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We have developed a time-propagation scheme for the Kadanoff-Baym equations for general
inhomogeneous systems. These equations describe the time evolution of the nonequilibrium Green
function for interacting many-body systems in the presence of time-dependent external fields. The
external fields are treated nonperturbatively whereas the many-body interactions are incorporated
perturbatively using ®-derivable self-energy approximations that guarantee the satisfaction of the
macroscopic conservation laws of the system. These approximations are discussed in detail for the
time-dependent Hartree—Fock, the second Born, and the GW approximation. © 2009 American

Institute of Physics. [DOI: 10.1063/1.3127247]

I. INTRODUCTION

The recent developments in the field of molecular elec-
tronics have emphasized the need for further development of
theoretical methods that allow for a systematic study of dy-
namical processes such as relaxation and decoherence at the
nanoscale. Understanding these processes is of utmost im-
portance for making progress in molecular electronics,
whose ultimate goal is to minimize the size and maximize
the speed of integrated devices.' To study these phenomena,
theoretical methods must allow for the possibility to study
the ultrafast transient dynamicsz’3 up to the picosecond“’5 and
femtosecond time scale, while including Coulomb interac-
tions, without violating basic conservation laws such as the
continuity equation.6 A theoretical framework that incorpo-
rates these features is the nonequilibrium Green function ap-
proach based on the real time propagation of the Kadanoff-
Baym (KB) equations.”"* This method allows for systematic
inclusion of electron interactions while providing results in
agreement with the macroscopic conservation laws of the
system.6‘8 In two recent letters”'! we applied the KB equa-
tions to investigate the short time dynamics of atoms and
molecules in time-dependent external fields, as well as the
transport dynamics of double quantum dot devices. It is the
aim of this paper to describe in detail the underlying method
that was only briefly described in those letters. This includes
both a description of the theory as well as the time-
propagation algorithm. We further generalize the equilibrium
method, described in two recent papers,ls’16 to the nonequi-
librium domain. We also extend earlier work on the time-
propagation method of the KB equations for homogeneous
systems”’18 to the case of inhomogeneous systems. In the
inhomogeneous case we cannot take advantage of Fourier
transform techniques anymore. The KB equations become
time-dependent matrix equations instead, in which the matri-
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ces are indexed by basis function indices. The time-stepping
algorithm has to take into account the special double-time
structure of the equations which are furthermore nonlinear,
inhomogeneous, and non-Hermitian. Therefore, several stan-
dard time-propagation methods cannot be used. Our ap-
proach is different from the one presented in Refs. 17 and 18
by incorporating correlated initial states and the memory
thereof, which is described in terms of Green functions with
mixed real and imaginary time arguments. To simplify the
time-stepping procedure, we make use of several symmetry
relations of the Green function.

This paper is divided as follows: in Sec. II we present
the KB equations and their symmetry properties. In Sec. III
we discuss the conserving self-energy approximations that
we use, and in Sec. IV we present the time-propagation
method that we developed for systems described within a
general basis set representation. Finally in Sec. V we present
a summary and conclusions.

Il. THEORY

We consider a many-body system that is initially in equi-
librium at a temperature 7" and with a chemical potential .
At an initial time #; the system is exposed to a time-
dependent external field. This external field can, for instance,
be a bias voltage in a quantum transport case, or a laser
pulse. The field forces the system out of equilibrium and we
aim to describe the time evolution of this nonequilibrium
state. In second quantization the time-dependent Hamiltonian
of the system reads (throughout this paper we use atomic
units i=m=e=1)

© 2009 American Institute of Physics
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FIG. 1. (Color online) Keldysh contour. The depicted contour allows for the
calculation of observables for times #,=7=7. The initial Green function is
calculated on the imaginary track [#,,7,—iB3]. As we propagate the KB equa-
tions in time, for real times ¢>1,, the turning point of the time contour at
t=T moves to the right along the real time axis.

A() = f dx g/ (X)h(x,1)(x)

1 ~ o o o
+EJfdxldxzzﬂ(xl)lﬂT(Xz)v(l'pl'z)lﬂ(xz)lﬂ(xﬂ,
(1)

where x=(r, o) denotes the space and spin coordinates. The
two-body interaction will, in general, be a Coulombic repul-
sion of the form v(ry,r,)=1/|r;—r,|. The one-body part of
the Hamiltonian is

h(x,1) == V2 + w(x,1) - u, ()

where w(x,r) is a time-dependent external potential. The
chemical potential w of the initial equilibrium system is ab-
sorbed in the one-body part of the Hamiltonian. The expec-

tation value of an operator 0, for a system initially in ther-
modynamic equilibrium (r<ty), is given by

(0)=Tr{p0}, 3)

where p=e P10/ Tr ¢=PH0 is the statistical operator, H,, is the
time-independent Hamiltonian that describes the system be-
fore the time-dependent field is applied and B=1/kgT is the
inverse temperature. The trace here represents a summation
over a complete set of states in Fock spalce.]9 After the time-
dependent external field is switched on at time ¢, the expec-
tation value is given by

Tr{ 0(fo - iB,1p) éH(f)}
Tr{ U(fo —iB.ty)}

where OH(t)=l7(t0,t)éU(t,to) is the operator O in the
Heisenberg picture and U(t,,#,)=T [exp(~if ;Tdtfl(t))], for
t,>1,, is the time-ordered evolution operator of the system.

We further wrote exp(-BH,)=U(ty—iB.1,) as an evolution
operator in imaginary time. If we read the time arguments in
Eq. (4) from right to left we see that they follow a time-
contour as displayed in Fig. 1. This contour is also known as
the Keldysh contour.”*" A more detailed inspection of Eq.
(4) then shows that the expectation value can also be written
as a contour-ordered product.zo’zzf25 The one-particle Green
function is then defined as a contour-ordered product of a
creation and an annihilation operator

(O(1)) = (4)

J. Chem. Phys. 130, 224101 (2009)

G(1,2) == KT ()P}, (2)]), (5)

where T~ denotes the time-ordering operator on the contour
and where we used the compact notation 1=(x;,7;) and 2
=(x,,1,). If we consider the Green function at time #,=¢,
—ifB and use the cyclic property of the trace, we find that
G(x,t9—iB,2)=—G(x,1y,2).”* Hence, the Green function de-
fined in Eq. (5) obeys the boundary conditions

G(x110,2) == G(xyty— iP3,2), (6)

G(I,X2t0)=—G(1,X2t0—iB). (7)

The Green function satisfies the equation of motion

[i&,l—h(l)]G(1,2):5(1,2)+f d32(1,3)G(3,2), (8)
c

as well as a corresponding adjoint equation.g’24 In Eq. (8) the
time integration is carried out along the contour C. The self-
energy 2, incorporates the effects of exchange and correlation
in many-particle systems and is a functional of the Green
function that can be defined diagr21mmatically.9’19 The Green
function can be written as

G(1,2)=6(t,t")G~(1,2) + 6(t',1)G=(1,2), 9)

where 6 is a step function generalized to arguments on the
contour, i.e., with 6(¢,¢")=1 if ¢ is later on the contour than ¢’
and zero otherwise.” The greater and lesser components G~
and G~ respectively, have the explicit form

G (1,2) = — i) d(2)), (10)
G=(1,2) = {ghi;(2) (1)) (11)

When one of the arguments is on the vertical track of the
22
contour, we adopt the notation

G(1,x5,—im) = G=(1,Xp, 10— iT), (12)

Gl(x,—im,2) = G~ (X, 1 — iT1,2). (13)

Finally, for the case when both time arguments are on the
imaginary track of the contour, we have the so-called
Matsubara—Green function iGY, 19

iGM(x,71,%,75) = G(X,tg — i1, X0 — iT5), (14)

which is a well-known object from the equilibrium theory.
The factor i in the definition of Eq. (14) is a convention
which ensures that G¥ is a real function. The self-energy >
has a similar general structure as the Green function

3(1,2) =3H5(1,2) + 6(1,:)27(1,2) + 6(¢',)2(1,2).
(15)

The main difference with Eq. (9) is the appearance of the
term SHF which is proportional to a contour delta function
&(t,,1,) in the time coordinates.” This term has the explicit
form

EHF[G](LZ) = 5(t1’t2)2HF(X1’X2’tl)’ (16)

where
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SHE(x ), X,,1) = iG = (x, 1, X,1)v(X 1, X,)

-id(x, —xz)f dx;0(x,X3)G = (X5t,X51).
(17)

The structure of this self-energy is that of the Hartree—Fock
(HF) approximation. However, in general, we will evaluate
this expression for Green functions G obtained beyond HF
level (see Sec. III). Using the form of the self-energy of Eq.
(15) the contour integrations can be readily carried out”™
and we find separate equations for the different Green func-
tions G=,G!l and GM. To display their temporal structure
more clearly we suppress the spatial indices of the Green
functions and self-energies. Alternatively, these quantities
may be regarded as matrices.” On the imaginary track of the
contour we obtain

B
[—a,—h]GM(r)=5(7)+f d3M(r-DGM(7), (18)
0

where the Green function and the self-energy are functions
of the time-differences only, i.e., iG"(7,—7,)=G(~iT,~iT,)
and i2M(7—7,)=2(=i7|,—iT,), since the Hamiltonian is
time independent (and equal to I:IO) on the imaginary track.
Equation (18), which determines the Green function of the
equilibrium system, has been treated in detail in Refs. 15 and
16. For the other Green functions we obtain

i0,G=(t,1") = (N G=(t.1") + IT (1.1"), (19)
—i0,GZ(t,") = G= (1,1 )W (¢') + I5 (1.1'), (20)
i9,G\t,— i7) = """ () Glt,— i) + It,— i), 21)
—i0,Gl(~in,0) = Gl (= i, ) i (e) + I (- im1), (22)

where hHF(7)=h(1)+3HF(r) and 2HF(7) is given by Eq. (17).
The retarded and advanced functions for G and 2, are defined
according to

FRA(t 1) = = (£t 7 ¢)[F~(1,t") - F=(1,1")], (23)

with F replaced by G and 3, respectively. The so-called col-
lision terms /= and I'l have the form

) = f ARG (1) + f | DGAE)
0 0

B
+ lf d=\t,- iDG (- iTt), (24)

tJo

= t = t’ =

L(tt)= f diGR(t,n2=(T1') + J diG=(t,N3A(L,t")
0 0

1 (F
+- f d7G\(t,— D3 (- i71'), (25)

tJo

J. Chem. Phys. 130, 224101 (2009)
t
t,-in= f AR, DG\~ iT)
0

B
+ f a=\t,- inGM(7- 1), (26)
0

=izt = J Im(- it D3, 1)
0

B
+ f d7GM" (17— D3N(= i71). (27)
0

These equations are readily derived using the conversion
table of Ref. 20. From the symmetry relations

G=(1,1")' == G=(t'".1), (28)

SE(n,) ===t 1), (29)

it follows that we only need to calculate G~ (¢,¢') and
37(t,t'") for t>1" and G=(¢,t') and X =(¢,¢') for r=t'. These
equations imply that Ifz(t,t’):—lil(t’ ,1)". We further have

Gl(-in)=Glt,-i(B-7)T, (30)

Sl—inn =3kt,-i(B- 7). (31)

The symmetry relations (28) and (30) for the Green function
follow directly from its definition, whereas the symmetry
relations (29) and (31) for the self-energy follow from Egs.
(3.19) and (3.20) of Ref. 9. Another consequence of Eqgs.
(30) and (31) is that I'(-i7,7)=[1)(z,-i(B-7)]', which means
that, in practice, it is sufficient to calculate only 17, I;, and
1. Equations (19)—(22) are known as the Kadanoff-Baym
equations.s’

Once the Matsubara—Green function GM(7) is obtained
from Eq. (18), the Green functions G*(x==,][) can be cal-
culated by time propagation. Their initial conditions are

G~(0,0)=iGM(0Y), (32)
G=(0,0)=iGM(07), (33)
GY0,-in) =iGM(- 7), (34)
Gl(-i7,0)=iGM(7). (35)

The KB equations, together with the initial conditions, com-
pletely determine the Green functions for all times once a
choice for the self-energy has been made. The form of the
self-energy will be the topic of Sec. III.

lll. SELF-ENERGY APPROXIMATIONS

In the applications of the KB equations it is possible to
guarantee that the macroscopic conservation laws, such as
those of particle, momentum, and energy conservation, are
obeyed. Baym6 showed that this is the case whenever the
self-energy is obtained from a functional ®[G], such that
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2(1,2) =

G (36)
Such approximations to the self-energy are called conserving
or ®-derivable approximations. Well-known conserving ap-
proximations are the HF, the second Born,8 the GW,26 and
the T-matrix® approximation. In our work we implemented
the first three of these.

The second Born approximation: This approximation for
the self-energy consists of the two diagrams to second order
in the two-particle interaction®?’

3(1,2) =3HF(1,2) + 2(1,2), (37)
where SHF is the HF part of the self-energy of Eq. (16) and
3@ =300 4130 i5 the sum of the two terms

2(2“)(1,2)=—i2G(1,2)f d3d4v(1,3)

X G(3,4)G(4,3)v(4,2), (38)

320(1,2) = iZJ d3d4G(1,3)v(1,4)G(3,4)

X G(4,2)v(3,2), (39)

where v(1,2)=v(x;,X,)8(t,,%,). These terms are usually re-
ferred to as the second-order direct and exchange terms. This
approximation to the self-energy has been discussed in detail
for the equilibrium case in Ref. 15. For the nonequilibrium
case we need to calculate the various components 2*(x=
= ,]|[). These are explicitly given by

2(2“)’§(1,2)=—i2G§(1,2)J d3d4v(1,3)

X G=(3,4)G=(4,3)v(4,2), (40)

3Call(12) == izf d3d4G'(1,2)v(1,3)

xG'(3,4)G' (4,3)v(4,2), (41)

for the direct diagram, and
2@”)5(1,2):1'2[ d3d4G=(1,3)v(1,4)G=(3,4)

X G=(4,2)v(3,2), (42)

3@000(1,2) = izf d3daG"(1,3)v(1,4)GM(3,4)

x G(4,2)v(3,2), (43)

for the second-order exchange diagram. These expressions
follow immediately from Eqgs. (38) and (39) with help of the
conversion table of Ref. 20.

The GW approximation: In the GW approximation the
exchange-correlation part of the self-energy is given as a
product of the Green function G with a dynamically screened
interaction W.”® The screened interaction W satisfies the
equation

J. Chem. Phys. 130, 224101 (2009)

W(1,2)=v(1,2)+fd3d4v(1,3)P(3,4)W(4,2). (44)

Here, v is the bare Coulomb interaction, and
P(1,2)=-iG(1,2)G(2,1), (45)

is the irreducible polarization.% However, since the first term
in Eq. (44) is singular in time (proportional to a delta func-
tion) it is convenient, for numerical purposes, to define its

time-nonlocal part W=W-v.'® From Eq. (44) it follows that

v’f/(l,z)=fd3d4u(1,3)P(3,4)u(4,2)

+ f d3d4v(1,3)P(3,4)W(4,2). (46)

In terms of W, the self-energy has the form®
3(1,2) = 3HF(1,2) +iG(1,2)W(1,2). (47)

The part EC=iGW represents the correlation part of the self-
energy and has the components

32(1,2) =iG=(1,2)W=(2,1), (48)

s(1,2)=i6"(1,2) W 2,1). (49)

From the fact that W(1,2) has the same symmetries as the
contour-ordered  density response function”  y(1,2)=
—i(T[Ag(1)iy(2)]), where 71 is the density operator, it fol-
lows that

W=(2,1) = W=(1,2) = - [W=(2, DT, (50)

wl(1,2) = Wi(2,1). (51)

In the following, we will again suppress the spatial coordi-
nates in order to display the temporal structure of the equa-
tions more clearly. From the symmetry relations (50), (51),
(48), and (49), and the fact that we only need X7 (¢,t') for
t>t" and X<(¢,t') for t=t', it follows that we only need to

calculate W\(¢,—i7), and W=(z,t') for t=¢'. The latter obey
the equations:

W=(t,t") = vP=(t,t)v + vX~(1,1'), (52)

Wi, in) =vP(t,- iDv + vX\(t,— i7), (53)
where

P<(t,t')=—iG~(t,t"G”(¢',1), (54)

Plt,-in=-iGlt,- inG(-irn1), (55)

and where the terms X< and X! are given by

X<(1.1") = f P WAEL) + f dTPR(D W)
0 0

B
+ f d7P\(t,— inW(-iT 1), (56)
0
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t' _
X\t,—in) = f diPR(t, W7, - i7)
0

B
+ j d7P\(t,— iDWM(7- 1), (57)
0

with the retarded and advanced quantities defined as in Eq.
(23). The initial conditions for W< and W! are

W=(0,0) =iWwM(07), (58)
W 0,-i7) = iWM(- 7), (59)

where iWM(7—7' )=VT/(t0—i7', to—i7') is the Matsubara inter-
action discussed in detail in Ref. 16.

IV. TIME PROPAGATION OF THE KADANOFF-BAYM
EQUATIONS

In the following, we will describe the time-propagation
method which we employed to solve the KB equations. This
method can be applied to general Hamiltonians containing
one- and two-body interactions, and is further independent of
the explicit form of the self-energy.

The time-propagation method is applied to the KB equa-
tions in matrix form. This matrix form is obtained by ex-
pressing the Green function in terms of a set of basis func-
tions ¢;(x), which we choose to be HF orbitals”!>10

G(xt,x't') = 2 Gyj(t.1") pi(x) d(x"). (60)
i

When Eq. (60) is inserted in the expressions for the self-
energy we obtain a basis set representation of the self-energy
involving the matrices G;;(t,t') and the two-electron inte-
grals which are given as integrals of orbital products with the
two-body interaction v. All the quantities therefore become
time-dependent matrices and all products are to be inter-
preted as matrix products. We will, however, suppress all
matrix indices to display the temporal structure of the equa-
tions more clearly. Explicit expressions of the matrix form of
the second Born and GW self-energy are given in Refs. 7, 15,
and 16.

We start by discussing the time propagation of G~ and
G~. Due to the symmetry relations [Egs. (28) and (29)] we
only need to calculate G~ (¢,t') for t>¢ and G=(¢,t') for t
=¢'. From Egs. (19) and (20) it then follows that G~ must be
time stepped in the first time argument and G* in the second
one. We thus need to calculate G™(T+A,t') and G~(t,T
+A) for a small time-step A, from the knowledge of G=(¢,1")
for ¢,/ =T. The symmetry relations (28) then immediately
provide us with G~ (¢, T+A) and G=(T+A,t) as well. The
time-stepping procedure is illustrated in Fig. 2 that displays
the (z,1')-plane, in which at a given time T all the quantities
inside the square with sides equal to 7, are known. The time-
step G=(t,T)— G~(¢t,T+A) corresponds to a shift of the up-
per side of the time square with A, i.e., a shift from the solid
to the dotted line in Fig. 2. Similarly the time-step

J. Chem. Phys. 130, 224101 (2009)

t/

s I.’...,] ..... 0%

G<

G>

HRRR
(#H'V+I)D

T TH+A ¢t

FIG. 2. (Color online) Time stepping in the (¢,t')-plane. G~ (z,¢') is calcu-
lated for r>¢" and G=(t,t') is calculated for t=t'.

G~ (T,t')— G~ (T+A,t") corresponds to a shift of the right-
hand side of the time square with A. We further need to make
a step G=(T,T)— G=(T+A,T+A) along the time diagonal
t=t'. The propagation of G/(=ir,) and G\r,—i7) requires a
time-step in the real time coordinate ¢ for fixed imaginary
time points 7.

Note that the right-hand sides of Egs. (19)-(22) depend
on the Green functions at the times 7+A, which are not
known at time 7. We therefore carry out the time-step 7'
—T+A twice. After taking the time-step for the first time,
we recalculate the right-hand sides of Egs. (19)-(22) and
repeat the time-step 7— T+A using an average of the old
and new collision and HF terms. Since the term A"F(¢) in
Egs. (19)-(22) can attain large values, it is favorable to
eliminate this term from the time-stepping equations. For
each time-step T— T+A we therefore absorb the term in a
time-evolution operator of the form

U(t) = "1, (61)

where hMF(T)=h(T+A/2)+3HF(T), where & is the one-body
part of the Hamiltonian of Eq. (2). The one-body Hamil-
tonian A(r) is explicitly known as a function of time and can
be evaluated at half the time-step. The term 3HF is only
known at time 7 and will be recalculated in the repeated
time-step. In terms of the operator U(r) of (61) we define
new Green function matrices g*(x=s,][), as

G=(t,t) = U(t)g= (t,,1) U (1), (62)
G](fl,— in)= U(tl)g](tls_ in), (63)
Gl(=im.t) =gl=im.)U'(1y). (64)

We can now transform Egs. (19)—(22) into equations for g*.
For instance, g~ satisfies the equation

id,g” (t,t") = U (t) (W (r) — NG (1,1 U(t")
+ U (0L (1, U(). (65)

Since AP~ pHF(7) for times T<r=T+A, we can neglect for
these times the first term on the right-hand side of Eq. (65).
We then find
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G (T+ A1) =U(T+AM)g” (T+A,1,)U'(1,)
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T+A
=U(T+ A)lg>(T,t2) + f dtr?,g>(t,t2)] U'(t,)

T

U

T

where V(A) is defined as
V(A) = (RHF)I[1 — =AY, (67)

Similarly for G=, which is propagated using Eq. (20), we
find the equation

G=(1;,T+A)=G~(t;, T)U'(A) - I; (1, T)V'(A).  (68)
For time stepping along the time diagonal we use
i0G=(1,0) =[A""(0,G~(t.0)]+ [T (1.0) = [ (t.0), (69)

which follows directly from a combination of the equations
for G= of Egs. (19) and (20). The corresponding equation for
g~(t,1) on the time diagonal then becomes

i9,g~(t,1) = UT(0)[ W (r) — hHF, G=(1,0)]U(r)
+ U (0I5 (t,0) =I5 (6,0)) U(1). (70)
From this equation we then obtain
G (T+AT+AN)=UT+MNg~(T+A,T+ AU (T+A)
=U(A)G(T,T)U'(A) —iU(A)
X { f ’ drU"(r)Ile(t)] U'(a), (71)
0

where we defined I,,=I;(T,T)-1I;(T,T). By using the op-
erator expansion

¢*Be™ = B+[A,B]+3[A,[A,B]] + 1[4, 3[A,[A,B]]]

oo, (72)
it follows that
A ee]
—i f At (0)1,U(t) = >, ¢, (73)
0 n=0
where
A
cm = l_[EHF, C(n—l)]7 (74)
n+1

and CO=—iAI,. If we insert Eq. (73) into Eq. (71) we fi-
nally obtain

G(T+A,T+A)= U(A)[G<(T, T)+ >, C(”)} U'(a).

n=0
(75)

We found that keeping terms for n =3 only, yields sufficient
accuracy. We now consider the time propagation for the

T+A
U(A)G™(T,1,) - iU(A){ f die™ F<'-T>}11>(T,t2) =U(A)G™(T,t,) = V(AI] (T, 1,), (66)

mixed real and imaginary time Green functions. For g! we
have the equation

i,g\(t,— in) = U@) (W™ () - W) G(t,- i7)
+ U@ 1(1,—i7). (76)
This yields, similarly as in Egs. (66) and (68)
G(T+A,—im) = UA)GT,- in,) - VAT, ity).
(77)
Finally, for G' we have
Gl(=ir, T+A)=Gl(-ir, T)UA) = [(= ir, T)V(A).
(78)

Equations (66), (68), (71), (77), and (78) form the basis of
the time-stepping algorithm. At each time-step, it requires
the construction of the step operators U(A) and V(A) and
therefore the diagonalization of AMF for every time-step. As
mentioned before, the right-hand sides of Egs. (19)—(22) de-
pend on the Green functions at the times 7+ A which are not

known at time 7. We therefore carry out the time-step 7'

— T+A twice. The procedure is as follows:

(1) The collision integrals and 4"F at time 7 are calculated
from the Green functions for times ¢, t' <T.

(2) A step in the Green function G(T) — G(T+A) is taken
according to Egs. (66), (68), (71), (77), and (78).

(3) New collision integrals I7(T+A,7),I; (¢, T+A),I(T
+A,—i7) and I(—i7,T+A) are calculated by inserting
the new Green functions for times ¢, 1 =T+A into Egs.
(24)—(27).

(4) The values of the collision integrals and the HF self-
energy are approximated by I=(I(T)+I(T+A))/2 and
SHE (SHE(T) 1 SHE(T4+ A)) /2 where I(T) and I(T+A)
are the collision terms calculated under points (1) and
(3).

(5) The Green function is then propagated from G(T)

—G(T+A) using the average values I and A"F=h(T
+A/2)+3HF in Egs. (66), (68), (71), (77), and (78).

This concludes the general time-stepping procedure for the
Green functions.

We finally consider the calculation of W= and W' from
Egs. (52) and (53). As a consequence of the symmetry rela-

tion (50), we only need to calculate W=(¢,7') for r<t'. In a
time-step from 7 to T+A we need to calculate W<(t,T+A)
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for t=T+A from the known values of W<(¢,T) for t=T.
The first term on the right-hand side of Eq. (52) can be
calculated directly from G=(¢,T+A) and G~ (T+A,t). How-
ever, the last term X~(¢,T+A) of Eq. (52) depends on the,

still undetermined, values W<(t, T+A). We therefore employ
an iterative scheme. As a first guess for W=(t,T+A) we take
W<(t,T+A)=W=(t,T) for (=T and W<(T+A,T+A)
=W<(T,T). We therefore use the values of W= on the known

sides of the time square at time 7T (solid lines in Fig. 2) as
initial guesses for the stepped sides (dotted lines in Fig. 2) at

T+A. As an initial guess for the value of W= at the new
diagonal point (T+A,T+A), we take the value at the previ-
ous diagonal point (7,7). We then calculate the quantity
X<(¢t,T+A) for t=T+A and obtain a new value for

W=(t,T+A) from Eq. (52). This value is then inserted back
into the right-hand side of Eq. (52) and the process is re-
peated until convergence is reached. Similarly we initialize
WIT+A,—ir)=WXT,-i7) and solve Eq. (53) in the same
manner as for W=.

This concludes our derivation of the time-stepping algo-
rithm of the KB equations. The propagation method de-
scribed here has been used in two recent letters””'" where also
values for the numerical parameters are given. It is clear that
the choice of these parameters depends strongly on the type
of system considered, and on the strength of the applied ex-
ternal fields.

V. SUMMARY AND CONCLUSIONS

We presented a detailed account of the KB equations and
discussed in detail their structure, initial conditions, and
symmetries. We developed an algorithm for the time propa-
gation of the KB equations in which the symmetry relations
for the Green functions were used to reduce the set equations
that needed to be solved. In two recent letters”'" we applied
the method to the case of atoms and molecules in external
time-dependent fields and to the case of transient transport
dynamics of double quantum dots. We therefore conclude
that time propagation of the KB equations can be used as a
practical method to calculate the nonequilibrium properties
of a wide variety of many-body quantum systems, ranging
from atoms and molecules to quantum dots and quantum
wells. Moreover, the present work can be readily extended to
other Green function formalisms, such as the Nambu

J. Chem. Phys. 130, 224101 (2009)

formalism***’ for superconducting systems. Also future ex-
tension to bosonic systems is straightforward. Work along
these lines is in progress.
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