CXCL12) maps on chromosome 10q11.1 and is
involved in guiding primordial germ cell migration (Doitsidou et al.,
2002). Luteinizing hormone receptor (LHR) knock-out mice show a
block in pre-antral folliculogenesis in combination with underdeve-
loped sex organs (Lei et al., 2001; Zhang et al., 2001). Ubiquitin-
specific protease 9 (USP9X) is a gene required for oogenesis in
Drosophila and maps in humans in a highly POF susceptible region
on the short arm of the X chromosome (Xp11) (Jones et al., 1996).

Figure 2 Schematic 400 kb haploblock view on the long arm of chromosome five surrounding the rs246246 SNP and covering two genes:
ADAMTS19 and KIAA1024L.
(A) Indicates the combined Phase I and Phase II P-value for rs246246. (B) Shows the observed P-values for the SNPs assayed in Phase I. (C) Shows LD for
rs246246 with neighbouring SNPs, both for the SNPs in the genome-wide analysis and SNPs present within HapMap, based on the CEU population. SNP,
single nucleotide polymorphism.
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TATA box binding protein (TBP)-associated factor 4B (TAF4B) maps
on chromosome 18q11.2. Heterozygous TAF4B mice have a reduced
number of ovarian follicles (Falender et al., 2005). Although SNPs in
these genes did not show strong significance on a genome-wide
level in our study, their biological relevance might warrant attention
in future genetic studies.

In conclusion, this first-stage, GWAS in a relatively small, homo-
geneous cohort of well-phenotyped POF patients did not reveal any
common variants with genome-wide significance that confers risk to
POF. However, ADAMTS19 was identified as a potential candidate
gene for POF. Assuming that the Illumina HumanHap370 tags
human genetic variation well (Barrett and Cardon, 2006), and taking
into account the power calculations that we performed, we conclude
that the contribution of common genetic variants to POF is modest
(OR , 2.83). However, in the current study, we only assessed
common SNP variants; rare variants or common structural variants
were not investigated. As such, additional, systematic, genome-wide
analyses of POF patients using more extensive arrays, copy number
varriation (CNV) detection algorithms, and larger sample sizes are
warranted in the search for POF-associated genetic variants.
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