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The order-disorder and order-order transitions �ODT and OOT� in the linear multiblock copolymers
with two-length scale architecture AfmN�BN/2AN/2�nB�1−f�mN are studied under intermediate cooling
below the ODT critical point where a nonconventional sequence of the OOTs was predicted
previously �Smirnova et al., J. Chem. Phys. 124, 054907 �2006�� within the weak segregation
theory �WST�. To describe the ordered morphologies appearing in block copolymers �BCs� under
cooling, we use the pseudospectral version of the self-consistent field theory �SCFT� with some
modifications providing a good convergence speed and a high precision of the solution due to using
the Ng iterations �J. Chem. Phys. 61, 2680 �1974�� and a reasonable choice of the predefined
symmetries of the computation cell as well as initial guess for the iterations. The WST predicted
sequence of the phase transitions is found to hold if the tails of the BCs under consideration are
symmetric enough ��0.5− f ��0.05�; the quantitative agreement between the WST and SCFT phase
diagrams is reasonable in a narrow �both in f and �̃=�N� region close to the critical point, though.
For �0.5− f ��0.05, a large region of the face-centered cubic phase stability is found �up to our
knowledge, first within the SCFT framework� inside of the body-centered cubic phase stability
region. Occurrence of the two-dimensional and three-dimensional phases with the micelles formed,
unlike the conventional diblock copolymers, by the longer �rather than shorter� tails, and its
relationship to the BC architecture is first described in detail. The calculated spectra of the ordered
phases show that nonmonotonous temperature dependence of the secondary peak scattering
intensities accompanied by their vanishing and reappearance is rather a rule than exception. © 2008
American Institute of Physics. �DOI: 10.1063/1.2937138�

I. INTRODUCTION

One of the most interesting phenomena in block copoly-
mer �BC� systems is their self-assembling into ordered mor-
phologies possessing the symmetry of a crystal lattice1–5 with
changing �typically decreasing� temperature T. The physical
reason for this self-assembling also called order-disorder
transition �ODT� or microphase separation is obvious: With
decreasing T the energy gain upon local segregation grows as
compared to the loss of the configurational entropy accom-
panying such segregation, the immiscible blocks being not
separated fully because of their covalent bonding. As a re-
sult, an ordered pattern of alternating domains filled prefer-
ably by monomers of the same sort, i.e., crystal lattice arises.
The domains’ scale is, naturally, of the order of magnitude of
the immiscible block size, i.e., in the range between tens and
few hundreds of nanometers, which makes BCs more and
more appealing for nano- and nanobiotechnology applica-
tions. With further decrease of T, the ODT is often followed
by various transitions between the different ordered mor-
phologies �order-order transitions or OOTs�. BC melts with

different structural and interaction parameters are known to
form different morphologies so that the ultimate goal of both
theory and experiment is to determine the symmetry and
geometry of the most stable ordered phases �as well as the
thermodynamic, scattering, and mechanical properties of the
phases� for a copolymer melt or blend given its composition,
architecture, and temperature.

In most of the BC melts studied in the original papers6–16

and books,17–20 the structure formation involves only one
characteristic length scale. Therewith, the self-assembled
phases are generally restricted to the classical lamellar
�LAM�, hexagonal �HEX�, and body-centered cubic �bcc�
morphologies first proved to be stable close to the ordering
critical point in the seminal weak segregation theory �WST�
by Leibler.6 Later the double gyroid �G� phase possessing the

symmetry of the Ia3̄d space group �No. 230� as well as other
phases possessing a more complex symmetry were found to
be stable not too close to the critical point both
experimentally21,22 and theoretically by Matsen,12–16 whose
so-called self-consistent field theory �SCFT� is free from the
WST restriction to a vicinity of the critical point only. Since
then the WST has been considered by many authors as a sort
of an old-fashioned and outdated technique.a�Electronic mail: ierukhs@polly.phys.msu.ru.
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However, a more thorough comparison23,24 of the advan-
tages and shortcomings of both the WST and SCFT led us to
conclude that even though the SCFT is in many respects
superior to the WST beyond the weak segregation realm,
application of the SCFT could be considerably facilitated
when based on the preliminary WST analysis. Therewith, the
most remarkable advantage of the WST is that it provides an
express analysis of the architecture dependence of the phase
diagrams for rather large families of the BC.11 In particular,
it was demonstrated via such a WST analysis, based on con-
sideration of the architecture dependent structure correlators
only,23–27 that there exist some BC systems, which possess a
special architecture giving rise to stability of the complex
�nonconventional� morphologies already in a vicinity of the
ordering critical point. Remarkably, these special BCs �ter-
nary ABC BCs �Refs. 23 and 26� and multiblock AB copoly-
mers with a two-length scale architecture described
below24,25,27� both belong to a newly discovered
experimentally28–33 and theoretically34–42 class of BC reveal-
ing two different spatial length scales. The SCFT analysis of
the phase behavior of the linear ABC block copolymers has
been carried out recently by Morse et al.43,44 There is a no-
ticeable qualitative and even semiquantitative similarity be-
tween the WST and SCFT phase diagrams of the linear ABC
BCs; a substantial difference worth to be mentioned was
found in two cases. First, the WST phase diagrams23,24 do
not contain the Fddd �orthorhombic� phase stability region
found by Morse et al.43,44 This discrepancy is, actually, only
due to the fact that the Fddd phase has been discovered after
the WST phase diagram of the ABC BCs had been calculated
and, thus, it was simply not included in the list of possible
thermodynamically stable phases. Second, the SCFT phase
diagrams16,43,44 do not contain the face-centered cubic �fcc�
phase, which is predicted by the WST �Refs. 23–27� to be
stable close to and not too far away from the critical ODT
point at some values of the parameters. Moreover, Matsen16

excluded the fcc stability in the ternary ABC block copoly-
mers based on some qualitative sphere domain packing con-
siderations �note, however, that the choice of the
�-parameters in Refs. 23, 43, and 44 and Ref. 16 corresponds
to different universality classes as discussed in Ref. 23�.

In both cases the qualitative discrepancy stems from the
necessity to presuppose the possible morphologies, which is
a characteristic of any theoretical work. In fact, none of the
existing papers could claim that it fully explores all possible
candidates to the morphologies expected to be thermody-
namically stable: In experiment, we hardly could be com-
pletely sure that the observed morphologies do correspond to
full thermodynamic equilibrium; in theory we still for long
will not be able to explore all 230 3d space groups. Even in
Refs. 45–47, where the real-space SCFT is used and no ex-
plicit morphologies are presupposed, the authors assume im-
plicitly that there are no stable �or metastable� morphologies
but those to which the iteration process does converge start-
ing from a randomly chosen set of the initial inhomogene-
ities. In other words, all not found morphologies are assumed
to be absolutely unstable. However, such an assumption can
be proved only via direct testing not found morphologies

and, thus, is no more warranted than fixing the explicit list of
the presupposed morphologies in advance.

In this paper, we present the SCFT analysis of the phase
and morphological behavior of one more class of BC.
Namely, we focus on monodisperse melts of macromolecules
AfmN−b− �BN/2−b−AN/2�n−b−B�1−f�mN shown schematically
in Fig. 1. The total degree of polymerization and the gyration
radius of these macromolecules are Ntot=N�n+m� and RG

2

=Ntota
2 /6 �the statistical segment lengths a and excluded

volumes � are assumed to be the same for A and B blocks�.
Depending on the value of the �-parameter and the lengths
of the “short” diblocks �N�, the middle multiblock part as the
whole �nN�, and the tail blocks �fmN and �1− f�mN�, self-
assembly occurs at either one or two different length scales,
which correspond to microphase separation between the long
and short blocks and/or inside the BN/2−b−AN/2 domains.
There is so-called bifurcation region24,34 in the space of pa-
rameters �f ,n ,m� �see Fig. 2�, where fluctuations on both
short and long scales are pronounced already in the disor-
dered state. Above the region, the system under consider-
ation first segregates on the large scale, in which case the
middle AB �black-white� multiblock part behaves as a sort of
“gray” block characterized by an average value of the solu-
bility parameter. Accordingly, the phase behavior of such
two-scale AB multiblock copolymers close to their critical
point24 resembles that of the ABC triblock copolymers,23

whereas further increase of � could result in additional short-
range segregation between the A and B blocks forming the
middle �gray� part. We present the phase diagram of the de-
scribed multiblock copolymers, which is calculated within
the pseudospectral version of the SCFT, and compare it to
that we calculated previously24 within the WST. In order not
to confuse the comparison, we focus on the nonconventional

FIG. 1. The architecture of the AB multiblock copolymer: n is the number
of elementary diblock units forming the middle multiblock part; N is the
elementary diblock length; fmN is the length of the tail of A type; 1− fmN is
the length of the tail of B type.

FIG. 2. The dashed wire surface represents the so-called bifurcation surface
in the �n , f ,m� space. The solid line shows the values of parameters �n , f ,m�
for the system under investigation.
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phase diagrams in that region of the system parameters
where segregation inside the middle multiblock part �BN/2
−b−AN/2�n does not occur yet and, thus, the system phase
behavior is somewhat similar to that of the ternary linear
ABC BCs. �The results of our SCFT analysis of the
“lamellar-in-lamellar” effects characteristic of the multiblock
AB copolymers under study28,31,32,38,40,48 will be presented
elsewhere.� In particular, we confirm that the fcc phase sta-
bility region predicted for the considered systems within the
WST does remain within the SCFT either.

The paper is organized as follows. The technical details
related both to the original SCFT and its modifications in our
work are discussed in detail in Sec. II, which could be
skipped by the reader not interested directly in this kind of
calculations. The results are presented and discussed in Sec.
III. Concluding remarks are given in Sec. IV.

II. COMPUTATIONAL METHODOLOGY

A. Brief description of basic numerical methods

There are two strategies that have been applied to solve
the SCFT equations: spectral methods12 and real-space
methods.45–47,49,50 The first strategy is based on the represen-
tation of the spatially varying density fields in a Fourier-type
basis, using a large number of harmonic terms.51 The second
computational formalism employs an appropriate relaxation
�iterative� procedure in order to reach a local minimum of the
free energy functional, adjusting simultaneously the chemi-
cal potential fields and the conjugate monomer densities at
every iteration step. Both schemes have advantages and dis-
advantages. A disadvantage of the fully spectral schemes is
that the computational effort per single iteration scales very
poorly �as nF

3 , where nF is the number of basis functions�.
Also, it requires that the symmetry of a formed microstruc-
ture be specified in advance so that a proper set of harmonic
terms can be utilized. The real-space methods do not require
the system symmetry in advance but are rather time consum-
ing in three dimensions even on supercomputers. Recent
progress in this field has been achieved by using the so-
called pseudospectral technique.52–54 In the context of poly-
mer physics, this technique was first applied by Rasmussen
and Kalosakas53 in order to solve the modified diffusion
equation that describes the propagation of monomer densi-
ties. Subsequently, Ceniceros and Fredrickson54 further ex-
tended the approach. In particular, they introduced a robust
class of semi-implicit numerical methods that employ
supplementary information about the nonlocal density opera-
tors. As a result, the total computational cost has been re-
duced by an order of magnitude. Another way to speed up
convergence of the SCFT equations for polymeric systems
we employ here is to use the iterative scheme by Ng,55 lin-
earizing the solution around stationary points. A similar �but
some technical details we discuss below� procedure was used
by Thompson et al.56

B. The SCFT equations

As described in detail in Refs. 17 and 54 �see also Refs.
35, 38, and 40�, the free energy of the incompressible melt of
flexible AB copolymers reads

F���A�,��B��/T =� d3r�− fA�A�r� − �1 − fA��B�r�

+ ��A�r� − �B�r��2/�4�N��

− V ln Q���A�,��B�� . �1�

Here V is the system volume; fA is the average volume frac-
tion of type A blocks �fA+ fB=1�; �i�r� is the external field
acting on the monomer of the ith type located at the point r,
the temperature T is measured in the energetic units, in
which the Boltzmann constant kB=1; the single-chain parti-
tion function Q reads

Q���A,�B�� = V−1� d3rq�r,1;��A,�B�� . �2�

The end-to-end distribution function q�r ,s�
	q�r ,s ; ��A ,�B�� �non-normalized statistical weight� is de-
fined by the modified diffusion equation

�q�r,s�/�s = RG
2 �2q�r,s� − ��r,s�q�r,s� , �3�

with the initial condition q�r ,0�=1 and

��r,s� = �A�s��A�r� + �B�s��B�r� . �4�

Here �i�s�=1 if the chain contour position s is occupied by
the segment of the type i and �i�s�=0 otherwise.

The desired free energy is the saddle point value of the
functional F��A ,�B� to be obtained via minimization of the
latter with respect to the exchange potential

�−�r� = 1
2 ��B�r� − �A�r�� , �5�

and maximization with respect to the effective pressure

�+�r� = 1
2 ��B�r� + �A�r�� . �6�

The SCFT equations defining the saddle point fields read54

�F
��+

= �A�r� + �B�r� − 1 = 0,

�7�
�F
��−

= 2fA − 1 +
2

�N
�−�r� + �B�r� − �A�r� = 0,

where the local volume fractions 	A�r� and 	B�r� are given
by the integrals

�i�r� = Q−1���A,�B���
0

1

ds�i�s�q�r,s�q̃�r,1 − s� . �8�

These equations identify 	A�r� and 	B�r� as the average den-
sities of A and B chain segments at point r as calculated in an
ensemble of noninteracting macromolecules subject to the
fields �A�r� and �B�r� acting on A and B segments, respec-
tively. The order parameter of the system is related to the
difference between the densities of the two kinds of mono-
mers. The end-segment distribution function q̃�r ,s�, which
appears in Eq. �8� and describes the opposite end of a chain
�from 1 to 0�, is defined similar to Eq. �3�:

244903-3 Block copolymer systems J. Chem. Phys. 128, 244903 �2008�
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�

�s
q̃�r,s� = RG

2 �2q̃�r,s� − ��r,1 − s�q̃�r,s� , �9�

with q̃�r ,0�=1.

C. The Ng procedure

Let us represent Eqs. �1�–�9� as a nonlinear operator
equation

x = R�x� , �10�

with x�r�= �
+�r� ,
−�r�� and

R�x� = 
�+ +
�F
��+

;�− −
�F
��−

� , �11�

where the functional derivatives are defined in Eq. �7� and R

denotes the corresponding nonlinear operator. The widely
used iterative scheme to solve Eq. �10� is based on the
Picard-type mixing

x�t+1/2� = x�t� + ��R�x�t�� − x�t�� , �12�

followed by a uniform field shift

x�t+1� = x�t+1/2� − V−1� d3rx�t+1/2��r�, t = 0,1,2, . . . .

�13�

The iterative scheme �12� and �13� is convergent under
proper choice of the mixing parameter �, which should be
sufficiently �as determined empirically� small. Starting with
an initial guess x�0�, a sequence of output functions x�t� is
generated. The fixed point of the sequence �12� and �13�
strongly depends on the choice of initial vector x�0� because
of multiextremum character of the problem �1�–�9�. Gener-
ally, the convergence is rather slow. The Ng iterative
procedure,55 which speeds up the convergence substantially,
utilizes the input and output iteration functions of several
previous iteration steps and hence has a much faster converg-
ing rate than the usual �Picard� mixing scheme, especially for
difficult cases like copolymers systems at large Flory–
Huggins parameters. Namely, a trial input for the �t+1�th
iteration is given by the linear combination

x = x�t� − �
k

n

�k�x�t� − x�t−k��, k = 1,2, . . ,n , �14�

with n=10. To find the best possible solution at a current
iteration step, we optimize the set ��k� by minimizing the
norm

D��� =  �
�=A,B

� dr�R�x�r�� − x�r��2�1/2

=  �
�=A,B

� dr
��t� − �r� − �
k

n

�kk�r��2�1/2

, �15�

with respect to ��k�. Here x�r� is defined by Eq. �14� and

��t� = Rx�t� − x�t�, �16�

k = ��t� − ��t−k� = �R�x�t�� − x�t�� − �x�t−k+1� − x�t−k�� . �17�

As a result, the set ��k� is determined by the simultaneous
linear equations

11�1 + 12�2 + ¯ + 1n�n = ��t1�,

21�1 + 22�2 + ¯ + 2n�n = ��t2�,

¯ ,

n1�1 + n2�2 + ¯ + nn�n = ��tn�, �18�

where lm=�drl�r�m�r� and ��tm�=�dr��t��r��m�r�.
Having ��k�, the input for the next �t+1�th iteration is

defined as

x�t+1/2� = R�x�t�� − �
k=1

n

�k�R�x�t�� − R�x�t−k��� , �19�

with the uniform field shift x�t+1�=x�t+1/2�−V−1�d3rx�t+1/2��r�.
This fast-converging iteration scheme approximates the

nonlinear operator R by a different linear operator in the
neighborhood of x�t� at a given iteration step t. Equation �19�
becomes the simple Picard interaction algorithm �12� for n
=1.

To implement the described iteration scheme and find
the �meta�stable periodic morphologies, the following steps
are to be done: �i� starting with some trial functions ���r�
and initial conditions q��r ,0� and q̃��r ,0�, to solve the dif-
fusion Eqs. �3� and �9� with periodic boundary conditions
prescribed by the choice of the computational cell �see be-
low�; �ii� with the solutions from step �i�, to generate the
single-chain partition function Q via Eq. �2�; �iii� with the
results of these two steps, to calculate the volume fractions
	��r�’s via Eq. �8� and new self-consistent potentials ���r�
via Eqs. �5�–�7� to be used for the next iteration; �iv� to
minimize the free energy functional �1� with respect to the
parameters of chosen computational cell.

The stop criterion for the iterations is max�R�x�r��
−x�r����, �x�r��2= ��+�r��2+ ��−�r��2. For �=10−5, which
corresponds to the error �10−10 in Eq. �11� of Ref. 56, the
number of iterations necessary to achieve the stop criterion
for the standard diblock copolymer model is practically the
same as that obtained by Thompson et al.56 �see Tables I and
II in Ref. 56� via somewhat different version of the Ng pro-
cedure �Anderson mixing�, which corresponds to setting n
=3 in Eq. �19�. However, in this paper, we are to deal with
the eight-block �two tails and three diblocks in the middle�
copolymer melt, which causes a considerable slowing down
as well as the accuracy deterioration. For moderately segre-
gated three-dimensional �3D� morphologies formed in this
case, the convergence of the Ng iterative scheme is two or-
ders of magnitude faster than that of the Picard one, which is
considerably better than the results reported in Ref. 56.

D. The pseudospectral algorithm

Solving the diffusion equations is the most expensive
step in the calculation. With a pseudospectral algorithm

244903-4 Kriksin et al. J. Chem. Phys. 128, 244903 �2008�
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stemming from quantum dynamics,52 Eq. �3� is integrated
forward in s from the initial condition at s=0 to s=1:

q�r,s + s� = exp�− ��r,s�s/2�exp�s�2�

�exp�− ��r,s�s/2�q��r,s� + O��s�3� .

�20�

The “bracket” operator exp�−��r ,s�s /2� appearing in Eq.
�20� is applied in the real space, while the operator
exp�s�2� is applied in the reciprocal space via the fast Fou-
rier transform �FFT�. More precisely, the computation proce-
dure consists of the following steps: starting from
q�r ,0�=1, �i� to evaluate the product U�r ,s ,s�
=exp�−��r ,s�s /2�q�r ,s� for each r in the direct space;
�ii� to calculate the Fourier transform Uk
=�U�r ,s ,s�exp�ikr�dr, apply to Uk in reciprocal space the
operator exp�s�2� and calculate the inverse Fourier trans-

form of the result Ū�r ,s ,s�; �iii� to find q�r ,s+s�
=exp�−��r ,s�s /2�Ū�r ,s ,s� and return to step �i�.
Thereby, one should have in mind that, as consistent with
definition �4�, the field ��r ,s� as a function of s is continuous
only within 2n intervals �sk ,sk+1� �s0=0 and s2n+2=1 are the
chain ends� and have discontinuity in 2n+1 points �sk� cor-
responding to the boundaries between A and B blocks. The
same scheme is used to integrate Eq. �9�. In both cases, we
use the periodic boundary conditions.

There are two important aspects in the scheme outlined
above. First, the solution of the SCFT equations is, obvi-
ously, not unique �several metastable morphologies could ex-
ist�. So, both the convergence of the iteration and the result-
ing morphologies strongly depend on the initial guess x�0�

= �
+
�0��r� ,
−

�0��r��. Often the initial values of the fields are
randomly generated.57 Instead, in this paper, we use for the
initial guesses an information on the symmetry of the plau-
sible morphologies provided by the WST �see below�. Sec-
ond, if the type of expected symmetry is known in advance
or can be guessed or predicted, it is natural to choose the
computational cell and initial fields fitting this symmetry.
Traditionally, the SCFT-based calculations in real space use
only the Cartesian coordinates rather than the crystallo-
graphic ones. However, our preliminary studies revealed that
an appropriate choice of the computational cell symmetry
system could result in the better convergence.

E. The computation cell

A triclinic �in general� basis of the cell �t1 , t2 , t3� defines
the set of the translation vectors Tk=k1t1+k2t2+k3t3, k
= �k1 ,k2 ,k3� being an integer vector. So, the equalities
���r+Tk�=���r�, q�r+Tk ,s�=q�r ,s�, etc., hold. Require-
ment of a space group symmetry for the morphology under
study implies that the corresponding functions �+

�0��r� and
�−

�0��r� have the Fourier expansions

��
�0��r� = �

�m�
Am exp�i�qm · r + �m�� , �21�

where Am and �m are the amplitudes and phases, respec-
tively, Am=A−m, �−m=−�m since the functions ��

�0��r� are

real, �m� is the set of the vectors m= �m1 ,m2 ,m3� with inte-
ger mi and the wave vectors qm read

qm = 2��m1g1 + m2g2 + m3g3� , �22�

where the vector triple �g1 ,g2 ,g3� is the reciprocal basis for
the chosen cell basis �t1 , t2 , t3�:

tl · gm = �lm �l,m = 1,2,3� . �23�

The sum in definition �21� is assumed only over those vec-
tors qm, which belong to the chosen reciprocal lattice.58 The
symmetry of the space group is conveyed to the ��

�0��r� func-
tions through the sets of the allowed �qm� �the choice of the
reciprocal lattice� and phase shifts ��m�. A triclinic compu-
tational cell is characterized by three edge lengths, Dl= �tl�,
and three angles, �lm, between the vectors tl and tm. In gen-
eral, the free energy functional �1� depends both on Dl and
�lm so that these parameters are to be obtained via minimi-
zation of F��A ,�B� �obviously, the saddle point solution is to
be recalculated for every change of the set �D ;���.

In our calculations, we are using the rectangular basis

ti · t j = D2ci�ij, i, j = 1,2,3 �24�

�the case c1=c2=c3=1 corresponds to the cubic symmetry,
c3=1, c2=1 /�3, c1=c2 /2 does to the orthorhombic Fddd
morphology�, the hexagonal basis,

tl
2 = D2, t1 · t2 = D2/2, t1 · t3 = t2 · t3 = 0, �25�

and the rhombohedric basis,

tl · tm = �D2/2��1 + �lm�, l,m = 1,2,3. �26�

The free energy �1� is to be minimized with respect to the
periodicity D, as shown in Ref. 59.

For a triclinic basis application of the Laplace operator
�2 in the Fourier space requires some accuracy. Indeed, for
an arbitrary value of q=q1g1+q2g2+q2g2, the action of the
Laplacian �2= �e1� /�x1+e2� /�x2+e3� /�x3�2 and the operator
exp�s�2� to a harmonic wave exp�iq ·r� is, respectively,
just multiplication by a factor

�2 exp�iq · r� = C exp�iq · r� , �27�

exp�s�2�exp�iq · r� = CE exp�iq · r�, CE = exp�Cs� ,

�28�

where C=−�n=1
3 ��k=1

3 gknqk�2 and gkn=gk ·en.
Now, any periodic function u�r� defined in the computa-

tional cell can be written as a Fourier series expansion,

u�r� = �
m

Um exp�iqm · r�, m = �m1,m2,m3� , �29�

with

Um = V−1� d3ru�r�exp�− iqm · r� . �30�

The coefficients Um can be approximated as follows:
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Um � Ūm = �L1L2L3�−1�
1

u�r1�exp�− iqm · r1�

= �L1L2L3�−1�
1

u�r1�exp
− 2�i�
i=1

3

mili/Li� , �31�

where l= �l1 , l2 , l3� is the non-negative integer vector
�l�=0,1 ,2 , . . . ,L�−1; �=1,2 ,3� and

rl = �
i=1

3

liti/Li. �32�

The sum in the rhs of Eq. �31� is the discrete Fourier trans-
form �DFT� of u�rl� that depends on discrete argument rl. If

all values of Ũm are known, it is possible to restore u�rl� via
inverse DFT:

u�rl� = �
m

Ũm exp
− 2�i�
i=1

3

mili/Li� , �33�

where m�=0,1 ,2 , . . . ,L�−1; �=1,2 ,3. It should be noted

that the discrete functions Um and Ũm are essentially differ-
ent. The former is periodic with the periods L1 ,L2 ,L3. The
latter is an infinite-dimensional vector. The approximate
equality between them takes place only for small enough
values of �m�. If u�r� is a real function, we have

U−m = �Um�*, Ũ−m = �Ũm�*, �34�

where * denotes the complex conjugation.
Application of the operator exp�s�2� to the values of

Ũm is not trivial. There is a typical mistake when one simply

multiplies Ũm by CE defined by Eq. �28�, which is correct for

the Fourier coefficients Um but not for Ũm, which are to
satisfy the periodic conditions

Ũm+T = Ũm, �35�

T = �k1L1,k2L2,k3L3�, k� = 0, � 1, � 2, . . . . �36�

Indeed, the product CEŨm does not satisfy these conditions

and, as a result, the inverse DFT of CEŨm is a complex
value. Due to the presence of nonzero imaginary part, it con-
tains additional errors. Hence, the multiplier CE in Eq. �28�
should be properly modified to avoid the nonphysical imagi-
nary part in the result. The simplest and effective way we
suggest is to replace CE by the function

C̃E�m� = �CE�m� , �m�� � L�/2
CE�m + T� , �m� + k�L�� � L�/2
0, �m� + k�L�� = L�/2,

� �37�

where T is given by Eq. �36� and the vectors m and q are
interrelated by Eq. �22�.

Several points concerning the described modification of
the pseudospectral method are worth noting. First, thanks to
using the function �37� instead of Eq. �28�, the discrete ap-

proximation C̃EŨm of the Fourier transform exp�s�2�u�r�,
which is to be calculated when the diffusion Eqs. �3� and �9�
are solved, is always a real value in the direct space and

thereby provides a good accuracy for the amplitudes of low
harmonics exp�iqm ·r� in Eq. �21�. �A similar procedure for
the orthonormal basis is described by Fredrickson.17� Sec-
ond, when the Fourier spectrum of the solution of the modi-
fied diffusion equation is represented by the low-frequency
harmonics, the pseudospectral method provides high accu-
racy even for rather rough grid used in Eq. �31�. The point is
that the discrete approximation �37� of the operator
exp�s�2� corresponds exactly to its representation �28� in
reciprocal space just for low frequencies.

F. The weak segregation theory and initial guess

In this paper, we use for the initial guesses that informa-
tion on the plausible morphologies, which is provided by the
WST. The latter could be derived from an alternative formu-
lation of the self-consistent field approximation, in which the
master quantity is the free energy � of the BC system under
consideration as a functional of the spatial distribution of the
actual densities �numbers per unit volume� of the monomers
of the ith sort �i�r�, the equilibrium density distribution �̄ j�r�
being provided via minimization of �:

min ����A�r�,�B�r��� = ����̄A�r�, �̄B�r��� . �38�

The Landau expansion of � in powers of the fluctuations
i�r�=�i�r�− �̄i is

���i�r��� = ����̄i�� + �
n=2

4
1

n!
� �i1,. . .,in

�n�

��r1 − r, . . . ,rn − r��
i=1

n

i�ri�dri, �39�

where the kernels �i1,. . .,in

�n� �r1−r , . . . ,rn−r� are expressed in
terms of structural many-point correlators of the Gaussian
chains first introduced and calculated for diblock copolymers
by Leibler6 �other architectures are considered, e.g., in Refs.
10, 11, 24, and 25�. In the Fourier transform, the free energy
�39� for binary AB incompressible systems reads

� = ����̄i�� +
1

2
� �2�q���q��2

+ �
n=3,4

1

n!
� �
�

i=1

n

qi��n�q1, . . . ,qn��
i=1

n
�qi�dqi

�2��3 .

�40�

Here ��q�= �1 /2��dr�	A�r�−	B�r��exp�iqr� and

�2�q� = g̃−1�q� − 2� , �41�

where the function g̃
−1�q� depends on the BC architecture

only and has a minimum at q=q*�0. Thus, the loss of the
spatially homogeneous state stability �positive definiteness of
the quadratic term in the expansion �40�� takes place at �
��c= g̃−1�q*� for the composition harmonic waves with the
wave numbers close to q=q*. As a result, the symmetry of
the uniform phase gets broken and the composition profile
�r� acquires a space group symmetry:
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�r� = A �
�qm=q*�

exp�i�qm · r + �m�� . �42�

Unlike the general expression �21�, expansion �42� is only an
approximation �“the first harmonics approximation”� since
summation in Eq. �42� is only over those wave vectors,
which belong to the first coordination sphere of the chosen
reciprocal lattice. Substituting Eqs. �41� and �42� into Eq.
�40� results in the following simple expression for the free
energy of the weakly segregated morphology corresponding
to the space group �morphology� R:

�R = �R���̄i�� + min FR�A� ,

�43�
FR�A� = �A2 + �CRA3 + �RA4.

Here �=�c−� is the reduced temperature, A is a reduced
order parameter amplitude, the procedure to calculate the
structure-dependent material constant �, the symmetry-
dependent factor CR, and the factor �R, which is determined
both by the architecture and symmetry, is described in detail
in Refs. 6, 10, 11, 23, 24, and 60�. Finding the minimal of the
free energies �43� for various R, one gets the most thermo-

dynamically stable morphology R̄ and, as a by-product, the

composition spatial profile �42� for R̄. Besides, one can find
easily the phase transition lines

� = �R1R2
��� , �44�

where the two morphologies R1 and R2 simultaneously have
the same minimal free energy. Even though the WST appli-
cability could be justified only in a vicinity of the critical
point, where the parameter � appearing in the definition �43�
vanishes, it provides semiquantitative but reasonable results
within a considerable region of the system parameters
around the critical point.

Now, to choose the proper initial guess for the SCFT
equations, let us return to Eqs. �7� and �8�, which relate the
exchange potential �−�r� defined by Eq. �5� to the local order
scalar parameter

��r� = ��	A�r� − fA� − �	B�r� − fB��/2 = v�r� �45�

as follows:

�−�r� = �N��r� . �46�

In other words, the exchange potential and order parameter
have the same symmetry and the choice of the initial distri-
bution of the former basically predetermines the symmetry
of the latter whereas the pressure field �+

�0��r� does not influ-
ence it at all. So, it is natural to choose the computational
cell to be consistent with the symmetry R under study and
the initial iteration as follows:

�+
�0��r� = 0, �47�

�−
�0��r� = A �

�qm�=q*
exp�i��qm,r� + �m��, A = const � 0.

�48�

For 3D morphologies, the initial guess �47� and �48� pro-
vides approximately three times faster convergence than that

for a typical random initial field �−
�0��r�, which is a consid-

erable gain �especially having in mind slowing down of the
SCFT numerical procedure for the eight-block copolymer
melt under study� of the same order of magnitude as that due
to Anderson mixing.56 Remarkably, the initial guess �48�
with the properly defined angles �m �see, e.g., Refs. 23 and
60�, which keeps information only on the symmetry of the
first coordination sphere of the reciprocal lattice, is sufficient
to reproduce �through the subsequent iterations� all the
higher harmonics with the correct extinction rules.58

III. RESULTS AND DISCUSSION

A. Inversed morphologies

The first peculiarity of the multiblock copolymer melt
�n=3, m=2� studied in this paper is that its set of stable
morphologies differs from that of the diblock copolymer
melt where the long and short blocks form the matrix and
micelles, respectively �we refer to such morphology as “di-
rect”�. As is clearly demonstrated by the various volume
fractions’ profiles61 shown for two hexagonal morphologies
with different degrees of segregation in Figs. 3 and 4 and for
the bcc morphology in Fig. 5, in our case the longer end
block B segregates into the micelles whereas the shorter one
A and the middle multiblock part form together the matrix.
Further we refer to such morphologies as the “inversed”
ones. It is worth to notice that their counterparts for the ter-
nary ABC linear BC are called core-shell morphologies. �In-
deed, it is seen from Figs. 3, 4, and 5�c� that the middle
multiblock part forms a sort of shell around the micelles B.�

Both the physical and mathematical reasons for the in-
versed morphologies to exist are easily understood within the
WST framework. Indeed, at the very onset of ordering, its
driving force is incompatibility between the longer block and
the rest of the multiblock macromolecule, the former being
the minority as compared to the latter and, thus, forming the

FIG. 3. �Color� The 2D visualization of the inverse HEX morphology at the
triple point 1 �see the phase diagram plotted in Fig. 8�: ��a� and �b�� distri-
butions of the volume fraction 	A

tail�r� �	B
tail�r�� of the monomers A�B� be-

longing to the tails A�B� only; �c� distribution of the volume fraction
	middle�r� of those monomers A and B that belong to the multiblock middle
part only; �d� distribution of the total volume fraction 	A�r� of all monomers
A. The red and blue colors correspond to the maxima and minima, respec-
tively, of the pictured volume fraction.
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micelles. It is also instructive to demonstrate how the micro-
scopic structure of the system is indicating which sort of
morphologies, direct or inversed, occurs in the system.

For this purpose, we start with the hexagonal phase, for
which the conventional order parameter profile reads

�r� = A0 �
i=1,2,3

�exp�2�i�gir + �i�� + c.c.�, A0 � 0,

�49�

where the vectors g1 ,g2 being related by Eq. �23� to the
translation vectors t1 , t2 defined by Eq. �25� and g1+g2+g3

=0. A translation r→r−c1t1−c2t2 with properly adjusted
c1 ,c2 provides elimination of two phases �1 ,�2 so that the
only phase �3 stays not fixed yet. One can check readily that
the minimal free energy �43� is achieved at �i� �3=0, CR

=1, if ��0 and �ii� �3=�, CR=−1 if ��0.
Thus, in the BCs with an architecture stipulating nega-

tivity of �, the order parameter �43� has maxima max=6A0

and minima min=−3A0, which corresponds to the micelles
A, whereas in those stipulating positivity of � the order pa-

rameter has maxima max=3A0 and minima min=−6A0,
which corresponds to the micelles B. If � changes its sign
then a reversion of the micelles and matrix occurs. As shown
in Fig. 6, the dependences ��f� calculated for diblock co-
polymer melt6 and for the multiblock one under consider-
ation in this paper have, indeed, the opposite signs, which
just corresponds to distinction between the inversed and di-
rect morphologies.

It is easy to check that the same rule holds for the bcc
phase: The A- and B-micelles are formed in the BCs with
��0 and ��0, respectively. We conclude that in the multi-
block copolymers studied in this paper the longer tails seg-
regate into the minority phase �micelles, infinite cluster, etc.�
in all morphologies such as the HEX, bcc, and G whose
reciprocal lattice contains regular triangles of vectors.

B. Free energies and phase diagram

The free energies per unit volume of the ordered phases
and, thus, the phase diagram are calculated within the
rectangle

� = ��f ,�N�:0.39 � f � 0.61, 9 � �N � 13� . �50�

Obviously, due to the structure symmetry of the system un-
der investigation with respect to the exchange f ⇔1− f ,
A↔B, it is sufficient to build the phase diagram in the half
of the region �50�, for definiteness, for 0.39� f �0.5.

The spinodal �Nsp�f�, which defines the region where
the spatially uniform state of our system stays stable with
respect to infinitesimal fluctuations of the order parameter �at
least, metastable�, is calculated within the random phase
approximation.24,25 Within the region �50�, the spinodal val-
ues satisfy the inequality 9.23��Nsp�f��9.33. The solu-
tions of the SCFT equations are found on the grid �Nsp�f�
��N�13 with an increment �N=0.02 of 0.02 and f
=0.5−0.01k �k=0,1 , . . . ,11�. To find out the morphology
with the minimal free energy �i.e., the actually stable rather
than only metastable symmetry�, the values of the free en-
ergy for each symmetry candidate �LAM, HEX, fcc, bcc,
Fddd, and G� have been calculated.62 In general, the differ-
ences F�=F�−Fbcc between the free energies ��=HEX,

FIG. 4. �Color� The 2D visualization of the inverse HEX morphology at the
triple point 2. The legend is the same as in Fig. 3 but the particular values of
the corresponding volume fractions assigned to the limiting colors.

FIG. 5. �Color� The 3D visualization of the inverse bcc morphology at the
triple point 4. The legend is the same as in Fig. 3 but the particular values of
the corresponding volume fractions assigned to the limiting colors.

FIG. 6. Plot of the third order vertex function �normalized by the system
volume� vs asymmetry parameter f for the diblock �dashed line� and multi-
block with n=3 and m=2 �solid line�.
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fcc, G, LAM, Fddd� are shown in Fig. 7 as functions of �N
for f =0.44, the corresponding plot for the bcc phase itself
being just the x-axes. As is seen from Fig. 7, the intervals of
the different phases’ stability are here as follows: bcc �9.26
��N�10.28�, fcc �10.28��N�11.29�, HEX �11.29��N
�12.49�, G �12.49��N�12.59�, and LAM ��N�12.59�.
Both here and in other points of the described grid, the ortho-
rhombic phase Fddd is never found to be dominant. Com-
bining similar data for all values of the tails’ asymmetry
parameter f , we get the phase diagram shown in Fig. 8,
which is the main result of our calculations.

The bold solid lines are those of the OOT and ODT
between the absolutely stable morphologies �symmetries�
calculated via the SCFT procedure described above whereas
the dashed lines are those calculated within WST.24 As seen
from Fig. 8, in the vicinity of the critical point f =0.5, �N
=9.23 �the right bottom corner of Fig. 12� the SCFT and
WST phase transition lines approach each other and merge
finally in the very critical point, as expected. However, there

is a considerable quantitative difference between the predic-
tions of these two theoretical approaches, the more the state
of the system is remote from the critical point the bigger is
the difference. It is worth to note that the SCFT phase dia-
gram shown in Fig. 8 contains four triple points �f ,�N�
where three phases are in equilibrium: bcc-fcc-HEX �0.45,
10.45�, bcc-fcc-HEX �0.435, 11.42�, bcc-G-HEX
�0.43,12.71�, and bcc-G-LAM �0.43,12.83�.

Now, in a large �right� part of the phase diagram, the
temperature sequence of the SCFT phase transition lines is
DIS-bcc-HEX-G-LAM in agreement with the WST
theory.24,25 However, in the left part of the phase diagram, we
observe two completely new features, which are not predict-
able by the WST: There is a big region of the fcc phase
stability and the re-entrant phase transition fcc-bcc with in-
creasing of � �in the left corner of the phase diagram�. It
could be useful to note that, as shown in Fig. 11, the fcc
phase is formed from almost spherical domains, which are
filled by the long end block and arranged on the fcc lattice.

C. � „temperature… dependence of the periodicity

To describe the stable morphology fully, we are to deter-
mine not only its symmetry but also the period L of the
corresponding lattice. Whereas the WST provides only the
wave number value characterizing the critical harmonic com-
position fluctuations destroying stability of the spatially uni-
form state on the spinodal, the SCFT makes it possible to
calculate L at any degree of segregation. The dependences
L��N� are shown for both stable and metastable phases for
f =0.44 in Fig. 9. The values of the periods L of the conven-
tional phases LAM, HEX, and bcc as well as G converge to
the WST value L*=2� /q* near the spinodal. It is worth to
note the unusually high value of L��N� for the fcc phase,
which, actually, is never stable within the region where the
WST is applicable. We discuss the reasons for this excep-
tional behavior below.

As is seen from Fig. 9, within the region �50� studied in
this paper, the periods of all phases decrease with increasing

FIG. 7. The free energy differences F�−Fbcc at f =0.44 as the functions of
the �N parameter for �=LAM �bold solid�; �=fcc �bold dashed�; �=G
�dotted�, �=Fddd �thin dashed�, �=bcc �thin solid�, and �=HEX �dash-
dotted� curves.

FIG. 8. Phase diagram for the BC system n=3, m=2. The solid and dashed
lines correspond to the SCFT and WST phase transition lines, respectively.
The triple points are numbered in ascending order of the corresponding �
values.

FIG. 9. The reduced �by the radius of gyration� periods of the stable mor-
phologies as functions of the reduced Flory–Huggins parameter �N at f
=0.44. The parts of the curves corresponding to the stable and metastable
phases are plotted by the bold solid and thin dashed lines, respectively, the
dotted lines are the guides for eyes demarcating the boundaries between the
stable phases.
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incompatibility �and, thus, segregation� in contrast to the
typical increase of the period L with �N for AB diblock
copolymers. The case is that whereas the tails of the multi-
block macromolecule AfmN−b− �BN/2−b−AN/2�n−b
−B�1−f�mN under investigation are expected to stretch and
“polarize” with �N as was shown to be the case for the
blocks of diblock macromolecule,65,66 the middle part of the
macromolecule shrinks to adjust to the segregation condi-
tions, which is evidenced by the fact that the values of q* are
smaller �and, thus, the period L larger� in the diblock copoly-
mers than in periodic multiblocks made of the same
diblocks.67,68 We address this effect in much more details in
our work69 devoted to the analysis of the lamellar-in-lamellar
structure. According to the presented SCFT results, it is this
shrinking that determines the final temperature dependence
L��N�.

D. The composition distributions in the direct and
Fourier space and their temperature „�… dependence

The spatial distributions of the volume fraction 	A�r� of
A monomers for the parameters �f ,�N� close to the triple
points of the phase diagram 12 were calculated and some of
them were already presented in Figs. 3–5. It has been shown
that to visualize these data is not a trivial task and requires
many images. Some additional pictures are presented in Figs.
10–12 for the lamellar, fcc, and gyroid phases. It is worth to
mention the clear meander motif rather the characteristic of
the double gyroid, which is seen in Fig. 12, and the fact that
the composition profile is rather smooth �no narrow inter-

face� even though the segregation degree is quite consider-
able already as is revealed by the lamellar profile shown in
Fig. 10. The 3D pictures shown in Figs. 5, 11, and 12 are
nice but they would considerably change if the point of ori-
gin moves or the axes rotate as is seen partly in Fig. 12. Even
more problems would arise when attempting to visualize
continuous morphology changes with temperature. At last,
the computer 3D visualization could be even misleading. For
example, the G phase in Fig. 12 seems to have rather well
defined interfaces whereas, in fact, the latter are rather
smooth as is clearly seen from the LAM phase profile shown
in Fig. 10 at the same degree of segregation. Therefore, to
have an adequate idea of spatial distributions for various
morphologies and their temperature evolution, it is natural to
look for some invariant data.

Such invariant data are just the harmonics spectra, i.e.,
the sets of the values �am= �Am�� of the Fourier harmonics
amplitudes present in the Fourier series

�r� = �
qi

�Aqi
exp i�qir + �i� + c.c.� ,

which are to be found anyway as some by-products under
calculation of 	A�r�. Moreover, it is the spectrum of the vol-
ume fraction 	A�r� rather than its 3D visualization, which
provides the unambiguous identification of the morphology.
The third important advantage of studying the spectra is that
it gives valuable information on the observable peak intensi-
ties of the small-angle scattering with the scattering vector
qm, which are proportional to �Aqm

�2. The temperature behav-
ior of the amplitudes Aqm

at f =0.44 for studied morphologies
is plotted in Fig. 13. The curves are classified by the rational
value of the reduced square of the corresponding coordina-
tion sphere h=qm

2 /q*
2 . We refer to the harmonics with h=k2

and �k−1�2�h�k2 as the multiple, and belonging to the kth
shell, respectively.

First, we notice that the saw tooth part of the curve cor-
responding to the weakest harmonics �the seventh� at the
very onset of microphase separation for the LAM morphol-
ogy gives an idea of the inaccuracy involved in our calcula-
tions and, thus, justifies all the data with A�1�10−7. One of
the most remarkable features seen from Fig. 12 is that only
few harmonics �including the dominant one� monotonously

FIG. 10. The one-dimensional distribution of the total volume fraction 	A�r�
for the lamellar phase at the triple point 4.

FIG. 11. �Color� The 3D distributions of the total volume fraction 	A�r� for
the fcc morphology at the triple points 1 �a� and 2 �b�. The color legend is
the same as in Fig. 3 but the particular values of 	A assigned to the limiting
colors.

FIG. 12. �Color� The 3D distribution of the total volume fraction 	A�r� for
the G morphology at the triple point 4. The color legend is the same as in
Fig. 3 but the particular values of 	A assigned to the limiting colors.
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increase when segregation increases. Most of the higher har-
monics reveal rather pronounced dips �sometimes multiple�
clearly evidencing that these harmonics vanish at some tem-
perature and then increase again. One can state that nonmo-
notonous temperature dependence and even vanishing and
reappearance of the secondary peak scattering intensities is
rather a rule than exception. A remarkable property of the
LAM phase is that all even harmonics vanish within a rather

narrow � interval. At the moment, we cannot explain this
behavior; it should be considered as a sort of experimental
finding.

Interesting information is provided by the spectrum of
the fcc and G phases, where the strength of the second har-

monics with hm= �qm�2 /q*
2 =4 /3 is comparable to that of the

dominant one. This effect is known for the G phase,70 but it
is even more pronounced for the fcc phase. It is strongly

FIG. 13. The � dependence of the volume fraction 	A�r� spectra at f =0.44 for the LAM, HEX, fcc, bcc, and G morphologies. �LAM� the odd and even
harmonics are plotted by the solid and dash lines, respectively, the odd �h= �2k−1�2� and even �h= �2k�2� harmonics are labeled by the number k; �HEX� the
multiple �h=1,4 ,9� and higher �h=3,7� harmonics are plotted by the solid and dash lines, respectively, and labeled by the numbers of their shell. For fcc, bcc,
and G the multiple harmonics are plotted by the bold solid lines and labeled by the numbers of their shell. The higher harmonics are plotted by �i� the dash
�h=4 /3,16 /3�, short dash �h=8 /3,19 /3�, dot �h=11 /3,20 /3�, and dash dot �h=8� lines for fcc; �ii� dash �h=2,5 ,10�, short dash �h=3,6�, dot �h=7�, dash
dot �h=8�, and bold dash �for m= ��4, �1, �1� with h=9� lines; �iii� dash �h=4 /3,13 /3�, short dash �h=7 /3,16 /3�, dot �h=8 /3,8�, dash dot �h=10 /3�,
and dash dot dot �h=11 /3� lines for G. To not overload the figures, the higher harmonics are not labeled. They are easily recognized since their strength
noticeably decreases with increase of the shell number.
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different from the WST predictions for diblock6 and ABC
triblock23 copolymers, where the harmonics with hm=4 /3
would be missing in the fcc morphology. The case is that
within the first harmonics approximation �42� the minimum
of the free energy Ffcc is provided6 by such a choice of the
phases �i, which, unlike that found in our SCFT calculations,
results in full suppression of the harmonics with hm=4 /3.
Thus, in contrast to the conventional morphologies LAM,
HEX, bcc, where all the higher harmonics in the conven-
tional morphologies LAM, HEX and bcc are small as com-
pared to the main harmonics within a noticeable interval of
the � values, the first harmonics approximation �33� is com-
pletely inadequate for the fcc and rather inadequate for the G
phases.

IV. CONCLUSION

In summary, in this paper, we presented the SCFT analy-
sis of the phase diagram for the two-length scale architecture
multiblock copolymers AfmN�BN/2AN/2�nB�1−f�mN with m=2
and n=3, in which case the phase transition sequence pre-
dicted within the WST is DIS-bcc-HEX-G-LAM.24 We ap-
plied the pseudospectral method to solve the modified diffu-
sion equation with periodical conditions and proposed a new,
more exact, discrete approximation for the operator
exp�−s�2�. Our algorithm provides a fast convergence and
a high precision of the solution, 3D symmetries being calcu-
lated in a reasonable computer time due to using �i� the Ng
iterations,55 �ii� a special choice of the predefined symme-
tries of the computation cell, and �iii� the proper symmetry
information input in the initial iteration taken from the WST.

We focus on the region of not too high values of the
�-parameter, where segregation inside the middle multiblock
part �BN/2−b−AN/2�3 does not occur yet and, thus, the system
phase behavior is somewhat similar to that of the ternary
linear ABC block copolymers with the middle block B non-
selective with respect to the side blocks A and C. The se-
quence of the phase transitions found previously within the
WST holds for not too asymmetric tails of the BCs under
consideration �0.45� fA�0.5� but the quantitative agree-
ment between the WST and SCFT phase diagrams is reason-
able in a rather narrow �both in f and �̃=�N� region close to
the critical point. Another qualitative WST-based prediction
�the fcc phase stability found24 for architectures with some-
what different values of n and m than discussed in the
present work or extended beyond the WST applicability re-
gion� is also confirmed by our SCFT calculations. Namely,
for fA�0.45, a large region of the fcc stability is found via
the SCFT calculations inside of that of the bcc lattice. It is
worth to note that in the previous SCFT treatments16,43,44 of
the ABC BC melts the fcc phase was not reported. This dis-
crepancy could be both due to the trivial absence of the fcc
phase in the list of the plausible candidates to the stable
morphologies in Refs. 16, 43, and 44 and because of the
actual difference in the phase behavior of the genuine ternary
ABC BCs and that of our ABC-like but, actually, AB multi-
block ones. The latter option is somewhat supported by the
fact that the Fddd phase found to be stable at some compo-

sitions of the ABC BCs �Refs. 43 and 44� is always meta-
stable for multiblock copolymers studied in the present pa-
per.

A new phenomenon, which is occurrence of the inversed
two-dimensional �2D� and 3D phases with the micelles
formed, in contrast to the conventional diblock copolymers,
by the longer rather than shorter tails, and its relationship to
the BC architecture are first described in detail. We expect
the inversed morphologies to have various applications and
occur in many other copolymer systems. In particular, as
suggested by Khokhlov, the inversed morphologies could be
expected in BCs with amphiphilic monomers.
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