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Abstract

Background: Coral diseases are emerging as a serious threat to coral reefs worldwide. Of nine coral infectious diseases,
whose pathogens have been characterized, six are caused by agents from the family Vibrionacae, raising questions as to
their origin and role in coral disease aetiology.

Methodology/Principal Findings: Here we report on a Vibrio zinc-metalloprotease causing rapid photoinactivation of
susceptible Symbiodinium endosymbionts followed by lesions in coral tissue. Symbiodinium photosystem II inactivation was
diagnosed by an imaging pulse amplitude modulation fluorometer in two bioassays, performed by exposing Symbiodinium
cells and coral juveniles to non-inhibited and EDTA-inhibited supernatants derived from coral white syndrome pathogens.

Conclusion/Significance: These findings demonstrate a common virulence factor from four phylogenetically related coral
pathogens, suggesting that zinc-metalloproteases may play an important role in Vibrio pathogenicity in scleractinian corals.
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Introduction

Coral diseases have emerged over the last decades as a serious

threat to coral reefs worldwide [1–2], with elevated seawater

temperatures [3–5] and other anthropogenic stressors [6–7]

identified as major contributors to marine ecosystem deterioration.

Of nine coral infectious diseases, whose pathogens have been

characterized by fulfilling Henle-Koch’s postulates [8], six are

caused by agents from the family Vibrionacae [9–12], adding to

the many previously characterized Vibrio infections of shrimps

[13], clams [14] and fish [15], which date back to 1817 [16].

Other coral disease signs in the Caribbean [17–18] have also been

associated with the presence of Vibrio agents. The study of coral

disease signs in Zanzibar [19], bleached corals on the Great

Barrier Reef (GBR; [20]), black band disease signs on corals in the

Gulf of Aquaba (the Red Sea; [21]) and even growth anomalies on

Hawaiian corals [22] have all demonstrated significant correlation

between disease signs and an elevated abundance of Vibrio strains.

These newly emerging coral diseases, either caused or associated

with members of the Vibrionacae family have sparked a debate on

the origin of Vibrio pathogens and their role in the aetiology of

coral diseases: Are Vibrio pathogens the primary causative agents of

all these diseases? Are they opportunistic pathogens? Or are they

secondary infections to other unknown causes? [23–31]

In a recent study [12] we identified two novel V. coralliilyticus

strains and four additional Vibrio pathogens as causative agents of

three Indo-Pacific coral white syndromes (WS’s). In that study, a

link was demonstrated between WS disease signs on corals and the

presence of Vibrio strains possessing a zinc-metalloprotease gene

[12]. Protein homologues of this gene have been identified as key

virulence factors of Vibrio pathogens of fish [32], shrimp [33],

mollusks [34] and humans [35] acting to digest mucin and other

connective tissue components, such as collagen IV [36] and

fibronectin [37]. These enzymes have also been shown to perturb

paracellular barrier functions [38] and cause tissue necrosis [39]

including pathogen detachment from epithelial mucus [40]. Ben-

Haim et al. [41] suggested that V. coralliilyticus, the bleaching agent

of the coral Pocillopora damicornis, expresses a V. cholera–like zinc-

metalloprotease, which causes rapid photosystem II (PS II)

inactivation of Symbiodinium endosymbionts. However, little is

known about either the kinetics or the specificity of this reaction,

and under which conditions it is likely to occur. Numerous studies

have demonstrated that the zinc-metalloprotease gene is present in

Vibrio pathogenic strains, but also in non-pathogenic strains

[12,42], suggesting that this gene may not be considered an

essential virulence factor [39,43].

In this study we tested this hypothesis and the role of zinc-

metalloprotease in the pathogenicity of coral WS’s by developing two

novel bioassays. Symbiodinium cells from four coral hosts at two

locations on the GBR were isolated and grown in cultures (Z1–Z4;

Table 1) before being exposed in 96 well microtitre plates to bacterial

supernatants derived from four coral pathogens (P1–P4; Table 2) that
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have been characterized as the causative agents of coral WS’s on

Pacific reefs, i.e., on the GBR (P1), in the Republic of the Marshall

Islands (P2) and in Palau (P3–P4; [12]). In order to test the effects of

pathogen supernatants on Symbiodinium cells living in hospite, a second

bioassay was developed by rearing juveniles of Acropora millepora and

infecting them with specific Symbiodinium isolates from clades C and D

[44]. To test PS II inactivation by pathogen supernatants, this study

used an imaging pulse amplitude modulation (iPAM) fluorometer

(Walz, Germany) to measure both dark adapted PS II quantum

yields, Fv/Fm = (Fm2Fo)/Fm [45], and light adapted effective PS II

quantum yields,DF/Fm9, which estimate Symbiodinium PS II activity in

either a relaxed or active state, respectively [46–48]. Use of the iPAM

system allowed up to 96 replicates per analysis of cultured

Symbiodinium cells and up to 48 replicates per analysis of coral

juveniles. From quantum yield values, PS II inactivation (I) was

calculated as a proportion, where 1.0 represented 100% PS II

inactivation following exposure to bacterial supernatants and four

negative controls, including bacterial supernatants, whose proteolytic

activity was inhibited by EDTA (Table S1).

Results

Symbiodinium culture Z1 is most susceptible to bacterial
PS II inactivation

Symbiodinium culture Z1 isolated from the WS susceptible coral

host Montipora aequituberculata at Nelly Bay, an inshore reef off

Magnetic Island in the central GBR, was the most severely

affected of the four Symbiodinium cultures tested when exposed to

P1 supernatant under illumination (p,0.01; Fig. 1A). For

Symbiodinium culture Z1, inactivation (I) of PS II (measured as

light adapted quantum yields) was greater than 95% (mean I (Z1

DF/Fm9) = 0.96860.016) following exposure to P1 supernatant for

10 min in two independent experiments, and total PS II

inactivation resulted after 20 min (Fig. 1A). A significant (,40%;

p,0.0001) difference in mean I was measured between this

culture from Nelly Bay and culture Z2 isolated from the same

coral species found at Davies Reef, a GBR midshelf reef located

less than a 100 km away, where no signs of WS on M.

aequituberculata have been observed [mean I (Z2 DF/

Fm9) = 0.58760.021 following exposure to P1 supernatant for

10 min in two independent experiments]. The impact of P1 on

culture Z3, which was isolated from the coral Acropora tenuis at

Nelly Bay, where it has not been observed with signs of WS, was

similar to its impact on Symbiodinium culture Z2 throughout the

experiment (p = 0.426). Symbiodinium culture Z4 isolated from the

coral Acropora millepora at Nelly Bay, where it has not been observed

with WS signs at this site, was the least affected (,3%; p,0.01) of

all Symbiodinium cultures tested in this study [mean I (Z4 DF/

Fm9) = 0.03460.019 following exposure to P1 supernatant for

10 min in two independent experiments]. Control treatments with

dinoflagellate growth medium F2 (Fig. 1A) and bacterial growth

medium (MB) resulted in limited or no PS II inactivation of the

Table 1. Symbiodinium cultures Z1–Z4.

Culture Clone names1 Isolated from Location Date Genback Acc.1

Z1-1 MAEQMI 12 Montipora aequituberculata Nelly Bay Jan. 2006 EU567151

Z1-2 MAEQMI 2 Montipora aequituberculata Nelly Bay Jan. 2006 EU567152

Z2-1 MAEQDR 38 Montipora aequituberculata Davies Reef Oct. 2005 EU567155

Z2-2 MAEQDR 37 Montipora aequituberculata Davies Reef Oct. 2005 EU567156

Z2-2 MAEQDR 2 Montipora aequituberculata Davies Reef Oct. 2005 EU567157

Z3-1 ATMI 21 Acropora tenius Nelly Bay Jan. 2006 EU567160

Z3-2 ATMI 23 Acropora tenius Nelly Bay Jan. 2006 EU567167

Z3-3 ATMI 48 Acropora tenius Nelly Bay Jan. 2006 EU567168

Z4-1 AMMI V6 Acropora millepora Nelly Bay Jan. 2006 EU567158

Z4-2 AMMI V24 Acropora millepora Nelly Bay Jan. 2006 EU567159

Z4-3 AMMI 18 Acropora millepora Nelly Bay Jan. 2006 EU567170

Z4-4 AMMI 12 Acropora millepora Nelly Bay Jan. 2006 EU567174

1Sequences (,360 bp) including the ITS-1 rRNA and its flanking regions were submitted to www.ncbi.nih.nlm.gov/Genbank and are identified by clone names and
clone numbers.

doi:10.1371/journal.pone.0004511.t001

Table 2. Vibrio White Syndrome coral pathogens.

Isolated from Location Date Genbank Acc.1 LMG Acc.2

P1 Montipora aequituberculata Nelly Bay, GBR Sep. 2003 EU372917 LMG23696

P2 Acropora cytherea Marshall Islands Aug. 2004 EU372935 LMG23691

P3 Pachyseris speciosa Nikko Bay, Palau Feb. 2005 EU372934 LMG23695

P4 Pachyseris speciosa Nikko Bay, Palau Feb. 2005 EU372931 LMG23693

1Near full-length 16S rRNA sequences (.1200 bp) were submitted to www.ncbi.nih.nlm.gov/Genbank.
2Pathogen isolates were submitted to the public collection of BCCM/LMG at the Ghent University, Belgium under the following identifications: P1 = MMS1, P2 = RMI1,
P3 = MSP8, P4 = MSP13.

doi:10.1371/journal.pone.0004511.t002
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respective cultures [mean I (F2 DF/Fm9) = 0.00160.001; p,0.01,

and mean I (MB DF/Fm9) = 0 following exposure for 10 min in

two independent experiments]. Cloning and sequencing the

ribosomal RNA (rRNA) internal transcribed spacer 1 (ITS-1)

region of Symbiodinium from cultures Z1–Z4 identified Z1 and Z2

as two distinct types phylogenetically affiliated with Symbiodinium

clade A (Fig. 2). Culture Z3 was phylogentically affiliated with

Symbiodinium clade C, and Z4 contained two Symbiodinium types

affiliated with Symbiodinium clades A and D (Fig. 2).

Pathogen supernatants have a similar effect on
Symbiodinium culture Z1

Exposure of the susceptible Symbiodinium culture Z1 to

supernatants from pathogens P1–P4, resulted in total PS II

inactivation (I) in all treatments after 20 minutes (Fig. 1B;

p = 0.794). Comparisons of mean I among 16 pathogen-Symbiodi-

nium culture combinations (P1–P4 and Z1–Z4) resulted in values

ranging between 0 and 1.0 (Table 3).

Pathogen proteolytic activity is inhibited by EDTA and
reactivated by ZnCl2

EDTA was the most potent inhibitor of proteolytic activity of

bacterial supernatants P1–P4 when tested by the asocasein assay [49–

50] incorporating three standard protease inhibitors (EDTA, 1,10 Pt

and PMSF; Fig. S1A). Proteolytic activity was reduced by 98% with

the addition of 50 mM EDTA to the supernatant of pathogen P1 (1 h

incubation at 30uC; Fig. S1B) and by ,80%, on average, for

pathogens P1–P4 (Fig. S1A). Addition of 10 mM ZnCl2 reversed the

chelating effect of EDTA and reactivated the proteolytic activity of P1

supernatant to 77% of its original capacity (Fig S1C). This result

combined with results from previous screenings [12], which detected

the active zinc binding site of a metalloprotease using specific primers

Figure 1. PS II inactivation of Symbiodinium cultures by bacterial supernatants. A. PS II inactivation (I; DF/Fm9) by P1 supernatant of
Symbiodinium cultures Z1 %, Z2 m, Z3 n, Z4 & and pooled data for Z1–Z4 cultures exposed to dinoflagellate growth medium (F2) e. B. PS II
inactivation (I; DF/Fm9) of Symbiodinium culture Z1 exposed to pathogen supernatants P1 %, P2 &, P3 m, P4 n and Symbiodinium culture Z1 exposed
to dinoflagellate growth medium (F2) e C. Pooled data for PS II inactivation (I; DF/Fm9) of Symbiodinium cultures Z1–Z4 exposed to: pathogen
supernatants P1–P4 %, Pathogen supernatants P1–P4 inhibited by incubation with 50 mM EDTA for 1 h at 30uC n, a 1:1 mix of bacterial growth
medium (MB) and dinoflagellate growth medium F2 e, Dinoflagellate growth medium (F2) m. D. Pooled data for PS II inactivation (I; Fv/Fm) of
Symbiodinium cultures Z1–Z4 exposed to: pathogen supernatants P1–P4 %, Pathogen supernatants P1–P4 inhibited by incubation with 50 mM EDTA
for 1 h at 30uC n, 1:1 mix of bacterial growth medium (MB) and dinoflagellate growth medium F2 e, Dinoflagellate growth medium (F2) m. 96
microtitre plates were loaded with 2.56105 Symbiodinium cells well21. I; DF/Fm9 was based on measurements of effective light adapted quantum
yields. I; Fv/Fm was based on measurements of dark adapted quantum yields. Bars = standard errors. n = 8 measurements per treatment.
doi:10.1371/journal.pone.0004511.g001
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targeting the DNA in all pathogens (P1–P4), confirmed the presence

of a zinc-metalloprotease. Following the addition of higher ZnCl2
concentrations (50 mM and 100 mM), no recovery was detected by

the asocasein assay, suggesting that the P1 zinc-metalloprotease

requires an optimal concentration of ZnCl2 for activity (For more on

inhibition of proteolytic activity by excess ZnCl2 see Supporting

Information Text S1). Other divalent cations (NiCl2, MnCl2, MgCl2,

CaCl2, CuCl2, HgCl2 and FeCl2) failed to reactivate the P1 zinc-

metalloprotease following inhibition by EDTA (data not shown).

Symbiodinium PS II inactivation by pathogen
supernatants is inhibited by EDTA

Limited PS II inactivation was observed in all Symbiodinium

cultures after 45 min when bacterial supernatant P1 was incubated

with 50 mM EDTA (Fig. 1C). This was in contrast to strong PS II

inactivation when all cultures were exposed to non-chelated

supernatants (p,0.01) [mean I (Z1, P1 EDTA, DF/

Fm9) = 0.11960.017, mean I (Z2, P1 EDTA, DF/Fm9) = 0, mean

I (Z3, P1 EDTA, DF/Fm9) = 0.26760.015 and mean I (Z4, P1

EDTA, DF/Fm9) = 0]. The EDTA inhibition of proteolytic activity

was not significantly different among the four pathogen superna-

tants tested (P1–P4; p = 0.566), supporting the hypothesis that they

share a common virulence mechanism. Pooling all I (DF/Fm9) data

for Symbiodinium cultures (Z1–Z4) exposed to four pathogen

supernatants (P1–P4) clearly demonstrated that PS II inactivation

(I) is caused by bacterial supernatants but was absent in controls in

16 experiments (Fig. 1C; p,0.001). Addition of 50 mM EDTA to

pathogen supernatants resulted in significantly lower PS II

inactivation (p,0.01). PS II inactivation was not eliminated

completely, as shown by levels of I approaching non-EDTA

treated supernatants in the first 5 min following exposure (Fig. 1C).

However, I in EDTA treatments diminished as time progressed,

suggesting that the initial I values were due to EDTA not chelating

all zinc cations available in supernatants and therefore preventing

complete inhibition of the supernatant activity.

PS II inactivation is significantly greater when PS II
centers are active

Pathogen supernatant-exposure experiments under illumina-

tion, equal to the light intensity in the culturing incubator

(90 mmol photons m22 s21), resulted in significantly higher I of all

Symbiodinium cultures (Fig. 1C; p,0.001) in comparison to I

calculated from identical control and supernatant exposure

experiments that were conducted by measuring quantum yields

(Fv/Fm) in the dark (Fig. 1D).

Pathogen supernatants cause Symbiodinium PS II
inactivation in hospite

As Symbiodinium cells may function differently when free-living

compared to when in hospite, a second bioassay system was

developed, comprised of coral juveniles (Acropora millepora)

harbouring Symbiodinium endosymbionts from clades C or D.

Juveniles harbouring clade D (JD) Symbiodinium and exposed to

supernatant from pathogen P1 demonstrated PS II inactivation

with mean I (JD, P1, DF/Fm9) = 0.21960.022 after 10 min and

mean I (JD, P1, DF/Fm9) = 0.38960.030 after 45 min, significantly

greater PS II inactivation than found in controls (Fig. 3A; p,0.01).

I of JD exposed to P1 continued to increase reaching total

inactivation after 7 h. When 50 mM EDTA was added to

bacterial supernatants, significantly lower I values were recorded

(Fig. 3A; p,0.01). Medium F2 to which 50 mM EDTA were

added to test the direct effect of EDTA on coral juveniles had no

PS II inactivation effect on juveniles, with mean I (JD, F2+EDTA,

Figure 2. Neighbour joining phylogenetic tree of Symbiodinium
cultures Z1–Z4. Symbiodinium sequences obtained via cloning of PCR
products are presented by culture name (i.e., Z1–Z4) followed by clone
number and Genbank accession number (in brackets). Clones obtained
from Symbiodinium cultures used to infect coral juveniles appear as
Juvenile C1 and Juvenile D. Reference types representing Symbiodinium
clades were obtained from authors listed in M&M. Bootstrapping with
1000 replicates was performed and values $50% were included for
main nodes of the tree.
doi:10.1371/journal.pone.0004511.g002
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DF/Fm9) = 0 after 4 h. A. millepora juveniles infected with

Symbiodinium from clade C1 and exposed to identical treatments

demonstrated similar patterns (Fig. 3B).

Tissue lesions and Symbiodinium loss caused by
pathogen supernatant

A. millepora juveniles harboring Symbiodinium clade D and

exposed to bacterial supernatant (P1 and P3) were observed to

pale within minutes following exposure (Fig. 4A). Following

addition of bacterial supernatants, juvenile polyps retracted and

extended vigorously for a period of 30 sec before becoming

irreversibly still. Degradation of the coenosarc tissue (tissue

between polyps) was observed (Fig. 4B) and Symbiodinium cells

were clearly seen separating from juvenile tissue and accumulating

beside the host coral. Within 4 h, tissue lesions were observed

(Fig. 4C) and by 8 h only skeleton remained (Fig. 4D),

corresponding with total PS II inactivation registered by the

imaging PAM. A. millepora juveniles harboring Symbiodinium clade

C1 demonstrated similar results when exposed to both P1 and P3

supernatants, while A. millepora juveniles treated with supernatants

P1 and P3, to which 50 mM EDTA was added, did not show loss

of Symbiodinium cells or any signs of tissue lesions.

A biological dose response between P1 Supernatant and
Z1 PS II inactivation

Significant PS II inactivation of Z1 was measured by exposure

to P1 supernatant concentrations as low as 1% of the original

supernatant stock (Fig. 5A; p,0.001), with mean I (Z1, P1, 1%,

DF/Fm9) = 0.22660.028 following 10 min exposure. Total PS II

inactivation of Z1 was measured in all P1 concentrations equal

and above 25% following a 10 min exposure. In contrast, recovery

of photosynthetic activity was detected in Z1 exposed to P1

concentrations of 5% and lower. Full recovery of photosynthetic

activity was measured in Z1 cells exposed to 1% and 5%

concentrations of P1 following 5 h and 24 h, respectively (p.0.1).

In sharp contrast to the susceptible Symbiodinium culture Z1,

Symbiodinium culture Z4 was only affected by higher P1

concentrations, with total PS II inactivation measured for P1

concentrations of 50% and 100% following 2.5 h and 45 min,

respectively (Fig. 5B).

Figure 3. PS II inactivation (I) of Symbiodinium in coral juveniles. A. PS II inactivation (I; DF/Fm9) of the coral juvenile Acropora millepora
hosting Symbiodinium clade D by the pathogen supernatants P1 and P3 and four control treatments: P1 supernatant m; P3 supernatant n; P1
supernatant incubated (1 h 30uC) with 50 mM EDTA ¤; P3 supernatant incubated (1 h 30uC) with 50 mM EDTA e; Dinoflagellate growth medium (F2)
%; 1:1 mix of bacterial growth medium (MB) and dinoflagellate growth medium (F2) &. B. PS II inactivation (I; DF/Fm9) of the coral juvenile Acropora
millepora hosting Symbiodinium clade C1 by the pathogen supernatants P1 and P3 and four control treatments: P1 supernatant m; P3 supernatant n;
P1 supernatant incubated (1 h 30uC) with 50 mM EDTA ¤; P3 supernatant incubated (1 h 30uC) with 50 mM EDTA e; Dinoflagellate growth medium
(F2) %; 1:1 mix of bacterial growth medium (MB) and dinoflagellate growth medium (F2) &. I; DF/Fm9 was based on measurements of effective light
adapted quantum yields. Bars = standard errors. n = 8 measurements per treatment.
doi:10.1371/journal.pone.0004511.g003

Table 3. PS II inactivation (I) of Symbiodinium cultures Z1–Z4 by pathogen supernatants P1–P4.

I; DF/Fm9/10 min1 P12 P22 P32 P42

Z13 0.96860.016 1.060 0.96260.012 1.060

Z23 0.58760.123 0.48560.048 0.02760.027 0.70760.042

Z33 0.65960.021 0.76360.013 0.48260.021 0.67560.027

Z43 0.03460.019 0.29760.036 0.01160.011 060

1Mean PS II inactivation (I; DF/Fm96SE; n = 8) was calculated from light adapted effective quantum yields following 10 min of exposure to pathogen supernatants.
2Pathogen supernatants were obtained by growing pathogen cultures to end logarithmic phase (18 h, 27uC) with shaking (150 rpm).
3Wells in 96 microtitre plates were inoculated with 16106 cells ml21 of Symbiodinium cultures.
doi:10.1371/journal.pone.0004511.t003
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Proteolytic activity of bacterial supernatants, measured by the

asocasein assay [49–50], was found in this study to correlate to

culture cell density, with maximum activity measured when

cultures reached their end logarithmic growth phase (18 h) and

when cell density reached 16109 cells ml21 (Fig. S2A).

Enzymatic kinetics supports PS II inactivation by P1
supernatant

To explain the high efficiency of P1 in causing PS II inactivation

against in its susceptible Z1 target, we plotted Z1 I (Z1, DF/Fm9) as

a factor of P1 dose and obtained a parabolic curve (Fig. 5C) often

common in catalytic reactions. Taking the reciprocals of P1 dose

and Z1 I resulted in a linear Lineweaver-Burk [51] - ‘like’ plot

(Fig. 5D; R2 = 0.9991), where apparent km9 represents the

effective P1 supernatant concentration causing a 50% PS II

inactivation of Z1 following 10 min of exposure. We were unable

to determine an actual km and Vmax for P1 due to the fact that

the exact concentrations of both the proteolytic peptide and its yet

unknown Z1 substrate were not determined. An apparent km9 for

Z1 was calculated from the linear regression as km9 = 0.0251, i.e., a

P1 supernatant concentration of 2.5% is needed to cause a 50%

PS II inactivation of Z1 within 10 min. Taking the reciprocal for

P1 dose and Z4 PS II inactivation failed to produce the same

linear kinetics.

Virulent zinc-metalloprotease is a 86.141 kDa Vibrio
thermolysin

The putative zinc-metalloprotease suspected to cause Symbiodinium

PS II inactivation and coral tissue lesions was characterised using

nano-liquid chromatography peptide separation and mass spectrom-

etry (nano-LC/MS/MS) of proteolytically active bands derived from

all pathogen supernatants (P1–P4). These analysis produced signature

sequences consistent (by MASCOT and BLAST alignments; see

Text S2) with one common bacterial 86.141 kDa pre-propeptide

from the family of thermolysin that has been previously identified in

other Vibrio pathogens, such as V. cholera [52] and V. vulnificus [53].

Partial protein sequence alignments matched four domains of the

common zinc-metalloprotease [54]: the N-terminal domain (PepSY

propeptide and YPEB domain), the catalytic domain, the alpha

helical domain and the C-terminal domain (Fig. S3).

Discussion

Bacterial caused PS II inactivation of Symbiodinium
photosynthesis

Bacterial causative agents for coral diseases have been identified

in previous studies [11–12,55–60], including specific virulence

mechanisms that enable coral colonization and disease progression

[61–62], however, this study is the first to investigate the clinical

Figure 4. Effect of P1 supernatant on the juvenile coral host, Acropora millepora. A. millepora juvenile infected with Symbiodinium clade D
exposed under a dissecting microscope to P1 supernatant. A. Before exposure. B. 2 h following exposure. C. 4 h following exposure. D. 8 h
following exposure. Bar = 2 mm (61.6 enlargement).
doi:10.1371/journal.pone.0004511.g004
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effect of a virulence factor derived from multiple causative agents

and applied to multiple targets. Our principal findings demon-

strate that PS II inactivation of susceptible Symbiodinium cells (Z1)

by pathogen supernatants is significantly higher than PS II

inactivation of non-susceptible targets (Z2–Z4). Susceptibility of

Symbiodinium cells to bacterial PS II inactivation was supported by

demonstrating a biological dose response [63]. Partial peptide

sequencing of proteolytically active fractions derived from WS

pathogen supernatants identified a common 86.141 kDa zinc-

metalloprotease from the family thermolysin, which is suspected of

causing Symbiodinium PS II inactivation and coral tissue lesions.

Nevertheless, our preliminary exposure trials could not determine

the exact process by which bacterial zinc-metalloproteases affect

Symbiodinium photosynthesis. A similar thermolysin derived from

Bacillus thermoproteolyticus rokko has been reported to selectively

cleave chloroplast outer envelope membrane (OEM) proteins

causing PS II photoinhibition [64]. Tests performed with B.

thermoproteolyticus rokko thermolysin revealed that it can not

penetrate through the chloroplast OEM [64], but can affect about

20 OEM polypeptides [65], including components of a protein

import apparatus [66] that may indirectly influence PS II

performance.

This study identified specific Lineweaver-Burk - ‘like’ kinetics

between P1 supernatant and its susceptible Z1 target, suggesting

Figure 5. Dose response between P1 supernatant and Z1 PS II inactivation. A. Mean PS II inactivation (I; DF/Fm9) of Symbiodinium culture Z1
(2.56105 cells well21) exposed to dilutions from supernatant P1 stock: 1.0 (black line); 0.50 (green line); 0.25 (red line); 0.1 (azure line); 0.05 (orange
line); 0.01 (purple line); 0.001 (blue line), and to control treatment with dinoflagellate growth mediun F2 (grey line). B. Mean PS II inactivation (I; DF/
Fm9) of Symbiodinium culture Z4 (2.56105 cells well21) exposed to supernatant P1, to dilutions from P1 supernatant stock: 1.0 (black line); 0.50 (green
line); 0.25 (red line); 0.1 (azure line); 0.05 (orange line); 0.01 (purple line); 0.001 (blue line), and to control treatment with dinoflagellate growth
medium F2 (grey line). C. Parabolic curved plot for the correlation between P1 supernatant dose (0.001–1.0) vs. mean PS II inactivation (I; DF/Fm9) of
Symbiodinium culture Z1 following 10 min of exposure to P1. D. Lineweaver-Burk -‘‘like’’ plot with linear regression for reciprocated P1 supernatant
dose vs. reciprocated mean PS II inactivation of Z1 Symbiodinium culture following 10 min of exposure. 1/I max9 is where the linear regression line
crosses axis Y, and 21/km9 is where regression line crosses axis X. I max9 = maximum PS II inactivation, and km9 = the P1 supernatant dilution needed
to cause a 50% PS II inactivation (I; DF/Fm9) of Symbiodinium culture Z1 following 10 min of exposure. The equation obtained from the linear
regression is: Y = 0.027 X+1.071; R2 = 0.9991; km9 = 2.52%. Bars = standard errors. n = 12 measurements per treatment.
doi:10.1371/journal.pone.0004511.g005
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that PS II inactivation of Symbiodinium Z1 is potentially the result of

a specific bond between an enzyme and its target substrate. Failure

to produce similar kinetics between P1 supernatant and a non-

susceptible (Z4) target, supports the specificity of this bond and

may possibly explain why Acropora millepore coral hosts harboring

culture Z4 Symbiodinium at Nelly Bay (GBR), or Montipora

aequituberculata colonies harboring Z2 Symbiodinium at Davies Reef

(GBR) have not been observed with WS disease signs, whereas M.

aequituberculata colonies from Nelly Bay, which harbor susceptible

Z1 Symbiodinium, often display WS disease signs. Nevertheless,

further studies are needed in order to determine the specific

substrate of the zinc-metalloprotease identified in WS coral

pathogens in this study. Symbiodinium PS II inactivation by low

pathogen supernatant concentration (#5%) was found to be

reversible in this study. Recovery of full photosynthetic capacity of

Symbiodinium cells within 24 h, after short-term PS II inactivation

following low concentration exposures, suggests that zinc-metallo-

protease damage to PS II might be repairable, as demonstrated for

PS II repair by heat shock proteins [67]. Alternatively, PS II

inactivation may be caused by enzymatic cleavage of Symbiodinium

cell membranes, resulting in an irreparable cellular collapse and

Symbiodinium mortality, as observed by Cervino et al. [68] for

yellow blotch/band infections of Montastraea spp. corals in the

Caribbean. Our study, however, could not find adequate support

for this hypothesis, since total PS II inactivation occurred less than

20 sec following exposure to bacterial supernatants. Further

studies are needed to examine the pathology of Symbiodinium

exposed to coral pathogen zinc-metalloproteases. Damage to

Symbiodinium PS II has been shown to be caused by a variety of

factors including light and heat stress [69–74] associated with mass

coral bleaching [75–79], and by numerous bacterial toxins [41,80]

suggesting that PS II damage may result from independent disease

aetiologies. In order to test the hypothesis that these factors act in

synergism, specific diagnostics must be designed, such as

monoclonal antibodies that will register zinc-metalloprotease

signals in the field.

In this study, Symbiodinium isolates affiliated with clade A were

found to be both susceptible and non-susceptible to bacterial PS II

inactivation, in contrast to findings by Stat et al. [81], speculating

that clade A Symbiodinium associations with diseased corals are closer

to parasitism than to mutualism than similar associations of corals

with clade C Symbiodinium. Better knowledge of Symbiodinium

physiology and disease aetiology will assist in identifying why

specific types are more susceptible to bacterial PS II inactivation.

Further studies including the cloning and sequencing of the of zinc-

metalloprotease genes from WS pathogens will enable validation of

our current findings, potentially by utilizing mutant coral pathogen

strains that lack the zinc-metalloprotease gene, or by utilizing

differential expression and coral pathogen zinc-metalloproteases

expressed by a vector system in additional exposure trials [82]

aimed at fulfilling Koch’s molecular postulates [83].

Bacterial caused tissue lesions and Symbiodinium loss
In this study, visual observations and iPAM measurements of

exposed coral juveniles revealed three distinct phases of disease: 1.

Symbiodinium PS II inactivation; 2. paling of coral tissue through

loss of Symbiodinium cells; and 3. spread of coral tissue lesions

culminating in mortality. These signs, which were expressed by

coral juveniles in response to bacterial supernatants, were identical

to WS disease signs observed on adult corals in the field [84–85]

and during pathogen inoculation experiments [12], and further

support our previous findings, which identified Vibrio pathogens as

the primary causative agents of WS’s [12]. This is the first study to

successfully replicate WS disease signs by using cell free

supernatants.

Vibrio zinc-metalloproteases are known to perform dual

functions similar to the duality of function demonstrated by coral

zinc-metalloproteases in this study, i.e., in causing both Symbiodi-

nium PS II inactivation and coral tissue lesions. For example, in the

human pathogen Vibrio cholera, a virulent zinc-metalloprotease has

been named hemagglutinin/protease because of its dual capacity

to cause both hemagglutination and proteolytic cleavage [53,86].

The V. vulnificus elastase/protease has also been shown to possess

dual functions, enhancing vascular permeability and causing

hemorrhagic damage [87–88]. Numerous studies demonstrate that

Vibrio zinc-metalloproteases are synthesized as inactive precursors

that mature outside the bacterial cell following several processing

stages which may alter their function [89], such as the cleavage of

a C-terminal 10 kDa peptide from the V. vulnificus zinc-

metalloprotease (VVP; [90]) by a specific processing protease

[91], which mediates effective binding of V. vulnificus VVP to its

substrate. Future studies will determine whether coral pathogen

zinc-metalloproteases undergo a similar maturing process.

White syndrome is a multifactorial coral disease
Findings from our study support the classification of coral WS as

a multifactorial disease with multiple component causes [92]. We

found the expression of zinc-metalloprotease by WS coral

pathogens to be cell density dependant, with greatest proteolytic

activities measured at the end logarithmic phase, when bacterial cell

density in cultures reached 16109 cells ml21. Based on dose

response experiments, we calculated that the steady state concen-

tration of coral pathogen derived zinc-metalloprotease required to

cause a rapid and irreversible 50% PS II inactivation of susceptible

Symbiodinium cells following 10 min of exposure is equal to the dose

produced by a bacterial concentration of ,56107 cells ml21. This

calculation, although preliminary, implies that WS disease signs are

unlikely to occur in the field unless susceptible populations of

Symbiodinium cells are exposed to a high concentration of pathogenic

bacteria. Thus, the progressing band of exposed coral skeleton

typical of WS signs in the field [84–85], can be explained by the

presence of high densities of pathogens at the interface between

exposed skeleton and healthy looking tissue in progressing lesions. In

a previous study, we found that Vibrio cell densities associated with a

lesion interface were more than a 100 times higher than the cell

densities found on healthy-looking tissue [12]. In a field study, Roff

et al. [93] provided evidence that coral tissues remain photosyn-

thetically active when they are less than 10 cm away from the

interface of a progressing WS tissue lesion, suggesting that pathogen

zinc-metalloprotease concentrations may be diluted to a non-

effective dose away from a progressing tissue lesion interface.

Reductions in zinc-metalloprotease concentrations when conditions

for optimal pathogen growth are impared may also explain how

corals can recover from WS infections.

The findings by Bruno et al. [94], that both temperature and

host density influence WS disease prevalence, support the

definition of coral WS as a multifactorial disease. These two

factors, plus the requirements for primary causative agents [12] at

elevated concentrations and for susceptible target Symbiodinium

types, may all contribute to facilitating WS epizootics. Elevated

seawater temperatures have been shown to be a major

contributing factor to Vibrio cholera pandemics [95] and a necessary

factor for triggering the virulence of the coral pathogen Vibrio shiloi

[96]. Based on our findings, we postulate that optimal tempera-

tures for Vibrio WS pathogen growth may contribute directly to the

cell density dependant synthesis of zinc-metalloprotease required

for infections.
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Are Vibrio WS pathogens primary pathogens?
Opportunistic pathogens? or secondary pathogens to
other unknown causes?

Detection of Vibrio strains on both healthy and diseased

populations of fish [97], shrimps [98] and corals [24] has led to

the conclusion that Vibrio infections are opportunistic in nature [99].

The term ‘opportunistic infection’ was first defined by Utz in 1962

relating to fungal infections [100], but has since been modified to

include additional pathogen-host interactions, particulary those that

can be represented by a ‘damage-response framework’ [101], which

defines pathogenicity and host-susceptibility as coupled variant

traits. This study identified the variant traits of Symbiodinium hosts

exposed to a common zinc-metalloprotease. However, it has also

been found that the presence of a zinc-metalloprotease gene can be

detected in DNA retrieved from non-pathogenic strains, which were

unable to cause disease signs in controlled exposure trials [12]. The

presence of a zinc-metalloprotease gene in non-pathogenic Vibrio

strains, suggests that the expression of other virulence genes is

necessary for successful infections to occur. Thus we conclude that,

although all WS pathogens identified possess a zinc-metalloprotease

gene sufficient to cause rapid photoinactivation and coral tissue

lesions, not all Vibrio strains possessing this gene can be classified as

primary causative agents of WS. Genetic studies support the variant

traits of Vibrio pathogens. From over 200 V. cholera serotypes, only a

few have been shown to cause cholera pandemics, while others,

possessing partial combinations of virulent genes, were shown to

cause a gradient of attenuated disease symptoms [102–103]. Work

by Austin et al. [104] demonstrated that the coral pathogen V.

coralliilyticus [10–12] also affects rainbow trout (Oncorhynchus mykiss)

and Artemia nauplii by causing mortalities in animal models,

suggesting it may target multiple species that are not necessarily

compromised hosts by possessing broad pathogenicity. In contrast,

the virulence of the coral bleaching agent V. shiloii [9] was not

adequate to infect Oncorhynchus mykiss and Artemia nauplii [104]. In

addition, V. shiloi has recently been reported to have stopped

infecting its known coral host Oculina patagonica in the Mediterranean

Sea [105], suggesting a shift in the ‘damage-response framework’

[101], defined by Rosenberg et al. [28] as the ‘hologenome theory of

evolution’, i.e., the failure of variant pathogen-host traits to continue

producing expected disease signs. Pathogen-coral interactions may

be further complicated considering the fact that pathogens in the

marine environment perform under different conditions than those

confronted by terrestrial agents [106–107], and in particular, Vibrio

coral agents, whose survival strategy might be aimed at specializing

in ‘adaptability’ [108], rather than in an obligatory ‘selectivity’

towards specific hosts.

In conclusion, our findings support classifying coral WS’s as

multifactorial diseases, which are caused by primary Vibrio

pathogens. Based on findings from this study, Vibrio pathogens

may be involved in numerous coral disease aetiologies as

pathogens of variant traits, and may operate as primary,

opportunistic, or as secondary agents. Their ubiquity and modes

of action underline the need for further collaborative studies to

explore the complexity of roles performed by Vibrio zinc-

metalloproteases in both coral health and disease.

Materials and Methods

Coral pathogens
Four coral pathogen strains (P1–P4; Table 2), previously

identified as causative agents for white syndrome diseases (WS’s)

affecting Indo-Pacific scleractinian corals by fulfilling Henle-

Koch’s postulates [12], were examined in this study. 16SrRNA

gene sequences of all four coral pathogen strains were submitted to

GenBank under accession numbers: EU372917, EU372931,

EU372934, EU372935 (www.ncbi.nih.nlm.gov/Genbank). All

isolates were submitted to the public collection of BCCM/LMG

at the Ghent University, Belgium under accession numbers

LMG23691, LMG23693, LMG23695, LMG23696, and are

available for public acquisition (Table 2).

Growth curve and proteolytic activities of bacterial
supernatants

Each of the four bacterial pathogens (P1–P4) was inoculated into

a general heterotrophic bacterial medium, Marine Broth-2216

(Difco, USA) and grown to end logarithmic phase at 27uC with

shaking (150 rpm). Tests performed to determine the optimal

growth conditions for pathogens P1–P4, demonstrated that culture

supernatants expressed the strongest proteolytic activity when

incubated for 18 h to end logarithmic phase (Fig. S2A). Bacterial

cell density was determined by colony forming unit counts (CFU;

described by Sussman et al. [12]) and by constructing a cell density

calibration curve of absorbance (595 nn) vs. CFU (Fig. S2B).

Absorbance (595 nm) of serial culture dilutions was measured in

sterile microtitre 96 well plates (n = 6) using a Wallac Victor 2 1420

multi label counter spectrophotometer (Perkin Elmer, USA).

Bacterial supernatants used in exposure experiments were obtained

by centrifugation (12,0006 g, 20 min, 4uC) and serial filtration

through 0.45 mm and 0.22 mm filters (Millipore, USA). These

solutions were defined as bacterial supernatants P1–P4, and their

protease activity was measured by the asocasein assay [49] as

proteolytic units [50], when 1 U = 10006(OD4506CFU21)6109.

Protein concentrations in all bacterial supernatants (P1–P4) were

determined by the Biorad protein assay (Biorad laboratories, USA).

Bacterial supernatant aliquots were stored at 220uC until used.

Inhibition of proteolytic activity by EDTA and reactivation
with ZnCl2

Bacterial supernatants (P1–P4) were exposed to treatments with

four concentrations of EDTA (5 mM, 10 mm, 25 mM and

50 mM). Triplicate samples of each treatment were incubated

for 1 h at 30uC and then tested for proteolytic activity by the

asocasein assay [49–50]. Control treatments included bacterial

supernatant with no EDTA. Treatments of pathogen supernatants

inhibited by adding 50 mM EDTA and incubation (1 h, 30uC)

were used as negative control treatments in all exposure

experiments conducted in this study. The ability to reactivate

the proteolytic activity of the P1 pathogen by adding divalent

cations was tested by incubating P1 supernatant with 50 mM

EDTA (1 h at 30uC ) and adding five concentrations of ZnCl2
(5 mM, 10 mM, 25 mm, 50 mM and 100 mM). Samples were

incubated for 1 h at 30uC and then tested for proteolytic activity

by the asocasein assay [49–50] (for more information on the

inhibitory effect of excess ZnCl2 on the proteolytic activity of

pathogen supernatants see Text S1).

Inhibition by 1,10 Phenanthroline monohydrate (1,10 Pt)
and phenyl methylsulfonyl fluoride (PMSF)

1,10 Phenanthroline monohydrate (1, 10 Pt; SIGMA) was

dissolved in DDW (Millipore). Pathogen supernatants were

incubated for 1 h at 30uC with 1,10 Pt in a final concentration

of 5 mM [109]. Proteolytic activity was measured by the asocasein

assay [49–50]. PMSF (SIGMA), an alkaline serine protease

inhibitor, was dissolved in ethanol and incubated for 1 h at

30uC with pathogen supernatants in a final concentration of

5 mM [110]. Following incubation, reactions were assayed for

proteolytic activity by the asocasein assay [49–50].
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Isolation of Symbiodinium cultures from sampled corals
Colonies of Montipora aequituberculata, Acropora tenius and Acropora

millepora were collected in sterile containers at Nelly Bay, Magnetic

Island, GBR (S19 109 E 146 529), an inshore fringing reef.

Additional colonies of Montipora aequituberculata were collected at

Davies Reef, GBR (S18u819, E147u679), a midshelf reef located

less than 100 km away (Table 1). Coral tissue was removed by

airbrush, centrifuged three times (30006 g, 5 min) and resus-

pended in 0.22 mm filtered SW (25uC). Coral nematocysts were

removed by two consecutive filtrations (20 mm; Millipore, USA)

using a vacuum pump.

Symbiodinium cultures
F2 dinoflagellate growth medium for Symbiodinium was prepared

by modification of F2 and Erdschreiber media [111–112]. Briefly,

seawater supplemented with 4 mg l21 Na2HPO4, 1 g l21 NaNO3,

1 ml l21 from a 61000 concentrated A5+CO micronutrient

solution (described by Sussman et al. [113]), 2.5 mg l21 GeO2,

80 mg l21 G-Penicillin, 80 mg l21 Streptomycin, 40 mg l21

Amphotericin, 0.4 mg l21 Thiamine-HCl, 2 mg l21 Biotin and

2 mg l21 Vitamin B12 (cyanocobalamin). The growth medium was

0.22 mm filtered and stored at 4uC in the dark. Before use,

0.22 mm filtration was repeated.

Symbiodinium cultures Z1–Z4 in F2 medium were inoculated into

sterile 24 well plates (3 ml per well), covered and sealed. Plates

were incubated at 27uC under 12h:12h light:dark irradiance

(90 pmol photons m22 s21). Cells were inspected daily and

contaminated plates were discarded. Prior to experimental

exposures, Symbiodinium cells were quantified (n = 10) using a

Neubauer haemocytometer and adjusted to one concentration

(16106 cells ml21) by adding F2 medium before transferring

cultures into sterile 96 well microtitre plates (250 mL per well). An

attempt was made to maintain the original Symbiodinium popula-

tions that were associated with the host coral at the time of

isolation rather than to purify and maintain single axenic cultures

[114], which would have less ecological relevance when tested for

their susceptibility to pathogen supernatants. In order to confirm

the taxonomic identity of Symbiodinium types in each culture,

cloning of Symbiodinium DNA was performed at the time of

isolation from corals and prior to using the incubated cultures for

experimental procedures. Experiments exposing Symbiodinium cells

to bacterial supernatants and controls were repeated twice to

confirm the consistency of results. A full description of treatments

is presented in table S1.

PS II dark adapted quantum yields (Fv/Fm) and PS II
inactivation (I)

96 well microtitre plates containing Symbiodinium cells (16106

cells ml21) were incubated in the dark (1 h) and centrifuged (5 min

at 30006g). F2 medium was discarded and wells were loaded with

treatment solutions. Plates were exposed in a Maxi imaging-pulse-

amplitude-modulation (iPAM) fluorometer (Walz, Germany) to a

saturation light pulse (Gain = 1–2, Intensity = 1–2, Saturation

Pulse = 7) at 5 min intervals and dark adapted PS II quantum

yields were calculated by using the formula: Fv/Fm = (Fm2F0)/

Fm [45], where Fm = maximal fluorescent yield, and F0 = Dark

fluorescent yield. From Fv/Fm values, PS II inactivation values (I)

were calculated as proportions by using the formula: I (Fv/Fm

) = (Fv/Fm at time 02Fv/Fm at time n)/Fv/Fm at time 0, where 1.0

represented 100% PS II inactivation, following exposure to

proteolytically-active and EDTA-inhibited bacterial supernatants

and three additional controls (Table S1).

PS II effective light-adapted yields (DF/Fm9) and PS II
inactivation (I)

The identical procedure for sample preparation before

measurement of dark adapted yields was repeated before

measuring effective light adapted yields. This step confirmed the

results obtained from reading photosynthetic inactivation as a

proportion of dark adapted yields. Some authors also consider it as

a better estimate for photosynthetic function [115], because

quantum yields are measured when the cells are photosynthetically

active. 96 well microtitre plates were prepared as described above.

Each plate was dark adapted first and Fm, F1 and dark adapted

quantum yields (Fv/Fm) were recorded at 5 min intervals for a

period of 30 min, until consistent levels were obtained. Plates were

then centrifuged as described above and returned to the imaging

PAM chamber for initial light adapted measurements. An actinic

light source of 90 pmol m22 s21 was switched on in the measuring

chamber and cultures were exposed to a saturation light pulse at

5 min intervals for a period of 30 min until it was confirmed that

readings of effective light adapted quantum yields were stable

(Gain = 1–2, Intensity = 1–2, Saturation Pulse = 7). Plates were

then removed from the chamber and centrifuged. F2 medium was

discarded from the plates and without further delay, plates were

returned to the imaging PAM to be loaded with treatment

solutions. Plates remained in the imaging PAM chamber under

illumination for the entire duration of the experiment. The

continuous measurement at 5 min intervals was preferred to the

alternative of dark adapting the samples before each single light

adapted reading, due to the nature of the experiment. Although

photochemical quenching was not fully relaxed, this procedure

allowed closer surveillance of the continuous effects of bacterial

supernatant on PS II photosynthesis, as it might occur under

environmentally relevant conditions, where corals are constantly

exposed to light during the day and for longer periods during the

summer compared to winter. A similar protocol was used by

Schreiber et al. [116] to measure PS II photoinhibition caused by

the toxic effects of diuron, suggesting that since quantum yields are

calculated from the ratio of fluorescent values before (Ft) and after

(Fm9) firing a constant saturation pulse, results are independent of

signal amplitudes. According to Schreiber et al. [116], 100 sec

intervals between consequent saturation pulses (SP) were sufficient

to allow complete reoxidation of QA and re-establishment of the

original Ft levels. Light adapted effective quantum yields (DF/Fm9)

were calculated by the formula: (Fm92Ft)/Fm9 [46], where

Fm9 = maximal fluorescent yield under light conditions and

Ft = fluorescence before a saturating pulse. PS II inactivation (I)

was calculated (as a proportion) from light adapted effective

quantum yields (DF/Fm9) as described above. An alternative

method for calculating PS II inactivation by comparing PS II

quantum yields of treatments with PS II quantum yields of

negative controls at corresponding times [116] was tested and

provided similar results.

Taxonomic identities of Symbiodinium cultures
DNA was extracted from Symbiodinium cultures incubated at

27uC or directly from corals [117] and amplified using primers

targeting the ribosomal RNA (rRNA) internal transcribed spacer 1

region (ITS-1; [118]). PCR products were cloned (pCR 2.1 TOPO

kit, Invitrogen, CA) and inserts containing plasmid DNA were

amplified with a 59- tet fluorescently labelled ITS-1 forward

primer and then screened on a single strand conformation

polymorphism (SSCP) gel before sequencing [119]. Retrieved

nucleotide sequences (,360 bp) including the ITS-1 rRNA and its

flanking regions were edited using Chromas Lite software version

2.01 (Technelysium) and aligned using ClustalX version 1.83
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[120]. Distance matrices were calculated using the DNADIST

program in PHYLIP [121] and phylogenetic trees were generated

from distance matrices using the neighbour-joining method [122]

and Kimura substitution algorithm [123]. Bootstrapping with

1000 replicates was performed using SeqBoot as integrated in

PHYLIP [124] and values $50% were included for main nodes of

the tree. Ribosomal RNA sequences of Symbiodinium microadriaticum

amplified with the ITS-1 primers and cloned were submitted to

GeneBank (www.ncbi.nih.nlm.gov/Genbank) under the accession

numbers EU567151–567152, EU567155–567160, EU567167–

567168, EU567170, EU567174 (Table 1). Reference Symbiodinium

types for phylogenetic analyses were obtained from the following

authors: AJ311944 [125], AF380532, AF380537, AF380543,

AF380546 [118], DQ238587 [126], AY457958 [127],

AF334660 [128], AF396629 [129], EF455526, EF455528 [130],

out group Heterocapsa sp. FK6-D47 AB084097 [131].

Experimental coral juveniles
Rearing coral juveniles (Acropora millepora) and infecting them

with Symbiodinium clades D and C1 was performed following the

protocol of Little et al. [44]; [for details see Supporting

Information Text S3]. Individual A. millepora juveniles infected

with Symbiodinium clades D and C1 were placed in 48 well plates

and exposed to the following treatments (n = 4): 1. F2 dinoflagel-

late medium; 2. P1 supernatant diluted 1:1 with sterile seawater; 3.

P3 supernatant diluted 1:1 with sterile seawater; 4. P1 supernatant

diluted 1:1 with sterile F2 medium, treated with 50 mM EDTA

and incubated for 1 h at 30uC; 5. P3 supernatant diluted 1:1 with

sterile F2 medium, treated with 50 mM EDTA and incubated for

1 h at 30uC; 6. bacterial medium (LB) mixed 1:1 with

dinoflagellate medium (F2). All EDTA and non-EDTA treatments

were incubated for 1 h at 30uC prior to use. Plates were

acclimatized for five days prior to exposure. Measurements and

calculation of PS II dark and light adapted quantum yields and PS

II inactivation were performed as described above. For measure-

ments of PS II effective light adapted quantum yields (DF/Fm9), an

actinic light source of 5 pmol m22 s21, identical to light intensity

in the field, was switched on in the measuring chamber of the

imaging PAM. Well plates containing A. millepora juveniles

identical to those exposed to pathogen supernatants and controls

under the imaging PAM were exposed and photographed under

identical conditions (5-pmol m22 s21, 27uC) at 30 min intervals

using a dissecting microscope (61.6) and a digital camera.

Pathogen concentration experiment
Symbiodinium cultures (Z1 and Z4) were prepared as described

above. Pathogen supernatant concentrations were prepared by

diluting 0.22 mm filtered P1 supernatant with modified F2

medium to end concentrations of 50%, 25%, 10%, 5%, 1% and

0.1% from original stock. Effective light adapted quantum yield

(DF/Fm9) was measured under illumination as described above and

PS II inactivation (I) was calculated. I of Symbiodinium culture Z1

and concentrations of P1, as proportions of 1.0, were plotted

resulting in a parabolic curve (Fig. 5C). Reciprocating data for Z1

PS II inactivation (I) and P1 concentrations resulted in a

Lineweaver-Burk [51] - ‘like’ linear plot (Fig. 5D), commonly

used to describe the relation between substrate concentration (S)

and reaction velocity (V). The term ‘like’ is used in this study, since

neither the substrate for bacterial supernatants nor the products of

their catalytic activity were determined. It was thus assumed that

both supernatant dose and PS II inactivation (I) values are good

estimates of S and V. The linear equation (y = ax+b) was used to

determine 1/km9, when y = 0 and, with km’ defined as the

concentration of P1 needed to cause a 50% PS II inactivation (I) of

the susceptible Symbiodinium culture Z1 within 10 min following

exposure.

Protein sequence retrieval
Bacterial cultures P1–P4 were grown (1.8 L) and crude extracts

were derived by ammonium sulphate precipitation [38] and ultra

filtration (Amicon 5,000 M MWCO, Millipore, USA) before

screening by fast protein liquid chromatography (FPLC). 10 mL

from all 72 FPLC-derived fractions were assayed for proteolytic

activity by the asocasein assay [49–50] and selected samples were

run on zymogen gels containing 0.1% Na-casein as substrate

[132]. Active fractions were re-run on a 12% SDS-PAGE [133]

and bands were excised for nano-liquid chromatography peptide

separation and mass spectrometry. LC/MS/MS data were

searched using Mascot (Matrix Science, London, UK) and

bacterial entries in the NCBI non-redundant protein database

[134]. Additional information on FPLC and nano-LC/MC/MC

protocols appears in Supporting Information Text S2.

Statistical Analysis
Means and standard errors (SE) for bacterial colony forming unit

(CFU) counts, for absorption readings (bacterial cell density and

proteolytic activity), for PS II dark adapted quantum yields and light

adapted effective quantum yields were compared among treatments

using One-Way ANOVA (Statistica, StatSoft, Inc. USA). CFU

counts are presented in this study using logarithmic scales. Means and

standard errors (SE) for PS II inactivation (as a proportion of 1.0) in

all exposure experiments (treatments and controls) were compared

using multivariate repeated measures MANOVA (Statistica, StatSoft,

Inc. USA), which does not rest on the assumption of sphericity and

compound symmetry [135]. Four multivariate tests of significance

were applied (Wilks’ Lambda, Pillai-Bartlett Trace, Hotelling-Lawley Trace,

and Roy’s Largest Root) with non-significant results used to overrule any

previous assumptions of statistical significance. Significant results

were determined when a#0.05.

Supporting Information

Figure S1 Inhibition of proteolytic activity of Vibrio pathogens.

Legend for Fig. S1 can be found in Supporting Information file S1

Found at: doi:10.1371/journal.pone.0004511.s001 (0.49 MB EPS)

Figure S2 Pathogen P1 growth conditions. A. Mean bacterial

cell density (absorbance 595 nm) vs. incubation time (27uC with

shaking at 150 rpm) appears in grey, and mean proteolytic activity

in Units determined by the asocasein assay (black line) vs.

incubation time. B. Calibration curve for cultures of pathogen P1:

mean cell density (CFU) vs. mean cell density (absorbance

595 nm). n = 6 measurements per treatment. Additional informa-

tion on Fig. S2 can be found in Supporting Information file S2.

Found at: doi:10.1371/journal.pone.0004511.s002 (1.80 MB EPS)

Figure S3 Zinc-metalloprotease conserved domains. Domains of

a 86.141 kDa pre-propeptide, a zinc-metalloprotease derived from

coral pathogen supernatants (P1–P4). Propeptide (pink); PepSY

(propeptide and YPEB domain; yellow); Catalitic domain (green);

a-helical domain (azure); C-terminal domain (red). P1–P4 partial

protein sequence alignments (BLAST/MASCOT) matched se-

quences of four conserved domains from previously identified

Vibrio zinc-metalloproteases: Pathogen supernatant P3 - PepSY

(propeptide and YPEB domain; yellow); Pathogen supernatant P3

- Catalitic domain (green); Pathogen supernatant P2–P4 - a-helical

domain (blue); Pathogen supernatant P1 - C-terminal domain

(red). Additional information on Fig. S3 can be found in

Supporting Information file S3.
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Found at: doi:10.1371/journal.pone.0004511.s003 (1.01 MB EPS)

Text S1 Effect of ZnCl2 on proteolytic activity

Found at: doi:10.1371/journal.pone.0004511.s004 (0.03 MB

DOC)

Text S2 Rearing coral juveniles

Found at: doi:10.1371/journal.pone.0004511.s005 (0.03 MB

DOC)

Text S3 Protein sequence retrieval

Found at: doi:10.1371/journal.pone.0004511.s006 (0.03 MB

DOC)

Table S1 Bioassay of Symbiodinium cultures; treatment allocation. 1

Each 96 well micro titre plate was loaded with equal aliquots from

three Symbiodinium cultures (250 mL = 16106 cells ml21). Treat-

ments (250 mL per well) were added at experimental begin. Plates

were rotated by 180u during the experiment in order to verify that

PS II yield readings from the edges of the microtitre plates were

identical to those obtained from its inner parts. 2 Treatments with

50 mM EDTA were incubated for 1 h at 30uC before being used

for exposure experiments. Treatments without EDTA were

incubated under the same conditions (1 h, 30uC).

Found at: doi:10.1371/journal.pone.0004511.s007 (0.03 MB

DOC)

Supporting Information File S1 Supporting Information file

S1 contains the legend of Figure S1

Found at: doi:10.1371/journal.pone.0004511.s008 (0.03 MB

DOC)

Supporting Information File S2 Pathogen P1 growth condi-

tions

Found at: doi:10.1371/journal.pone.0004511.s009 (0.02 MB

DOC)

Supporting Information File S3 Zinc-metalloprotease con-

served domains

Found at: doi:10.1371/journal.pone.0004511.s010 (0.02 MB

DOC)
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45. Havaux M, Lütz C, Grimm B (2003) Chloroplast membrane photostability in
chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol 132:

300–310.

46. Genty B, Briantais JM, Baker NR (1989) The relationship between the

quantum yield of photosynthetic electron transport and quenching of
chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92.

47. Ralph PJ, Larkum AWD, Kuhl M (2005) Temporal patterns in effective
quantum yield of individual zooxanthellae expelled during bleaching. JEMBE

316: 17–28.

48. Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD (2005) Coral
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