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ABSTRACT

We introduce a new adaptive and fully Bayesian grid-based method to model strong gravita-
tional lenses with extended images. The primary goal of this method is to quantify the level
of luminous and dark mass substructure in massive galaxies, through their effect on highly
magnified arcs and Einstein rings. The method is adaptive on the source plane, where a De-
launay tessellation is defined according to the lens mapping of a regular grid on to the source
plane. The Bayesian penalty function allows us to recover the best non-linear potential-model
parameters and/or a grid-based potential correction and to objectively quantify the level of
regularization for both the source and potential. In addition, we implement a Nested-Sampling
technique to quantify the errors on all non-linear mass model parameters – marginalized over
all source and regularization parameters – and allow an objective ranking of different potential
models in terms of the marginalized evidence. In particular, we are interested in comparing
very smooth lens mass models with ones that contain mass substructures. The algorithm has
been tested on a range of simulated data sets, created from a model of a realistic lens system.
One of the lens systems is characterized by a smooth potential with a power-law density
profile, 12 include a Navarro, Frenk and White (NFW) dark matter substructure of different
masses and at different positions and one contains two NFW dark substructures with the same
mass but with different positions. Reconstruction of the source and lens potential for all of
these systems shows the method is able, in a realistic scenario, to identify perturbations with
masses �107 M� when located on the Einstein ring. For positions both inside and outside of
the ring, masses of at least 109 M� are required (i.e. roughly the Einstein ring of the perturber
needs to overlap with that of the main lens). Our method provides a fully novel and objective
test of mass substructure in massive galaxies.

Key words: gravitational lensing – galaxies: haloes – galaxies: structure – dark matter.

1 IN T RO D U C T I O N

At the present time, the most popular cosmological model for struc-
ture formation is the � cold dark matter (�CDM) paradigm. While
this model has been very successful in describing the Universe
on large scales and in reproducing numerous observational results
(e.g. Reiss et al. 1998; Burles, Nollett & Turner 2001; Jaffe et al.
2001; Percival et al. 2001; Phillips et al. 2001; Croft et al. 2002; de
Bernardis et al. 2002; Efstathiou et al. 2002; Hamilton & Tegmark
2002; Spergel et al. 2003; Tonry et al. 2003; Komatsu et al. 2008),
important discrepancies still persist on small scales. In particular,
some of these involve the dark matter distribution within galactic
haloes (e.g. Moore 1994; Burkert 1995; McGaugh & de Blok 1998;
Binney & Evans 2001; de Blok, McGaugh & Rubin 2001; de Blok

�E-mail: vegetti@astro.rug.nl

& Bosma 2002; McGaugh, Barker & de Blok 2003; Simon et al.
2003; Rhee et al. 2004; Kuzio de Naray et al. 2006) and the number
of galaxy satellites, i.e. the Missing Satellite Problem.

According to the standard scenario, structures form in a hierar-
chical fashion via merging and accretion of smaller objects (Toomre
1977; Frenk et al. 1988; White & Frenk 1991; Barnes 1992; Cole
et al. 2000). As shown by the latest numerical simulations, in which
high mass and force resolution is achieved, the progenitor pop-
ulation is only weakly affected by virialization processes and a
large number of subhaloes are able to survive after merging. The
number of substructures within the Local Group, however, is pre-
dicted to be one to two orders of magnitude higher than what is
effectively observed (e.g. Kauffmann, White & Guiderdoni 1993;
Klypin et al. 1999; Moore et al. 1999, 2001; Diemand, Kuhlen &
Madau 2007a,b).

Two different classes of solutions have been suggested to alle-
viate this problem, cosmological and astrophysical. Cosmological
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2 S. Vegetti and L. V. E. Koopmans

solutions address the basis of the �CDM paradigm itself and mostly
concentrate on the properties of the dark matter, allowing for exam-
ple, for a warm (Colin, Avila-Reese & Valenzuela 2000), decaying
(Cen 2001), self-interacting (Spergel & Steinhardt 2000), repul-
sive (Goodman 2000) or annihilating nature (Riotto & Tkachev
2000). Alternatively, the �CDM picture can be modified by the
introduction of a break of the power spectrum at the small scales
(e.g. Kamionkowski & Liddle 2000; Zentner & Bullock 2003).

From an astrophysical point of view, the number of visible
satellites can be reduced by suppressing the gas collapse/cooling
(e.g. Bullock, Kravtsov & Weinberg 2000; Kravtsov, Gnedin &
Klypin 2004; Moore et al. 2006) via supernova feedback, photoion-
ization or reionization. This would result in a high mass-to-light
ratio (M/L) in the substructures. If these high-M/L substructures
indeed exist, different methods for indirect detection are possible.
The dark substructure may be detectable, for example, through its
effects on stellar streams (e.g. Ibata et al. 2002; Mayer et al. 2002),
via γ -rays from dark matter annihilation (Bergström et al. 1999;
Calcáneo-Roldán & Moore 2000; Stoehr et al. 2003; Colafrancesco,
Profumo & Ullio 2006) or through gravitational lensing (e.g. Dalal
& Kochanek 2002; Koopmans 2005).

While the first two approaches are limited to the local Universe,
gravitational lensing allows one to explore the mass distribution of
galaxies outside the Local Group and at a relatively high redshift.
Moreover, gravitational lensing is independent of the baryonic con-
tent, the dynamical state of the system and the nature of dark matter.
For example, when in a lens system a point source is close to the
caustic fold or cusp, the sum of the image fluxes should add to zero
if the sign of the image parities is taken into account (Blandford &
Narayan 1986; Zakharov 1995). This relation is, however, violated
by many observed lensed quasars with cusp and fold images. As
first suggested by Mao & Schneider (1998), these flux ratio anoma-
lies can be related to the presence of (dark matter) substructure
around the lensing galaxy on scales smaller than the image sepa-
ration (Bradač et al. 2002; Chiba 2002; Dalal & Kochanek 2002;
Metcalf & Zhao 2002; Keeton, Gaudi & Petters 2003; Bradač et al.
2004; Kochanek & Dalal 2004; Keeton, Gaudi & Petters 2005).
Nevertheless, subsequent studies of similar gravitationally lensed
systems have shown that the required mass fraction in substructure
is higher than what is obtained in numerical simulations (Mao et al.
2004; Macciò & Miranda 2006; Diemand et al. 2007a). In addition,
for a significant number of cases, the observed flux ratio anoma-
lies can be explained by taking into account the luminous dwarf
satellite population (Ros et al. 2000; Trotter, Winn & Hewitt 2000;
Koopmans & Treu 2002; Kochanek & Dalal 2004; Chen et al. 2007;
McKean et al. 2007; More et al. 2008). Whether the mass fraction
of CDM substructures is quantifiable via flux ratio anomalies is
therefore a question still open for debate. Alternatively, Koopmans
(2005) showed that dark matter substructure in lensing galaxies can
be detected by modelling of multiple images or Einstein rings from
extended sources.

In this paper, we developed an adaptive grid-based modelling
code for extended lensed sources and grid-based potentials, to
fully quantify this procedure. The method presented here is a sig-
nificant improvement of the techniques introduced by Warren &
Dye (2003), Dye & Warren (2005), Koopmans (2005), Suyu &
Blandford (2006), Suyu et al. (2006) and Brewer & Lewis (2006).
In order to detect mass substructure in lens galaxies, one needs to
solve simultaneously for the source surface brightness distribution
and the lens potential. A semilinear technique for the reconstruc-
tion of grid-based sources, given a parametric lens potential, was
first introduced by Warren & Dye (2003). The method was sub-

sequently extended by Koopmans (2005) and Suyu & Blandford
(2006) in order to include a grid-based potential for the lens and by
Barnabè & Koopmans (2007) to include galaxy dynamics. Dye &
Warren (2005) introduced an adaptive gridding on the source plane;
this would minimize the covariance between pixels and decrease
the computational effort. However, the method is still lacking an
objective procedure to quantify the level of regularization. Suyu
et al. (2006) and Brewer & Lewis (2006) encoded the semilinear
method within the framework of Bayesian statistics (MacKay 1992,
2003). Although a vast improvement, the fixed grids do not allow
us to take into account the correct number of degrees of freedom
and proper evidence comparison is difficult. In the implementation
here described, these issues have been solved:

(i) the procedure is fully Bayesian; this allows us to determine the
best set of non-linear parameters for a given potential and the linear
parameters of the source, to objectively set the level of regularization
and to compare/rank different potential families;

(ii) using a Delaunay tessellation, the source grid automatically
adaptives in such a way that the computational effort is mostly
concentrated in high-magnification regions;

(iii) the source-grid triangles are recomputed at every step of the
modelling so that the source and the image plane always perfectly
map on to each other and the number of degrees of freedom remains
constant during Bayesian evidence maximization.

For the first time in the framework of grid-based lensing mod-
elling, we use the Nested-Sampling technique by Skilling (2004)
to compute the full marginalized Bayesian evidence of the data
(MacKay 1992, 2003). This approach not only provides statistical
errors on the lens parameters, but also consistently quantifies the
relative evidence of a smooth potential against one containing sub-
structures. As such, our method provides a fully objective way to
rank these two hypotheses given the data, which is the goal set out
in this paper.

The paper is organized as follow. In Section 2, we give a general
overview on the data model. In Section 3, we present in detail how
the data model can be inverted and the source and lens potential
reconstructed. In Section 4, we review the basics of Bayesian statis-
tics and Nested-Sampling technique for evidence computation. In
Section 5, we describe how the method has been tested and how
its ability in detecting substructures, depending on the perturbation
mass and position, has been studied. Finally in Section 6, conclu-
sions are drawn and future applications are discussed.

2 C O N S T RU C T I O N O F TH E L E N S I N G

O P E R ATO R S

In this section, we describe the data model which relates the un-
known source brightness distribution and lens potential to the known
data of the lensed images. The aim is to put this procedure in a fully
self-consistent mathematical framework, excluding as much as pos-
sible any subjective intervention into the modelling. The core of the
method presented here is based on a Occam’s razor argument. From
a Bayesian evidence point of view, correlated features in the lensed
images are most likely due to structure in the source, rather than
being the result of small-scale perturbations of the lens potential
in front of all the lensed images. On the other hand, uncorrelated
structure in the lensed images is most likely due to small-scale
perturbations of the lens potential.
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Figure 1. A schematic overview of the non-linear source and potential re-
construction method, as implemented in this paper. On the left-hand side,
on the image plane, two grids are defined: one for the potential corrections
and the other for the lensed image. A subset of Ns of the Nd image pixels
located at the positions x s

i on the image plane (filled circles) is cast back
to the source plane (on the right-hand panel) on ys

i through the lens equa-
tion. These form the vertices of an adaptive grid on the source plane. The
remaining image pixels (open circles) are also cast to the source plane to
the positions y d

i (we note that this set of points includes y s
i ). Because the

source brightness distribution is conserved, i.e. S(x d
i ) = S(y d

i ), the surface
brightness at the empty circles is represented by a linear superposition of
the surface brightness at the three triangle vertices that enclose it. Similarly,
the potential correction at a point xδψ

i is given by a linear interpolation
of the potential corrections at the surrounding pixels (large rectangular pix-
els on the image plane).

2.1 The data, source and potential grids

The main idea of grid-based lensing techniques is to use a grid-
based reconstruction of the source and the lens potential. Here, we
introduce the general geometry of the problem, explicitly shown in
Fig. 1. Consider a lensed image d of an unknown extended source
s. Both d and s are vectors that describe the surface brightness
distributions on a set of spatial points xd

i and ys
j in the lens and

source plane, respectively (e.g. Warren & Dye 2003; Koopmans
2005; Suyu et al. 2006). In general, these are related through the
lens equation yd

i = xd
i − ∇ψ(xd

i ), where xd
i corresponds to the spatial

position of the surface brightness in the ith element of the vector
d, i.e. di and ψ(xd

i ) is the lensing potential, which is described
in more detail in a moment. We note that yd

i does not necessarily
directly correspond to the elements ys

j , jth brightness value of the
vector s. In our implementation, the grid on the source plane is fully
adaptive and directly constructed from a subset of the Nd pixels in
the image plane, with spatial boundaries of the image grid included.
In particular, as shown schematically in Fig. 1, Ns pixels, located
each at a position xs

i on the image grid, are cast back to the source
plane giving the positions ys

j . The set of positions {ys
i} constitutes

the vertices of a Delaunay triangulation. In this way, we define an
irregular adaptive grid, where vertex positions in the source plane
are related to positions on the image plane via the lens equation and
every vertex value represents an unknown source surface brightness
level.

We assume the lens potential to be the superposition of a para-
metric smooth component with linear local perturbations related to
the presence of, for example, CDM substructures or dwarf galaxies:

ψ(x, η) = ψs(x, η) + δψ(x). (1)

While ψ s(x, η) assumes a parametric form, with parameters
η, δψ(x) is a function that is pixelized on a regular Cartesian grid
of points xδψ

k with values δψk . The set {δψk} is written as a vector
δψ . Given the observational set of data d, we now wish to recover
the source distribution s and the lens potential ψ(x, η) simultane-

(a)

(b) (c)

Figure 2. Generic triangles from the source grid. Both the source surface
brightness and its derivatives at the points P, P1 and P2 are given by linear
superposition of the values at the edges of the surrounding triangles.

ously. To do this, we need to mathematically relate the brightness
values d to the unknown brightness values s. As described in the
next section, this can be done through a linear operation on s and
δψ , where the operator itself is a function of an initial guess of the
lens potential.

2.2 The source and potential operator

We now derive the explicit relation between the unknown source
distribution s, the potential correction δψ , the smooth potential
ψs(x, η) and the image brightness d.

Consider a generic triangle ÂBC on the source plane (Fig. 2a),
then the source surface brightness sP on a point P, located inside the
triangle at the position yd

P, can be related to the surface brightness
on the vertices A, B and C through a simple linear relation:

sP = wAsA + wBsB + wCsC. (2)

An explicit expression for the bilinear interpolation weights wA,
wB and wC can be obtained by considering the point P1, at the
intersection of the line AP with the line CB. The source intensities at
P and P1 are also related to each other through a linear interpolation.
On the other hand, the surface brightness in P1 is directly related to
the values on the triangle vertices B and C:⎧⎨⎩ sP = dPA

dP1A
(sP1 − sA) + sA

sP1 = dP1B

dCB
(sC − sB) + sB

, (3)

where dPA and dP1A are the absolute distances between the points
P and A and the points P1 and A, respectively; dP1B and dCB are
the distances between the points P1 and B and the points C and B,
respectively. Solving equation (3), we obtain the weights⎧⎪⎪⎪⎨⎪⎪⎪⎩

wA = 1 − dPA
dP1A

wB = dPA
dP1A

(
1 − dP1B

dCB

)
wC = dPAdP1B

dP1AdCB

(4)

with
∑

i=A,B,C wi = 1. Because gravitational lensing conserves the
surface brightness, i.e. S(xd

i ) = S( yd
i ), the mapping between the two
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4 S. Vegetti and L. V. E. Koopmans

planes (when δψ = 0) can be expressed as a system of Ns coupled
linear equations

B L(η)s = d + n, (5)

where L(η) and B are the lensing and the blurring operators, re-
spectively (see e.g. Warren & Dye 2003; Treu & Koopmans 2004;
Koopmans 2005; Suyu & Blandford 2006). The blurring operator
is a square sparse matrix which accounts for the effects of the point
spread function (PSF). Each row of the lensing operator (a sparse
matrix) contains at most the three bilinear interpolation weights,
wA,B,C, placed at the columns that correspond to the three source
vertices that enclose the associated source position. For a vertex
point, there is only one weight equal to unity. In case Ns = Nd (i.e.
all image positions are used to create the source grid), all weights
are equal to unity. In this case, the systems of equations are under-
constrained and strong regularization is required.

By pixelating δψ(x) on a regular Cartesian grid, a similar argu-
ment as for the source can be applied to the potential correction; all
potential values, {δψk}, and their derivatives on the image plane
can be related to this limited set of points through bilinear interpo-
lation (see Koopmans 2005; Suyu et al. 2008). It is then possible to
derive from equation (5), a new set of linear equations:

Mc (η, ψ) r = d + n, (6)

where

r ≡
(

s
δψ

)
. (7)

More specifically, ψ is the sum of all the previous corrections δψ

and the operator Mc is a block matrix reading

Mc ≡ B
[
L(η, ψ) | − Ds(sMP)Dψ

]
. (8)

L(η, ψ) is the lensing operator introduced above, Ds(sMP) is a sparse
matrix whose entries depend on the surface brightness gradient of
the previously best source model at yd

i and Dψ is a matrix that
determines the gradient of δψ at all corresponding points xd

i (see
Koopmans 2005, for details). The generic structure of these matrices
is given by

Ds =

⎛⎜⎜⎜⎜⎝
. . .

∂S( yd
i

)
∂y1

∂S( yd
i

)
∂y2

∂S( yd
i+1)

∂y1

∂S( yd
i+1)

∂y2

. . .

⎞⎟⎟⎟⎟⎠ (9)

and

Dδψ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

∂δψ(xd
i

)

∂x1

∂δψ(xd
i

)

∂x2

∂δψ(xd
i+1)

∂x1

∂δψ(xd
i+1)

∂x2

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

where the index i runs along all the xd
i and yd

i , i.e. triangle vertices
included. The ‘functions’ S and δψ and their derivative can be
derived through bilinear interpolation and finite differencing from
s and δψ , respectively.

It is clear from the structure of these matrices that the first-
order correction to the model, as a result of δψ , is equal to δdi =
−∇S( yd

i ) · ∇δψ(xd
i ) at every point xd

i (see e.g. Koopmans 2005, for
a derivation).

As for the surface brightness itself, also the first derivatives for a
generic point P on the source plane can be expressed as functions
of the relative values on the triangle vertices A, B, C, yielding

∂sP

∂y1
= wA

∂sA

∂y1
+ wB

∂sB

∂y1
+ wC

∂sC

∂y1

∂sP

∂y2
= wA

∂sA

∂y2
+ wB

∂sB

∂y2
+ wC

∂sC

∂y2
.

(11)

For the generic vertex j = A, B, C, these are given by
∂s j

∂y1
= − n0

n2
and

∂s j

∂y2
= − n1

n2
, where N ≡ (n0, n1, n2) is the unit-length surface normal

vector at the vertex j and defined as the average of the adjacent per
face normal vectors. For δψ and its gradients, on a rectangular grid
with rectangular pixels, we follow Koopmans (2005).

3 IN V E RT I N G TH E DATA M O D E L

As shown above, in both the cases of solving for the source alone,
or solving for the source plus a potential correction, a linear data
model can be constructed. In this section, we give a general overview
of how this set of linear equations can be (iteratively) solved. A
more thorough Bayesian description and motivation can be found
in Section 4.

3.1 The penalty function

Before we go into the details of the method, we first restate that
for a given lens potential ψ(x, η) and potential correction ψn =∑n

i=1 δψ i , on a grid, the source surface brightness vector s and the
data vector d can be related through a linear (matrix) operator:

Mc(η, ψn−1, sn−1)rn = d + n, (12)

now explicitly written with their dependencies on the source and
potential and with

rn =
(

sn

δψn

)
. (13)

In this equation, sn is a model of the source brightness distri-
bution at a given iteration n (we describe the iterative scheme
momentarily). We assume the noise n to be Gaussian which is a
good approximation for the Hubble Space Telescope (HST) im-
ages the method will be applied to. Even in case of deviations from
Gaussianity, the central limit theorem, for many data points, ensures
that the probability density distribution is often well approximated
by a Normal distribution.

Because of the ill-posed nature of this relation, equation (12) can-
not simply be inverted. Instead a penalty function which expresses
the mismatch between the data and the model has to be defined by

P (s, δψ | η, λ, sn−1, ψn−1) = χ 2 + λ2
s ‖Hs s‖2

2 + λ2
δψ‖Hδψδψ‖2

2

(14)

with

χ 2 = [Mc(η, ψn−1, sn−1) r − d]T C−1
d [Mc(η, ψn−1, sn−1) r − d].

(15)

The second and third terms in the penalty function contain prior
information, or beliefs about the smoothness of the source and the
potential, respectively, and Cd is the diagonal covariance matrix
of the data. The level of regularization is set by the regularization
parameters λ, one for the source and other for the potential (see
Koopmans 2005; Suyu et al. 2006, for a more general discussion).
In a Bayesian framework, this penalty function is related to the
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Strong lensing on adaptive grids 5

posterior probability of the model given the data (see Section 4). In
the following two sections, we describe how to solve for the linear
and non-linear parameters of the penalty function (except for λ,
which is described in Section 4).

3.1.1 Solving for the linear parameters

The most probable solution, rMP, minimizing the penalty function
is obtained by solving the set of linear equations:

(MT
c C−1

d Mc + RT R) r = MT
c C−1

d d. (16)

The regularization matrix is given by

RT R =
(

λ2
s H T

s Hs

λ2
δψ H T

δψ Hδψ

)
. (17)

The solution of this symmetric positive definite set of equa-
tions can be found using, for example, a Cholesky decomposition
technique. By solving equation (16), adding the correction δψn

to the previously best potential ψn−1 and iterating this procedure,
both the source and the potential should converge to the minimum
of the penalty function P(sn, δψn | η, λ, sn−1, ψn−1). At every step
of this iterative procedure, the matrices Mc and R have to be recal-
culated for the new updated potential ψn and source sn. While the
potential grid points are kept spatially fixed in the image plane, the
Delaunay tessellation grid of the source is rebuilt at every iteration
to ensure that the number of degrees of freedom is kept constant
during the entire optimization process.

Note that because the source and the potential corrections are
independent, they require their own form (H) and level (λ) of regu-
larization. The most common forms of regularization are the zeroth
order, the gradient and the curvature. As shown by Suyu et al.
(2006), the best form depends on the nature of the source distribu-
tion and can be assessed via Bayesian evidence maximization. For
the source, we chose the curvature regularization defined for the
Delaunay tessellation of the source plane.

Specifically, one can combine the gradient and curvature matrices
in the x- and y-directions: H T

s Hs = H T
s, y1

Hs, y1
+ H T

s, y2
Hs, y2

. Both
Hs, y1

and Hs, y2
can be obtained by analogy by considering the pair

of triangles in Figs 2(b) and (c), respectively.
For every generic point C on the source plane, we consider the

pair of triangles ÂBC and D̂CE and define the curvature in C in the
y1 direction as

s ′′
C,y1

≡ 1

dCP
(sP − sc) − 1

dCQ
(sc − sQ). (18)

This is not the second derivative, but we find that this alternative
curvature definition gives much better results than using the second
derivative directly. The reason is that it gives equal weight to all
triangles, independently of their relative sizes (for identical rectan-
gular pixels, this problem does not arise since the above definition
is equal to the second derivative up to a proportionality constant).
A much smoother solution in that case is obtained.

P and Q are given by intersecting the line CP1 with the line ED
and the line CP2 with the line AB, respectively. Specifically, P1 and
P2 are defined as very small displacements from the point C in the
y1 direction:

y
P1
2 = y

P2
2 = yC

2

y
P1,2
1 = yC

1 ± δy1. (19)

The source surface brightness in P and Q can be obtained by
linear interpolation between the source values in D with the value

in E and the value in A with the value in B, respectively,

sP = dPD

dED
(sE − sD) + sD,

sQ = dQA

dAB
(sB − sA) + sA , (20)

Substituting equation (20) in equation (18) gives

s ′′
C,y1

= −
(

1

dCP
+ 1

dCQ

)
sC + dPD

dCPdDE
sE

+ dQA

dCQdAB
sB + dPE

dCPdDE
sD + dQB

dCQdAB
sA. (21)

Each row of the regularization matrix Hs, y1
, corresponding to ev-

ery point C, contains the five interpolation weights, placed at the
columns that correspond to the five vertices A, B, C, D and E. The
curvature in the y2 direction is derived in an analogous way using
the pair of triangles in Fig. 2(c). We refer again to Koopmans (2005)
for details on the potential regularization matrix Hδψ .

3.1.2 Solving for the non-linear parameters

In order to recover the non-linear parameters η, we need to minimize
the penalty function P(s, η | λ, ψ). We allow for a correction, ψ , to
the parametric potential ψ(η, x) (not necessarily zero), but do not
allow it to be changed while optimizing for s and η. In all the cases,
we keep λ fixed during the optimization. Given an initial guess for
the non-linear parameters η0, we then minimize the penalty function
defined in Section 3.1.1, under the conditions outlined above (ψ is
constant and δψ ≡ 0). We use a non-linear optimizer (in our case
Downhill–Simplex with Simulated Annealing; Press et al. 1992) to
change η at every step and to minimize the joint penalty function
P(s, η | λ, ψ). The optimization of s is implicitly embedded in the
optimization of η by solving equation (16) only for s, every time η

is modified.

3.2 The optimization strategy

We have implemented a multifold optimization scheme for solving
the linear equation (12). This scheme is not unique, but stabilizes
the numerical optimization of this rather complex set of equations.
Solving all parameters simultaneously would be computationally
prohibitive and usually shows poor convergence properties.

3.2.1 Optimization steps

Our optimization scheme is similar to a line-search optimization,
where consecutively different sets of unknown parameters are being
kept fixed, while the others are optimized for. The sets {δψ , s}, {η,
s} and {λ, s} define the three different groups of parameters, of
which only one is solved for at once. The individual steps, in no
particular order, are then the following.

(i) We assume η and λ to be constant vectors and iteratively solve
for δψ and the source s. In this case, at every iteration we solve for
r and adjust ψ , using the linear correction to the potential δψ . This
was described in Section 3.1.1.

(ii) We assume ψ and λ to be constant vectors and δψ i = 0 at
every iteration and only solve for the non-linear potential parameters
η and the source s. This was described in Section 3.1.2. We note that
part of step (i) is also implicitly carried out in step (ii) (i.e. solving
for s).
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6 S. Vegetti and L. V. E. Koopmans

(iii) We assume both (i) and (ii), above, and solve for the regu-
larization parameters λs of the source and the source itself s. This
requires a Bayesian approach and will be described in more detail
in Section 4. We have not attempted to optimize for λδψ , but will
study this in future publications.

The overall goal, however, remains to solve for the full set of un-
known parameters {η, ψn, sn} for n → ∞ (or some large number).
In particular, if an overall smooth (on scales of the image separa-
tions) potential model ψ(η) does not allow a proper reconstruction
of the lens system, we add an additional and a more flexible potential
correction δψ , which can describe a more complex mass structure.

3.2.2 Line-search optimization scheme

In practice, we find that the optimal strategy to minimize the penalty
function is the following, in order.

(i) We set λs to a large constant value such that the source model
remains relatively smooth throughout the optimization (i.e. the peak
brightness of the model is a factor of a few below that of the data)
and keep ψn = 0 (see also Suyu et al. 2006). We then solve for η

and s that minimize the penalty function.
(ii) Once the best η and s are found, a Bayesian approach is used

to find the best value of λs for the source only. At this point, ψ is
still kept equal to zero.

(iii) Given the new value of λs, step (i) is repeated to find im-
proved values of η and s. Since the sensitivity of λs to changes in η

is rather weak, at this point the best values of η, s and λ have been
found.

(iv) Next, all the above parameters are kept fixed and we solve for
r, this time assuming a very large value for λδψ to keep the potential
correction (and convergence) smooth. We adjust ψ at every iteration
until convergence is reached (e.g. Suyu et al., in preparation). At
this point, we stop the optimization procedure.

(v) The smooth model with ψ = 0 and the same model with
ψ 
= 0 is then compared through their Bayesian evidence values and
errors on the parameters are estimated through the Nested Sampling
of Skilling (2004) (Section 4).

Fig. 3 shows a complete flow diagram of our optimization
scheme. In the next section, we place equation (14) and model

Figure 3. A schematic overview of the non-linear source and potential reconstruction method.

ranking on a formal Bayesian footing. Those readers mostly in-
terested in the application and tests of the method could continue
reading in Section 5.

4 A BAYESIAN APPROACH TO DATA FITTING

A N D M O D E L SE L E C T I O N

When trying to constrain the physical properties of the lens galaxy,
within the grid-based approach, three different problems are faced.
Given the linear relation in equation (6), we need to determine the
linear parameters r for a certain set of data d and a form for the
smooth potential ψ s(x, η). We then aim to find the best values for
the parameters η and λ and finally, on a more general level, we wish
to infer the best model for the overall potential and quantitatively
rank different potential families. In particular, we want to compare
smooth models with models that also include a potential grid for
substructure (with more free parameters). These issues can all be
quantitatively and objectively addressed within the framework of
Bayesian statistics. In the context of data modelling, three levels of
inference can be distinguished (MacKay 1992; Suyu et al. 2006).

(i) First level of inference: linear optimization. We assume the
model Mc, which depends on a given potential and source model,
to be true and for a fixed form R and level (λ) of regularization, we
derive from Bayes’ theorem the following expression:

P (r | d, λ, η, Mc, R) = P (d | r, η, Mc) P (r | λ, R)

P (d | λ, η, Mc, R)
. (22)

The likelihood term, in case of Gaussian noise, for a covariance
matrix Cd is given by

P (d | r, η, Mc) = 1

Zd
exp [−Ed(d | r, η, Mc)], (23)

where

Zd = (2π )Nd/2(det Cd)1/2 (24)

and (see equation 15)

Ed(d | r, η, Mc] = 1

2
χ 2 = 1

2
(Mcr − d)T C−1

d (Mcr − d) . (25)

Because of the presence of noise and often the singularity of
det (MT

c Mc), it is not possible to simply invert the linear relation
in equation (6) but an additional penalty function must be defined
through the introduction of a prior probability P(r |λ, R) on s
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Strong lensing on adaptive grids 7

and δψ . In our implementation of the method, the prior assumes
a quadratic form, with minimum in r = 0 and sets the level of
smoothness (specified in H and λ) for the solution

P (r | λ, R) = 1

Zr

exp [−λEr (r | R)], (26)

with

Zr (λ) =
∫

dre−λEr = e−λEs(0)

(
2π

λ

)Nr/2

(det C)−1/2, (27)

Er = 1

2
‖Rr‖2

2 (28)

and

C = ∇∇Er = R RT . (29)

The normalization constant P(d | λ, η, Mc, R) is called the evidence
and plays an important role at higher levels of inference. In this
specific case, it reads

P (d | λ, η, Mc, R) =
∫

dr exp [−M(r)]

ZdZr

, (30)

where

M(r) = Ed + Er. (31)

The most probable solution for the linear parameters is found by
maximizing the posterior probability:

P (r | d, λ, η, Mc, R) = exp[−M(r)]∫
dr exp[−M(r)]

. (32)

The condition ∂(Ed + Er )/∂ r = 0 now yields the set of linear
equations already introduced in Section 3.1.1:(

MT
c Cd

−1 Mc + RT R
)

r = MT
c Cd

−1d. (33)

Equation (33) is solved iteratively using a Cholesky decomposition
technique.

(ii) Second level of inference: non-linear optimization. At this
level, we want to infer the non-linear parameters η and the hyperpa-
rameter λs for the source. Since at this point we are interested only
in the smooth component of the lens potential, we set δψ = 0 and
for a fixed family ψ s(η), form of the regularization R and model
Mc, we maximize the posterior probability

P (λ, η | d, Mc, R) = P (d | λ, η, Mc, R)P (λ, η)

P (d | Mc, R)
. (34)

Assuming a prior P(λ, η), which is flat in log (λs) and η, reduces to
maximizing the evidence P(d | λ, η, Mc, R) (which here plays the
role of the likelihood) for η and λ. The evidence can be computed
by integrating over the posterior equation (34)

P (d | λ, η, Mc, R) =
∫

dr P (d | r, η, Mc)P (r | λ, R). (35)

Because of the assumptions we made (Gaussian noise and quadratic
form of regularization), this integral can be solved analytically and
yields

P (d | λ, η, Mc, R) = ZM (λ, η)

ZdZr (λ)
, (36)

where

ZM (λ, η) = exp [−M(rMP)] (2π )Nr/2 (det A)−1/2, (37)

with A = ∇∇M(r). Again we proceed in an iterative fashion: us-
ing a simulated annealing technique, we maximize the evidence
(equation 35) for the parameters η. Every step of the maximization

generates a new model Mc[ψ(ηi)], for which the most probable
source sMP is reconstructed as described in Section (3). At this
starting step, the level of the source regularization is set to a rel-
atively large initial value λs,0; in this way, we ensure the solution
to be smooth (at least at this first level) and the exploration of the
η space to be faster. Subsequently, we fix the best model Mc(η0)
found at the previous iteration and, using the same technique, we
maximize the evidence for the source regularization level λs. The
procedure is repeated until the total evidence has reached its maxi-
mum. In principle, we should have built a nested loop for λs at every
step of the η exploration, but in practice the regularization constant
only changes slightly with η and the alternate loop described above
gives a faster way to reach the maximum (line-search method).

(iii) At the third level of inference, Bayesian statistics provides
an objective and quantitative procedure for model comparison and
ranking on the basis of the evidence:

P (Mc, R | d) ∝ P (d | Mc, R)P (Mc, R). (38)

For a flat prior P(Mc, R) (at this level of inference, we can make little
to no assumptions) different models can be compared according to
their value of P(d | Mc, R), which is related to the evidence of the
previous level by the following relation

P (d | Mc, R) =
∫

dλ dη P (d | λ, η, Mc, R)P (λ, η). (39)

Being multidimensional and highly non-linear, the integral (equa-
tion 39) is carried out numerically through a Nested-Sampling tech-
nique (Skilling 2004), which is described in more detail in the next
section. A byproduct of this method is an exploration of the pos-
terior probability (equation 34), allowing for error analysis of the
non-linear parameters and evidence itself.

4.1 Model selection: smooth versus clumpy models

In the previous section, we introduced the main structure of the
Bayesian inference for model fitting and model selection. While
parameter fitting simply determines how well a model matches the
data and can be easily attained with the relatively simple analytic
integrations of the first and second level of inference, model se-
lection itself requires the highly non-linear and multidimensional
integral (equation 39) to be solved. This marginalized evidence can
be used to assign probabilities to models and reasonably estab-
lish whether the data require or allow additional parameters or not.
Given two competing models M0 and M1 with relative marginal-
ized evidence E0 and E1, the Bayes factor, �E ≡ log E0 − log E1,
quantifies how well M0 is supported by the data when compared
with M1 and it automatically includes the Occam’s razor. Typically,
the literature suggests to weigh the Bayes factor using Jeffreys’
scale (Jeffreys 1961), which however provides only a qualitative
indication: �E < 1 is not significant, 1 < �E < 2.5 is significant,
2.5 < �E < 5 is strong and �E > 5 is decisive.

In order to evaluate this marginalized evidence with a high enough
accuracy, we implemented the new evidence algorithm known as
Nested Sampling, proposed by Skilling (2004). Specifically, we
would like to compare two different models: one in which the lens
potential is smooth and other in which substructures are present,
with, for example, a NFW profile. While the first is defined by the
non-linear parameters of the lens potential and source regularization
only, the second also allows us for three extra parameters: the mass
of the substructure and its position on the lens plane (see Section 5)
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8 S. Vegetti and L. V. E. Koopmans

4.2 Model ranking: nested sampling

Here, we provide a short description of how the Nested Sampling
can be used to compute the marginalized evidence and errors on
the model parameters; a more detailed one can be found in Skilling
(2004). The Nested-Sampling algorithm integrates the likelihood
over the prior volume by moving through thin nested likelihood
surfaces. Introducing the fraction of total prior mass X, within which
the likelihood exceeds L∗, hence

X =
∫
L>L∗

dX, (40)

with

dX = P (λ, η) dλ dη, (41)

the multidimensional integral (equation 39) relating the likelihood
L and the marginalized evidence E can be reduced to a one-
dimensional integral with positive and decreasing integrand

E =
∫ 1

0
dXL(X), (42)

whereL(X) is the likelihood of the (possibly disjoint) iso-likelihood
surface in parameter space which encloses a total prior mass of X.
If the likelihood Lj = L(Xj ) can be evaluated for each of a given
set of decreasing points, 0 < Xj < Xj−1 < . . . < 1, then the total
evidence E can be obtained, for example, with the trapezoid rule,

E =
m∑

j=1

Ej =
m∑

j=1

Lj

2
(Xj−1 − Xj+1).

The power of the method is that the values of Xj do not have to
be explicitly calculated, but can be statistically estimated. Specifi-
cally, the marginalized evidence is obtained through the following
iterative scheme:

(i) the likelihood L is computed for N different points, called
active points, which are randomly drawn from the prior volume;

(ii) the point Xj with the lowest likelihood is found and the cor-
responding prior volume is estimated statistically: after j iterations,
the average volume decreases as Xj /Xj−1 = t, where t is the ex-
pectation value of the largest of N numbers uniformly distributed
between (0, 1);

(iii) the term Ej = Lj

2

(
Xj−1 − Xj+1

)
is added to the current

value of the total evidence;
(iv) Xj is replaced by a new point randomly distributed within the

remaining prior volume and satisfying the condition L > L∗ ≡ Lj ;
(v) the above steps are repeated until a stopping criterion is sat-

isfied.

By climbing up the iso-likelihood surfaces, the method, in gen-
eral, find and quantifies the small region in which the bulk of the
evidence is located.

Different stopping criteria can be chosen. Following Skilling
(2004), we stop the iteration when j  NH, where H is minus
the logarithm of that fraction of prior mass which contains the
bulk of the posterior mass. In practical terms, this means that the
procedure should be stopped only when most of the evidence has
been included. Given the areas Ej , in fact, the likelihood initially
increases faster than the widths decrease, until its maximum is
reached; across this maximum, located in the region E ≈ e−H ,
the likelihood flatten off and the decreasing widths dominate the
increasing Lj . Since Ej ≈ e−j/N , it takes NH iterations to reach the
dominating areas. These NH iterations are random and subjected to
a standard deviation uncertainty

√
NH , corresponding to a deviation

standard on the logarithmic evidence of
√

NH/N :

log E = log

(∑
j

Ej

)
with σlogE =

√
H

N
. (43)

4.2.1 Posterior probability distributions

For the lens parameters, the substructure position and the logarithm
of the source regularization, priors are chosen to be uniform on a
symmetric interval around the best values which we have deter-
mined at the second level of the Bayesian inference. The size of
the interval being at least one order of magnitude larger than the
errors on the parameters. In practice, we first carry out a fast run
of the Nested Sampling with few active points N, this gives us an
estimate for the non-linear parameter errors. Using the product 2 ×
Ndim × ση, where Ndim is the total number of parameters and ση is
the corresponding standard deviation, we can then roughly enclose
the bulk of the likelihood (note that this can be double-checked
and corrected in hindsight, if the posterior probability functions
are truncated at the prior boundaries). Priors on the parameters are
taken in such a way that this maximum is fully included in the
total integral of the marginalized evidence. For the main lens pa-
rameters and regularization constant, the same priors are used for
model with and without substructure. For the substructure mass, a
flat prior between Mmin = 4.0 × 106 and Mmax = 4.0 × 109 M�
is adopted, with the two limits given by N-body simulations (e.g.
Diemand et al. 2007a,b). In reality, the method does not require the
parameters to be well known a priori, but limiting the exploration
to the best-fitting region sensibly reduces the computational effort
without significantly altering the evidence estimation. From Bayes
theorem we have that the posterior probability density pj is given
by

pj (t) = Lj

2
(Xj−1 − Xj+1)/E(t) = wj/E(t). (44)

The existing set of points (η, λ)1,. . ., (η, λ)N then gives us a set of
posterior values that can be then used to obtain mean values and
standard deviations on the non-linear parameters

〈η〉 =
∑

j

wjηj /
∑

j

wj , (45)

and similarly for λ. These samples also provide a sampling of
the full joint probability density function. Marginalizing over this
function, the full marginalized probability density distribution of
each parameters can be determined (see Section 5.5).

Table 1. Non-smooth (PL + NFW) lens models. At each of the
Pi positions, a NFW perturbation of virial mass msub is superim-
posed on a smooth PL mass model distribution.

Lens xsub (arcsec) msub(M�)

L1 P0 = (+0.90; + 1.19) 107

L2 108

L3 109

L4 P1 = (−0.50; − 1.00) 107

L5 108

L6 109

L7 P2 = (−0.10; − 0.60) 107

L8 108

L9 109

L10 P3 = (−0.90 ; − 1.40) 107

L11 108

L12 109

L13 P0 and P1 108
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Strong lensing on adaptive grids 9

Figure 4. Left-hand panel: results of the first non-linear reconstruction for the smooth component of the perturbed lens L1. The top right-hand panel shows the
original mock data, while the top left-hand panel shows the final reconstruction. On the second row, the source reconstruction (left-hand panel) and the image
residuals (right-hand panel) are shown. Right-hand panel: final results of the non-linear reconstruction for the perturbed lens L1. The top right-hand panel
shows the original mock data, while the top left-hand panel shows the final model reconstruction obtained after a non-linear optimization involving the lens
parameters and the substructure position and mass. The recovered source is plotted in the low left-hand panel. Image residuals (right-hand panel) are shown.

5 T E S T I N G A N D C A L I B R AT I N G TH E M E T H O D

In this section, we describe the procedure to test the method in-
troduced above and to assess its ability to detect dark matter sub-
structures in realistic data sets (e.g. from HST). A set of mock data,
mimicking a typical Einstein ring, is created. We generate 14 differ-
ent lens models, of which L0 is purely smooth, L1≤i<13 are given by

Figure 5. Results of the non-linear optimization for the smooth lens L0.
The top right-hand panel shows the original mock data, while the top left-
hand panel shows the final reconstruction. On the second row, the source
reconstruction (left-hand panel) and the image residuals (right-hand panel)
are shown.

the superposition of the same smooth potential with a single NFW
dark matter substructure of varying mass and position and L13 con-
tains two NFW dark matter substructures with the same mass but
with different positions (See Table 1). A first approximate recon-
struction of the source and lens potential is performed by recovering
the best non-linear lens parameters η and the level of source regu-
larization λs. These values are then used for the linear grid-based
optimization, which provides initial values of the substructure po-
sition and mass. Three extra runs of the non-linear optimization are
then performed to recover the best set (ηb, λs,b) for the main lens and
the best mass and position of the substructure (solely modelled with
a NFW density profile). Finally by means of the Nested-Sampling
technique described in Section 4.1, we compute the marginalized
evidence, equation (39), for every model twice, once under the hy-
pothesis of a smooth lens and once allowing for the presence of one
or two extra mass substructures. Comparison between these two
models allows us to assess whether the presence of substructure in
the model improves the evidence despite the larger number of free
parameters.

5.1 Mock data realizations

A set of simulated data with realistic noise is generated from a
model based on the real lens Sloan Lens ACS Survey (SLACS)
J1627−0055 (Bolton et al. 2006; Koopmans et al. 2006; Treu et al.
2006). We assume the lens to be well described by a power-law (PL)
profile (Barkana 1998). Using the optimization technique described
in Section 4, we find the best set of non-linear parameters (ηb,
λs,b). In particular, η contains the lens strength b, and some of the
lens-geometry parameters: the position angle θ , the axis ratio f, the
centre coordinates x0 and the density profile slope q, [ρ ∝ r−(2q+1)].
If necessary, information about external shear can be included. The
best parameters are used to create 14 different lenses and their
corresponding lensed images.
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10 S. Vegetti and L. V. E. Koopmans

One of the systems is given by a smooth PL model while 12 include
a dark matter substructure with virial mass Mvir = 107, 108, 109 M�
located either on the lowest surface brightness point of the ring P0,
on a high surface brightness point of the ring P1, inside the ring
P2 and outside the ring P3 (see Table 1). The 14 lens contains
two substructures each with a mass of Mvir = 108 M�, located,
respectively, in P0 and P1. The substructures are assumed to have a
NFW profile:

ρ(r) = ρs(rs/r) [1 + (r/rs)]
−2, (46)

where the concentration c = rvir/rs and the scaling radius rs are
obtained from the virial mass using the empirical scaling laws pro-

Figure 6. Similar as Fig. 4 for L2.

Figure 7. Similar as Fig. 4 for L12.

vided by Diemand et al. (2007a,b). The source has an elliptical
Gaussian surface brightness profile centred in zero

s ( y) = s0 exp
[−(y1/δy1)2 − (y2/δy2)2

]
. (47)

We assume s0 = 0.25, δy1 = 0.01 and δy2 = 0.04.

5.2 Non-linear reconstruction of the main lens

We start by choosing an initial parameter set η0 for the main lens,
which is offset from ηtrue that we used to create the simulated data.
Assuming the lens does not contain any substructure, we run the
non-linear procedure described in Section (4) and optimize {η, λs}
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Strong lensing on adaptive grids 11

Figure 8. Results of the linear source and potential reconstruction for the lens L1. The first row shows the original model (left-hand panel), the reconstructed
model (middle panel) and the current-best source, as well as the corresponding adaptive grid. On the second row, the image residuals (left-hand panel),
the total potential convergence (middle panel) and the substructure convergence (right-hand panel) are shown. Note that the substructure, although weak, is
reconstructed at the correct position.

Figure 9. Similar as Fig. 8 for L2. We note that the substructure is extremely well reconstructed, both at the correct position and in mass.
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12 S. Vegetti and L. V. E. Koopmans

Figure 10. Non-linear reconstruction for the lens L13 for a single PL model.

for each of the considered systems. At every step of the optimiza-
tion, a new set {ηi , λs,i} is obtained and the corresponding lensing
operator Mc(ηi , λs,i) has to be recomputed. The images are defined
on a 81 × 81 pixels (Nd = 6561) regular Cartesian grid while the
sources are reconstructed on a Delaunay tessellation grid of Ns =
441 vertices. The number of image points, used for the source-grid

Figure 11. Results of the first linear source and potential reconstruction for the lens L13. The first row shows the original model (left-hand panel), the
reconstructed model (middle panel) and the image residuals (right-hand panel). On the second row, the current-best source (left-hand panel), the total potential
convergence (middle panel) and the substructure convergence (right-hand panel) are shown. Note that the substructure, although weak, is reconstructed at the
correct position.

Figure 12. Non-linear reconstruction for the lens L13 for a PL + NFW
model.

construction, is effectively a form of a prior and the marginalized
evidence (equation 39) can be used to test this choice. To check
whether the number of image pixels used can affect the result of
our modelling, we consider the smooth lens L0 and perform the
non-linear reconstruction using 1 pixel every 16, 9, 4 and 1. In
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Strong lensing on adaptive grids 13

Figure 13. Results of the second linear source and potential reconstruction for the lens L13.

each of the considered cases, we find that the lens parameters are
within the relative errors (see Table 2). This suggests that, for this
particular case, the choice of number of pixels is not influencing the
quality of the reconstruction. In real systems, the dynamic range of
the lensed images could be much higher and a case by case choice
based on the marginalized evidence has to be considered. In Fig. 4,
the residuals relative to the system L1 are shown; the noise level
is, in general, reached and only small residuals are observed at the
position of the substructure. Whether the level of such residuals and
therefore the relative detection of the substructure are significant is
an issue we will address later on in terms of the total marginalized
evidence.

5.3 Linear reconstruction: substructure detection

The non-linear optimization provides us with a first good approx-
imate solution for the source and smooth component of the lens
potential. While this is a good description for the smooth model
L0 (see Fig. 5), the residuals (e.g. Figs 6 and 7) for the perturbed
model Li≥1 indicate that the no-substructure hypothesis is improba-
ble and perturbations to the main potential have to be considered. If
the perturbation is small, this can be done by temporarily assuming
that ηi=1 reflects the true mass model distribution for the main lens
and reconstruct the source and the potential correction by means
of equation (33). In order to keep the potential corrections in the
linear regime, where the approximation (equation 33) is valid, both
the source and potential need to be initially over-regularized: λs =
10 λs,1 and λδψ = 3.0 × 105 (Koopmans 2005; Suyu et al. 2006). For
each of the possible substructure positions, we identify the lowest
mass substructure we are able to recover. In the two most favourable
cases, L1 and L4, in which the substructure sits on the Einstein ring

Figure 14. Non-linear reconstruction for the lens L13 for a PL + 2NFW
model.

a perturbation of 107 M� is readily reconstructed. For these two
positions, higher mass models, with the exception of L2, will not
be further analysed. The systems L7,8,9 and L10,11,12, in which the
substructure is located, respectively, inside and outside the ring,
represent more difficult scenarios. In the first case, all perturbations
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Strong lensing on adaptive grids 15

below 109 M� can be mimicked by an increase in the mass of the
main lens within the ring, while in the second case these cannot be
easily distinguished from an external shear effect. For the models
L1,2,4,9,12, convergence is reached after 150 iterations and the per-
turbations are recovered near their known position (e.g. Figs 8 and
9). The grid-based potential reconstruction indeed leads to a good
first estimation for the substructure position.

5.4 Non-linear reconstruction: main lens and substructure

In order to compare with numerical simulations, the mass of the sub-
structure is required. Performing this evaluation with a grid-based
reconstruction is more complicated and requires some assumptions
(e.g. aperture). To alleviate this problem, we assume a parametric
model, in which the substructures are described by a NFW density
profile, and we recover the corresponding non-linear parameters,
mass and position, using the non-linear Bayesian optimization pre-
viously described.

To quantify the mass and position of the substructure and to
update the non-linear parameters when a substructure is added, we
adopt a multistep non-linear procedure that relatively fast converges
to a best PL + NFW mass model. At this level, we neglect the
smooth lens L0, for which a satisfactory model already has been
obtained after the first non-linear optimization, and the perturbed
models L7,8,10,11 for which the substructure could not be recovered.
We proceed as follows.

(i) We fix the main lens parameters to the best values found in
Section 5.3, {η1, λs,1}. We set the substructure mass to some guess
value. We optimize for the substructure position xsub,1.

(ii) We fix {η1, λs,1} and the source position xsub,1. We optimize
for the substructure mass msub,1.

(iii) We run the non-linear procedure described in Section 4 by
alternatively optimizing for the main lens, source and substructure
parameters and for the level of source regularization.

This leads to a new set of parameters, {ηb, λs,b, msub,b, xsub,b}.
Final results for the considered models are listed in Table 2 and the
relative residuals are shown in the Figs 4, 6 and 7, respectively. For
all the considered lenses, the final reconstruction converges to the
noise level.

5.5 Multiple substructures

The lens system L13 represents a more complex case in which two
substructures are included. In particular, we are interested in testing
whether both substructures are detectable and whether their effect
may be hidden by the presence of external shear. As for the previ-
ously considered cases, we first perform a non-linear reconstruction
of the main lens parameters assuming a single PL mass model. For
this particular system, we also include the strength �sh and the po-
sition angle θ sh of the external shear as free parameters. Results
for this first step of the reconstruction are shown in Fig. 10. We
then run the linear potential reconstruction. One of the two sub-
structures is detected although a significant level of image residuals
is left (Fig. 11). The combined effect of external shears (�sh =
−0.031) and the substructure in P1 is not sufficient to explain the
perturbation generated by the second substructure at the lowest sur-
face brightness point of the Einstein ring. We therefore include a
NFW substructure in the recovered position and run a non-linear
reconstruction for the new PL + NFW model, Fig. 12. We are then
able to detect also the second substructure, Fig. 13. Finally, we
run a global non-linear reconstruction for the PL + 2NFW model

(Table 3 and Fig. 14), the noise level is reached and the strength
of the external shear is consistent with zero (�sh = 0.0001).

5.6 Nested sampling: the evidence for substructure

When modelling systems as L0 or Li≥1, we assume that the best re-
covered values, under the hypothesis of a single power-law, provide
a good description of the true mass distribution and any eventually
observed residual could be an indication for the presence of mass
substructure. Model comparison within the framework of Bayesian
statistics gives us the possibility to test this assumption.

5.6.1 Marginalized Bayesian evidence

In order to statistically compare two models, the marginalized evi-
dence (equation 39) has to be computed. As described in Section 4.1,
this multidimensional and non-linear integral can be evaluated using
the Nested-Sampling technique by Skilling (2004). Specifically, the
two mass models we wish to compare are a single PL, M0, versus
a PL + NWF substructure, M1. The first one is completely defined
by the non-linear parameters (η, λs), while the second needs three
extra parameters, namely the substructure mass and position. For
all these parameters, prior probabilities have to be defined:

P (ηi) =
{

constant for |ηb,i − ηi | ≤ δηi

0 for |ηb,i − ηi | > δηi

(48)

and

P
(
xsub,i

) =
{

constant for|xsub,b,i − xsub,i | ≤ δxsub,i

0 for|xsub,b,i − xsub,i | > δxsub,i

(49)

where the elements of δηi and δ xsub,i are empirically assessed such
that the bulk of the evidence likelihood is included (see Skilling
2004). The prior on the substructure mass is flat between the lower
and upper mass limits given by numerical simulations (e.g. Die-
mand et al. 2007a,b). Given the lenses L0,1,2,4,9,12,13, we run the
Nested Sampling twice, once for the single PL model and once for
the PL + NFW (+NFW) one. The two marginalized evidence with
corresponding numerical errors can be compared from Table 4. De-
spite a certain number of authors suggest the use of Jeffreys’ scale
(Jeffreys 1961) for model comparison, we adopt here a more conser-
vative criterion. In particular, we note that the perturbed model M1

for the lens system L0 is basically consistent with a single smooth
PL model M0, with �E ∼ 7.85. The Bayesian factor for the system
L4 is of the order of �E ∼ 21.5 in favour of the smooth model
M0, indicating that the detection of such a low-mass substructure
can formally not be claimed at a significant level. The reason why
we think this substructure is clearly visible in the grid-based re-
sults, is that this particular solution is the maximum-posterior (MP)
solution, whereas the evidence gives the integral over the entire pa-
rameter space. This implies that there must be many solutions near
the MP solution that do not show the substructure. This indicates
that our approach of quantifying the evidence for substructure is
very conservative. On the other hand, the Bayes factor for the lens
L1, �E = −17.1, clearly shows that the detection of a 107 M�
substructure can be significant when the latter is located at a dif-
ferent position on the ring. Finally, all higher mass perturbations
are easily detectable independently of their position relative to the
image ring; Bayes factor for L2, L9, L12 and L13 is, in fact, re-
spectively, �E = −213.0, �E = −2609.7, �E = −4603.4 and
�E = −1835.7. Substructure properties for these systems are also
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1 Table 4. Marginalized evidence and corresponding standard de-

viation as obtained via the Nested-Sampling integration. Results
are shown for the hypothesis of a smooth lens (PL) and the
hypothesis of a clumpy lens potential (PL + NFW).

Lens Model log ε σlog ε

L0 PL 26 332.70 0.33
PL + NFW 26 324.85 0.30

L1 PL 20 366.86 0.34
PL + NFW 20 383.95 0.30

L4 PL 20 292.40 0.33
PL + NFW 20 270.87 0.29

L9 PL 17 669.41 0.45
PL + NFW 20 279.13 0.36

L12 PL 15 786.91 0.33
PL + NFW 20 390.35 0.37

L13 PL 18 509.76 0.24
PL + 2NFW 20 346.48 0.49

confidently recovered. The main difference between Jeffreys’ scale
and our criterion for quantifying the significance level of the sub-
structure detection is observed for the system L1. If we had to adopt
Jeffreys’ scale in fact, such detection would have to be claimed
decisive while we think it is only significant.

5.7 Posterior probabilities

As discussed in Section 4.1, an interesting byproduct of the Nested-
Sampling procedure is an exploration of the posterior probability
(equation 34) which provides us with statistical errors on the model
parameters (see Table 3). The relative posterior probabilities for
L0, L1 and L2 are plotted in Figs 15–17, respectively. Lets start by
considering the lens system L0 and the relative probability distri-
bution for the substructure mass. Although the model M1, in terms
of marginalized evidence, is consistent with the single smooth PL
model M0, there is a small probability for the presence of a sub-
structure with mass up to few 108 M� located as far as possible
from the ring. The effect of such objects on the lensed image would
be very small and could be easily hidden by introducing artificial
features in the source structure, as suggested by the posterior dis-
tributions for the source regularization constant. This means, that
from the image point of view, a smooth single PL model and a per-
turbed PL + NWF with a substructure of 108 M�, located far from
ring, are not distinguishable from each other as long as the effect
of the perburber can be hidden in the structure of the source. From
a probabilistic point of view, however, the second scenario is more
unlikely to happen. A similar argument can be applied to the lens L1

for which a strong degeneracy between the mass and the position of
the substructure is observed. We conclude therefore that, although
this substructure can be detected at a statistically significant level,
its mass and position cannot be confidently assessed yet. In contrast,
for systems such as L2,9,12, the effect of the substructure is so strong
that it cannot be mimicked by the source structure or by a differ-
ent combination of the substructure parameters. For these cases not
only the detection is highly significant, but also the properties of the
perturber can be confidently constrained with minimal biases.

6 C O N C L U S I O N S A N D F U T U R E WO R K

We have introduced a fully Bayesian adaptive method for objec-
tively detecting mass substructure in gravitational-lens galaxies.
The implemented method has the following specific features.
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Strong lensing on adaptive grids 17

Figure 15. Posterior probability distributions for the non-linear parameters of the smooth lens model L0 as obtained from the Nested-Sampling evidence
exploration. In particular, results for two different models are shown, a smooth PL potential (blue histograms) and a perturbed PL + NFW lens (black
histograms). From up left, the lens strength, the position angle, the axis ratio, the slope, the logarithm of the source regularization constant, the substructure
mass and position are plotted.

Figure 16. Similar as Fig. 15 for L1.

(i) Arbitrary imaging data set defined on a regular grid can be
modelled, as long as only lensed structure is included. The code is
specifically tailored to high-resolution HST data sets with a compact
PSF that can be sampled by a small number of pixels.

(ii) Different parametric two-dimensional mass models can be
used, with a set of free parameter η. Currently, we have implemented
the elliptical PL density models from Barkana (1998), but other
models can easily be included. Multiple parametric mass models
can be simultaneously optimized.

(iii) A grid-based correction to the parametric potential can it-
eratively be determined for any perturbation that cannot easily be

modelled within the chosen family of potential models (e.g. warps,
twists, mass substructures, etc.).

(iv) The source surface brightness structure is determined on a
fully adaptive Delaunay tessellation grid, which is updated with
every change of the lens potential.

(v) Both model parameter optimization and model ranking are
fully embedded in a Bayesian framework. The method takes spe-
cial care not to change the number of degrees of freedom during
the optimization, which is ensured by the adaptive source grid.
Methods with a fixed source surface brightness grid cannot do
this.
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Figure 17. Similar as Fig. 15 for L2.

(vi) Both source and potential solutions are regularized, based on
a smoothness criterion. The choice of regularization can be modified
and the level of regularization is set by Bayesian optimization of
the evidence. The data itself determine what level of regularization
is needed. Hence, overly smooth or overly irregular structure is
automatically penalized.

(vii) The MP and the full marginalized probability distribution
function of all linear and non-linear parameters can be determined,
marginalized over all other parameters (including regularization).
Hence, a full exploration of all uncertainties of the model is under-
taken.

(viii) The full marginalized evidence (i.e. the probability of the
model given the data) is calculated, which can be used to rank any
set of model assumptions (e.g. pixel size, PSF) or model families.
In our case, we intend to compare smooth models with models
that include mass substructure. The marginalized evidence implic-
itly includes Occam’s razor and can be used to assess whether
substructure or any other assumption is justified, compared to a
null-hypothesis.

The method has been tested and calibrated on a set of artifi-
cial but realistic lens systems, based on the lens system SLACS
J1627−0055.

The ensemble of mock data consists of a smooth PL lens and
13 clumpy models including one or two NFW substructures. Dif-
ferent values for the mass and the substructure position have been
considered. Using the Bayesian optimization strategy developed in
this paper, we are able to recover the smooth PL system and all
perturbed models with a substructure mass �107 M� when located
at the lowest surface brightness point on the Einstein ring and with
a mass ≥109 M� when located just inside or outside the ring (i.e.
their Einstein rings need to overlap roughly). For all these models,
we have convincingly recovered the best set of non-linear param-
eters describing the lens potential and objectively set the level of
regularization.

Furthermore, our implementation of the Nested-Sampling tech-
nique provides statistical errors for all model parameters and al-
lows us to objectively rank and compare different potential models

in terms of Bayesian evidence, removing as much as possible any
subjective choices. Any choice can quantitatively be ranked. For
each of the lens systems, we compare a complete smooth PL mass
model with a perturbed PL + NFW (+NFW) one. The method here
developed allows us to solve simultaneously for the lens potential
and the lensed source. The latter, in particular, is reconstructed on
an adaptive grid which is recomputed at every step of the optimiza-
tion, allowing to take into account the correct number of degrees of
freedom.

In this paper, we have considered systems which contain at most
two CDM substructures. Although it may appear as a very small
number when compared with predictions from N-body simulations
within the virial radius, this represents a realistic scenario. As we
have shown, our method, with current HST data, is mostly sensitive
to perturbations with mass �107 M� and located on the Einstein
ring (�θ ∼ μθER). The projected volume that we are able to probe is
therefore small compared to the projected volume within the virial
radius. The probability that more than two substructures have this
right combination of mass and position is relatively low and we ex-
pect most of the real systems to be dominated by one or at most two
perturbers. Despite these new results, further improvements can still
be made. We think, for example, that an adaptive source grid based
on surface brightness, rather than magnification, or a combination,
could be more suitable for the scientific problem considered here.

The method will soon be applied to real systems, as for example
from the Sloan Lens ACS sample of massive early-type galaxies
(Bolton et al. 2006; Koopmans et al. 2006; Treu et al. 2006). This
will lead to powerful new constraints or limits on the fraction and
mass distribution of substructure. Results will be compared with
CDM simulations.
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