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a b s t r a c t

Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically
regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a
mechanism for confining its activity is required. It has been shown that intracellular spatial compartmen-
talization of PKA signaling is mediated by A-kinase anchoring proteins (AKAPs). Here, we investigated the
role of PKA anchoring to AKAPs in different stages of the memory process (acquisition, consolidation,
retrieval and extinction) using contextual fear conditioning, a hippocampus-dependent learning task.
Mice were injected intracerebroventricularly or intrahippocampally with the membrane permeable
PKA anchoring disrupting peptides St-Ht31 or St-superAKAP-IS at different time points during the mem-
ory process. Blocking PKA anchoring to AKAPs resulted in an impairment of fear memory consolidation.
Moreover, disrupted PKA anchoring promoted contextual fear extinction in the mouse hippocampus. We
conclude that the temporal and spatial compartmentalization of hippocampal PKA signaling pathways, as
achieved by anchoring of PKA to AKAPs, is specifically instrumental in long-term contextual fear memory
consolidation and extinction, but not in acquisition and retrieval.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Contextual fear conditioning is a form of associative learning in
which animals learn to fear a new environment because of its tem-
poral association with an aversive unconditioned stimulus (US),
usually an electrical footshock. The neuroanatomical systems and
neurochemical basis underlying conditioned fear have been exten-
sively investigated. It affects multimodal sensory information pro-
cessing of continuously present (tonic) stimuli and it depends on a
time-limited function of the hippocampus (see for review e.g.
Sanders, Wiltgen, & Fanselow, 2003).

Studies investigating the intracellular signal transduction path-
ways involved have shown a crucial role for cAMP-dependent pro-
tein kinase (PKA) in contextual fear conditioning. Abel and
colleagues generated transgenic mice which express R(AB), an
inhibitory form of the regulatory subunit of PKA, only in forebrain
regions such as the hippocampus. In these mice hippocampal PKA
activity is reduced, which is paralleled by behavioral deficits in
long-term but not short-term memory for contextual fear condi-
tioning (Abel et al., 1997). The time course of amnesia in these

transgenic mice is similar to the time course observed in mice trea-
ted with inhibitors of PKA (Bourtchouladze et al., 1998). Other
studies using pharmacological approaches also reported that PKA
inhibitors impair contextual fear conditioning (Ahi, Radulovic, &
Spiess, 2004; Schafe, Nadel, Sullivan, Harris, & LeDoux, 1999; Wal-
lenstein, Vago, & Walberer, 2002).

Although much is known about the mechanisms involved in the
storage of contextual fear memories, the processes underlying the
extinction of fear memories are far less understood. Recently, a role
for PKA in fear extinction was proposed. Transgenic mice which ex-
press R(AB) show facilitated extinction of both recent and remote
contextual fear memories (Isiegas, Park, Kandel, Abel, & Lattal,
2006) whereas increased PKA activity was found to impair extinc-
tion (McNally, Lee, Chiem, & Choi, 2005; Wang, Ferguson, Pineda,
Cundiff, & Storm, 2004). In general these studies suggest that the
PKA signal transduction pathway is important in the consolidation
and extinction of contextual fear memories.

However, PKA is a multifunctional enzyme with a broad sub-
strate specificity and thus coordinated control of PKA signaling is
required. This is partly achieved by association of the enzyme with
so called A-kinase anchoring proteins (AKAPs) (Rubin, 1994).
AKAPs are a group of more than 50 identified functionally related
proteins. Although they share little primary structure similarities,
they all have the ability to bind the regulatory subunits of PKA,
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and therefore to coordinate specific cAMP signaling pathways by
sequestering PKA to a particular subcellular location (Beene &
Scott, 2007; Wong & Scott, 2004). Up to 75% of the total cellular
PKA is believed to be associated with some member of the AKAP
family. Compartmentalization of individual AKAP–PKA complexes
occurs through specialized targeting domains that are present on
each anchoring protein.

Interestingly, several AKAPs bind more than one signaling en-
zyme simultaneously. These multivalent AKAPs serve as scaffolds
for the assembly of signaling complexes consisting of several ki-
nases and phosphatases. Compartmentalization of both kinases
and phosphatases to the same location may provide a coordinated
activity of two enzymes with opposite catalytic activities.

Previous studies mainly focused on the effect of changes in PKA
activity on learning and memory processes. However, recent find-
ings suggest that positioning of PKA at its proper subcellular loca-
tion by AKAPs is crucial for its efficient catalytic activation and
accurate substrate selection and may thus be important in learning
and memory processes. Hitherto knowledge on the importance of
PKA anchoring to AKAPs in learning and memory processes is lim-
ited. In an initial study Moita and colleagues showed that local
inhibition of PKA anchoring in the rat lateral amygdala impaired
memory consolidation of auditory fear conditioning (Moita,
Lamprecht, Nader, & LeDoux, 2002). More recent studies in Dro-
sophila reported an important role for AKAPs in olfactory memory
processing (Lu, Lu et al., 2007; Schwaerzel, Jaeckel, & Mueller,
2007). Furthermore, data from genetically modified mice that con-
ditionally express Ht31, an inhibitor of PKA anchoring to AKAPs,
showed that an anchored pool of PKA is important in theta-burst
LTP and hippocampus-dependent spatial memory storage (Nie,
McDonough, Huang, Nguyen, & Abel, 2007). In aplysia sensory neu-
rons Ht31 was found to prevent both short- and long-term facilita-
tion (Liu, Hu, Schacher, & Schwartz, 2004).

In the present study, we investigated the importance of PKA
anchoring in the distinct stages of the memory process during con-
textual fear conditioning.

2. Materials and methods

2.1. Animals

All experiments were performed with 9–12 weeks old male C57BL/6J mice
(Harlan, Horst, The Netherlands). Individually housed mice were maintained on a
12 h light/dark cycle (lights on at 7.00 a.m.) with food (Hopefarm� standard rodent
pellets) and water ad libitum. A layer of sawdust served as bedding. The animals
were allowed to adapt to the housing conditions for 1–2 weeks before the experi-
ments started. The procedures concerning animal care and treatment were in accor-
dance with the regulations of the Ethical Committee for the use of experimental
animals of the University of Groningen (DEC4174C).

2.2. Fear conditioning

Fear conditioning was performed in a plexiglas cage (44 � 22 � 44 cm) with
constant illumination (12 V, 10 W halogen lamp, 100–500 lux). The training (condi-
tioning) consisted of a single trial. Before each individual mouse entered the box,
the box was cleaned with 70% ethanol. The mouse was exposed to the conditioning
context for 180 s followed by a footshock (0.7 mA, 2 s, constant current) delivered
through a stainless steel grid floor. The mouse was removed from the fear condi-
tioning box 30 s after shock termination to avoid an aversive association with the
handling procedure. Memory tests were performed 1 or 24 h after fear conditioning.
Contextual memory was tested in the fear conditioning box for 180 s without foot-
shock presentation. Freezing, defined as the lack of movement except for respira-
tion and heart beat, was assessed as the behavioral parameter of the defensive
reaction of mice by a time-sampling procedure every 10 s throughout memory
tests. In addition, mean activity of the animal during the training and retention test
was measured with the Ethovision system (Noldus, The Netherlands). In some
experiments, animals were exposed to an alternative context 24 h after the training
session. This alternative context consisted of a white plastic chamber
(39 � 29 � 19 cm) which was exposed to 500–1000 lux, did not have a rod floor
and was washed with 1% acetic acid, before each individual mouse entered the
chamber.

To assess fear extinction mice underwent a daily re-exposure to the condition-
ing chamber for 3 min after the retention test. During these extinction trials freez-
ing behavior and mean activity was measured.

2.3. Animal surgery

Double guide cannulae (C235, Plastics One, Roanoke, VA) were implanted using
a stereotactic holder during 1.2% avertin anesthesia (0.02 ml/g, i.p.) under aseptic
conditions as previously described (Nijholt et al., 2004) into both lateral brain ven-
tricles (i.c.v.) with anteroposterior (AP) coordinates zeroed at Bregma AP 0 mm, lat-
eral 1 mm, depth 3 mm or directed toward both dorsal hippocampi (i.h.), AP
�1.5 mm, lateral 1 mm, depth 2 mm (Franklin & Paxinos, 1997). Each double guide
cannula with inserted dummy cannula and dust cap was fixed to the skull with den-
tal cement (3M ESPE AG, Germany). Administration of 1 mg/ml finadyne (0.005 ml/
g i.p.) before the surgery served as pain killer. The animals were allowed to recover
for 6–7 days before the behavioral experiments started.

2.4. Brain injections

Bilateral injections were performed during a short isoflurane anesthesia using a
Hamilton microsyringe fitted to a syringe pump unit (TSE systems, Bad Homburg,
Germany) at a constant rate of 0.5 ll/min (final volume: 1 ll per side) for the
i.c.v. injections and 0.34 ll/min (final volume: 0.3 ll per side) for the i.h. injections.

PKA anchoring to AKAPs was inhibited by intracerebroventricular (i.c.v.) or
intrahippocampal (i.h.) injection of the peptide Ht31 (InCELLect� AKAP St-Ht31
inhibitor peptide (Promega, Madison, WI)) or superAKAP-IS. These peptides inhibit
the interaction between the regulatory subunits of PKA and AKAP (Gold et al., 2006;
Vijayaraghavan, Goueli, Davey, & Carr, 1997). SuperAKAP-IS was synthesized by so-
lid phase peptide synthesis using BOC-chemistry and purified after cleavage from
the matrix by preparative HPLC. Purity was controlled by analytical HPLC and mass
spectrometry. The stearated form of Ht31 and superAKAP-IS was used to enhance
the cellular uptake of the peptide through the membrane. St-Ht31 was injected
in a final concentration of 10 mM (i.c.v. 20 nmol/mouse and i.h. 6 nmol/mouse)
and St-superAKAP-IS in a final concentration of 5–500 lM (i.h. 0.003–0.3 nmol/
mouse per injection). Unfortunately, it was not possible to prepare concentrations
of St-superAKAP-IS higher than 500 lM. 50 mM Tris–HCl (pH 7.5) served as vehicle.
To test the specificity of the observed effects another set of animals was injected
with either InCELLect� St-Ht31P, a proline-substituted derivative which does not
inhibit PKA anchoring (control peptide; final concentration 10 mM in 50 mM
Tris–HCl, pH 7.5; i.c.v. 20 nmol/mouse and i.h. 6 nmol/mouse), or vehicle alone
(50 mM Tris–HCl, pH 7.5). Untreated animals without cannula served as controls
for possible cannulation and injection effects. The number of animals per group var-
ied from 6 to 18.

2.5. Histology

Immediately after the behavioral test mice were injected during 1.2% avertin
anesthesia (0.02 ml/g, i.p.) with methylene blue solution i.c.v., or i.h. Brains were re-
moved and serially sectioned at 50 lm, collecting the sections on glass slides. Sec-
tions were stained on glass for 5 min in 0.1% nuclear fast red solution. To identify
the location of the injection, sections were analyzed using light microscopy (Fig. 1).

Only data from animals in which the exact site of injection was confirmed after
the behavioral experiments were evaluated. The methylene blue injections in the
dorsal hippocampus did not show a diffusion of the solution to other brain or hip-
pocampal areas.

2.6. Immunoprecipitation

One hour after intrahippocampal injection of PKA anchoring disruptor peptide
or vehicle solution, the dorsal hippocampus was excised and mechanically homog-
enized in 10 volumes of homogenization buffer [50 mM Hepes (pH 7.4), 150 mM
NaCl, 0.2% NP-40, 4 mM EGTA, 10 mM EDTA, 15 mM sodium pyrophosphate,
100 mM b-glycerophosphate, 50 mM sodium fluoride, 5 mM sodium orthovana-
date, 1 mM dithiothreitol, 1 mM PMSF, and Complete Mini Protease Inhibitor Cock-
tail (Roche)]. The homogenate was centrifuged at 20,000g for 10 min at 4 �C, and the
resulting supernatant was used for AKAP150 immunoprecipitation.

Per sample 100 ll of Dynabeads protein A (Dynal Biotech) was washed twice
with Na-phosphate buffer (0.1 M, pH 8.1). Ten micrograms of goat anti-
AKAP150C-20 antibody (1:2500, sc-6445 Santa Cruz, CA, USA) was incubated with
the beads for 10 min. Afterwards the beads were washed three times with Na-phos-
phate buffer (0.1 M, pH 8.1) and twice with triethanolamine (0.2 M). IgGs were
crosslinked with dimethyl pimelimidate (20 mM in 0.2 M trietholamine) for
30 min. The beads were washed for 15 min with Tris (50 mM, pH 7.5) and three
times with phosphate buffered saline. Unbound IgG was removed by washing twice
for 30 min with Na-citrate (0.1 M, pH 2–3). The dorsal hippocampus homogenate
was incubated for 1 h with the beads. Bound proteins were eluted by denaturation
at 95 �C for 5 min. The immunoprecipitated sample was stored at �80 �C until use.
All the steps of the immunoprecipitation procedure were performed at room
temperature.
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2.7. Western blotting

AKAP150 immunoprecipitates were separated on a 10% SDS–polyacrylamide gel
and transferred to PVDF membranes (Millipore, USA). The blots were blocked for 1 h
in blocking buffer (0.2% I-Block (Tropix), 0.1% Tween 20) and then incubated over-
night at 4 �C with goat anti-AKAP150 C-20 (1:2500, sc-6445, Santa Cruz) and mouse
anti-PKA–RIIb (1:2.000, 610625, BD Biosciences). The blots were incubated with
horse radish peroxidase-conjugated secondary antibodies [HRP-conjugated donkey
anti-goat IgG (1:4.000)] (sc-2020 Santa Cruz, CA, USA) and HRP-conjugated donkey
anti-mouse (1:4.000) (sc-2005 Santa Cruz, CA, USA). Western blots were developed
using the chemiluminescence method (Pierce ECL, 32106). The immunoblots were
digitized and quantified using a Leica DFC 320 image analysis system (Leica, Cam-
bridge, UK).

2.8. Statistical analysis

Statistical comparisons were made by analysis of variance (ANOVA). For each
significant F ratio, Fisher’s protected least significant difference (PLSD) test was
used to analyze the statistical significance of appropriate multiple comparisons.
Data were expressed as means ± sem. Significance was determined at the level of
p < 0.05.

3. Results

3.1. Consolidation of contextual fear memory is impaired by i.c.v St-
Ht31 injection

To investigate the effect of inhibition of PKA anchoring to
AKAPs on the acquisition and consolidation of fear memory, ani-
mals were injected i.c.v. with St-Ht31, control peptide or vehicle
1 h before training. Injection of none of these substances resulted
in changes in mean activity during training or shock reactivity
when compared to untreated animals without cannula (data
not shown). However, injection of St-Ht31 caused a significant
reduction in freezing behavior during the retention test 24 h
after training in comparison to control peptide, vehicle-injected
and untreated animals (one-way ANOVA: F(3,31) = 5.471,
p = 0.004, Fig. 2A).

Similarly, injection of St-Ht31 immediately after training signif-
icantly attenuated conditioned fear (one-way ANOVA:
F(3,30) = 3.932, p = 0.018, Fig. 2B). The learning deficit observed
when St-Ht31 was injected immediately after training was similar

to the effect of St-Ht31 injected 1 h before training (43.8 ± 8.1%,
n = 9 versus 40.0 ± 7.3%, n = 7, respectively). To be able to distin-
guish between acquisition and consolidation, we performed a
retention test 1 h after training with mice that were injected 1 h
before training. Overall, the contextual fear response was some-
what lower 1 h after training than 24 h after training (Fig. 2A ver-
sus Fig. 2C). This result is in full agreement with previous studies of
Rudy and Morledge who investigated the time course of the
expression of context-dependent fear (Rudy & Morledge, 1994).
Interestingly, the performance of St-Ht31 injected animals did
not differ from the control groups when the retention test was per-
formed 1 h after training (one-way ANOVA: F(3,20) = 0.257,
p = 0.855, Fig. 2C). The finding that mice which received St-Ht31
1 h before training, showed unimpaired freezing 1 h after training
but attenuated freezing 24 h after training, suggests that PKA
anchoring onto AKAPs plays a specific role in the consolidation of
contextual fear memories but not in acquisition.

The importance of PKA anchoring in the retrieval of memories
was studied by injecting mice with St-Ht31 1 h before the reten-
tion test 24 h after training. There was no significant difference
in freezing behavior between all groups (one-way ANOVA:
F(3,25) = 0.071, p = 0.975, Fig. 2D).

3.2. Intrahippocampal injection of PKA anchoring disrupting peptides
impairs consolidation of contextual fear memory

We tested the subregion-specific contribution of the hippocam-
pus by i.h. injection of St-Ht31, different concentrations of St-
superAKAP-IS, control peptide or vehicle. When injected immedi-
ately after training, both St-Ht31 and St-superAKAP-IS caused an
impairment of contextual fear memory when compared to the con-
trol groups (one-way ANOVA: F(7,69) = 4.219, p = 0.001, Fig. 3A).
The effect of St-superAKAP-IS on freezing behavior appeared to
be dose-dependent (Fig. 3A).

In addition, consistent with other studies (Radulovic, Kam-
mermeier, & Spiess, 1998), mice showed contextual generalization
of fear in an alternative context 24 h after the training session.
However, freezing in this alternative context was much lower than
in the conditioning context and was not affected by 500 lM St-
superAKAP-IS injection (one-way ANOVA: F(2,15) = 1.154,
p = 0.342, Fig. 3B), indicating that the non-associative component
of the freezing response is not dependent on PKA anchoring.

Overall we can conclude that PKA anchoring to AKAPs lo-
cated in the hippocampus is instrumental in associative memory
consolidation. However, we cannot completely rule out the
additional involvement of extrahippocampal PKA signaling
pathways.

In all experiments, the injection procedure itself had no effect
on conditioned fear as indicated by the finding that there was
never a significant difference between vehicle-injected and non-in-
jected animals (Figs. 2 and 3).

3.3. Intrahippocampal injection of St-superAKAP-IS promotes fear
extinction

Next we assessed the role of PKA anchoring in the extinction of
contextual fear memory. Mice underwent a single training trial and
retention test and after the retention test mice were daily re-ex-
posed to the conditioning chamber for 3 min. St-superAKAP-IS
(500 lM) or vehicle was injected i.h. immediately after each
extinction trial. Inhibition of PKA anchoring by St-superAKAP-IS
significantly facilitated fear extinction (Extinction 5, one-way AN-
OVA: F(1,10) = 7.836, p = 0.019; Extinction 6, one-way ANOVA:
F(1,10) = 8.188, p = 0.017; Extinction 7, one-way ANOVA:
F(1,10) = 10.152, p = 0.010, Fig. 4).

Fig. 1. Representative coronal brain sections of bilateral (A) intracerebroventricular
(i.c.v.) and (B) dorsal hippocampal (i.h.) injections with methylene blue injections
after counterstaining with nuclear fast red. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this paper.)

I.M. Nijholt et al. / Neurobiology of Learning and Memory 90 (2008) 223–229 225



3.4. Intrahippocampal injection of St-superAKAP-IS reduced PKA
anchoring to AKAP150

Using immunoprecipitation we specifically assessed the
amount of PKA anchored to AKAP150 in the dorsal hippocampus
1 h after intrahippocampal injection of vehicle or 500 lM St-super-
AKAP-IS. The AKAP150 complex was immunoprecipitated with an
antibody directed against AKAP150. Subsequent analysis of the
amount of PKA bound to AKAP150 showed that St-superAKAP-IS
reduced the amount of PKA anchored to AKAP150 in the dorsal hip-
pocampus (one-way ANOVA: F(1,7) = 12.115, p = 0.01, Fig. 5).

4. Discussion

In summary, we conclude that hippocampal PKA anchoring to
AKAPs is important for the consolidation and extinction of contex-
tual fear memories whereas acquisition and retrieval are not
affected.

These findings are consistent with earlier studies using genetic
and pharmacological approaches to inhibit PKA activity. The genet-
ic reduction of hippocampal PKA activity in mice that express PKA-
R(AB) selectively impairs hippocampus-dependent long-term
memory for contextual fear conditioning (Abel et al., 1997). To ex-

clude the developmental effects as a result of transgene expression
Abel and colleagues confirmed their data via injection of a PKA
inhibitor (Bourtchouladze et al., 1998). Both i.c.v. and i.h. injections
of PKA or PKA/PKC inhibitors before or after training did not affect
memory after 1 h but significantly impaired memory after 24 h
(Bourtchouladze et al., 1998; Schafe et al., 1999; Wallenstein
et al., 2002). Overall, these data suggest an important role for
PKA signaling in the long-term consolidation of contextual fear
memories. Besides PKA, extracellular regulated kinase/mitogen-
activated protein (ERK/MAP) kinase is necessary for the consolida-
tion of associative memories in the mammalian nervous system
(Atkins, Selcher, Petraitis, Trzaskos, & Sweatt, 1998). It is suggested
that coactivation of PKA and MAPK signaling leads to the concur-
rent activation of CREB-dependent gene expression required for
hippocampal long-term memory formation (Impey et al., 1998).
From our data it can be concluded that not only PKA activity is nec-
essary for proper consolidation of memories, but also the spatial
and temporal compartmentalization of PKA achieved via anchoring
to AKAPs.

Mammalian PKA includes four regulatory (RIa, RIb, RIIa, RIIb)
and three catalytic (Ca, Cb, Cc) subunits, each encoded by a sepa-
rate gene. PKA consists of an inactive heterotetramer of two cata-
lytic subunits bound to two regulatory subunits (Taylor,

Fig. 2. Intracerebroventricular injection of St-Ht31 impairs the consolidation of contextual fear memory. Mice were injected either one hour before training (A and C),
immediately after training (B) or 1 h before the retention test (D) with St-Ht31, control peptide or vehicle. Untreated mice served as controls. The training consisted of a 180 s
exposure to the fear conditioning box followed by a footshock (0.7 mA, 2 s). 30 s after the footshock mice were returned to their home cage. Freezing behavior was measured
in the memory test 1 h (C) or 24 h (A, B, and D) after training. Error bars indicate standard error of the mean. Statistically significant differences: *p < 0.05 versus all control
groups (vehicle, control peptide and untreated).
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Buechler, & Yonemoto, 1990). PKA is associated to AKAPs with its
regulatory subunits via an amphipathic helix binding motif (Her-
berg, Maleszka, Eide, Vossebein, & Tasken, 2000). In studies by Fink
and colleagues inhibition of PKA anchoring by Ht31 resulted in
redistribution of the regulatory subunits and decreased compart-
mentalization of PKA (Fink et al., 2001). Thus, disrupted spatial
compartmentalization of PKA attenuates the specificity of the
cAMP/PKA signaling pathway. This will affect downstream pro-
teins such as the phosphorylation of CREB and may finally lead
to impaired long-term memory consolidation. Our finding that
only long-term memory consolidation is affected and not acquisi-

tion or retrieval indicates that there is a critical time window in
which PKA anchoring is essential in contextual fear memories.

The specific ways in which inhibition of PKA anchoring acceler-
ates extinction remains to be determined. However our findings
are in line with the facilitated extinction of contextual fear memo-
ries observed in mice with a transgenic inhibition of PKA (Isiegas
et al., 2006) and the impaired extinction in mice with increased
PKA activity (McNally et al., 2005; Wang et al., 2004).

It has been hypothesized recently that both memory formation
as well as extinction are actively controlled by a tightly regulated

Fig. 3. Hippocampal PKA anchoring plays an important role in the consolidation of
contextual fear memory. Mice were injected intrahippocampally with St-Ht31, St-
superAKAP-IS, control peptide or vehicle immediately after training. Untreated
mice served as controls. Freezing was measured in the memory test in the same
context (A) or in an alternative context (B) 24 h after training. Error bars indicate
standard error of the mean. Statistically significant differences: *p < 0.05 versus all
control groups.

Fig. 4. Intrahippocampal injection of St-superAKAP-IS facilitates the extinction of
contextual fear memory. Mice were injected intrahippocampally with St-superA-
KAP-IS and vehicle immediately after each extinction. Freezing was measured in the
memory test performed 24 h after training and on 8 consecutive days, starting 24
after the memory test. Error bars indicate standard error of the mean. Statistically
significant differences: *p < 0.05 versus all control groups.

Fig. 5. Intrahippocampal injection of St-superAKAP-IS impairs PKA anchoring to
AKAP150. Dorsal hippocampus was excised 1 h after St-superAKAP-IS or vehicle
injection. AKAP150 was immunoprecipitated from the dorsal hippocampus. (A) Bar
graph showing the ratio of PKA–RIIb complexed to AKAP150. The ratio in the ve-
hicle-injected group was set at 100% for each experiment. Results shown represent
three separate experiments. Error bars indicate standard error of the mean. Stati-
stically significant differences: *p < 0.05 versus the vehicle group. (B) Representative
Western blot for AKAP150 and PKA–RIIb.
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balance between PKA and protein phosphatase 2B (PP2B) in
which the one opposes the activity of the other (Mansuy, 2003).
In line with these findings it was reported that a reduction of
PP2B signaling in forebrain neurons improves memory consolida-
tion whereas it deteriorates fear extinction (Havekes, Nijholt, Vis-
ser, Eisel, & Van der Zee, 2008; Ikegami & Inokuchi, 2000; Lin
et al., 2003). Our data showed that St-superAKAP-IS injection into
the CA1 area of the dorsal hippocampus specifically reduced the
amount of PKA bound to AKAP150 in this area. AKAP79/150 tar-
gets PKA to postsynaptic densities in neurons (Dell’Acqua et al.,
2006) and is also able to bind PP2B (Dell’Acqua et al., 2002). In
vitro studies using the peptide Ht31 showed that displacement
of PKA from AKAP75/79/150 shifts the balance to PP2B activity
(Snyder et al., 2005). Thus, AKAP79/150 might be an important
coordinator of PKA and PP2B activity in memory consolidation
and extinction. Recently, we and others provided additional evi-
dence for an important role of AKAP79/150 in learning and mem-
ory. Electrophysiological measurements from hippocampal slices
of mice with a stop codon inserted into the AKAP150 gene to
truncate the last 36 residues, which constitute the PKA binding
site, showed the importance of AKAP150-anchored PKA in LTP
(Lu, Allen et al., 2007). We observed that AKAP150 is highly abun-
dant in the mouse brain especially in those areas that are known
to be involved in learning and memory (Ostroveanu et al., 2007).
Moreover, the levels of hippocampal AKAP150 were elevated after
exposure of animals to a novel context and during the consolida-
tion phase of contextual fear conditioning, indicating that upreg-
ulated levels of AKAP150 contribute to processing the exposure to
a novel context and the consolidation of associative learning (Nij-
holt et al., 2007). Although we cannot exclude the involvement of
additional AKAPs, it thus seems likely that at least AKAP79/150 is
important in the spatial compartmentalization of PKA signal
transduction pathways that are active in the consolidation of con-
textual fear memories.

Both superAKAP-IS and Ht31 inhibit the anchoring of PKA to
several AKAP species. However, whereas Ht31 has the potential
to disrupt RII but also some RI mediated localization (Herberg
et al., 2000), superAKAP-IS is a peptide that is 10,000-fold more
selective for the RII isoform relative to RI (Gold et al., 2006). Our
results show that RII anchoring is important in the consolidation
and extinction of contextual fear memories. In future experiments
the impact of the RI isoform-selective anchoring on learning and
memory processes could be assessed using the RI anchoring dis-
ruptor (RIAD) (Carlson et al., 2006). To study in greater detail
which specific AKAP is involved, it would be necessary to develop
inhibitors that disrupt the interaction of PKA with one particular
AKAP or to disrupt the interaction of PKA by introducing site-spe-
cific mutations in the PKA binding domain of a specific AKAP.

Overall, our data suggest that the temporal and spatial specific-
ity of the hippocampal PKA signaling pathway, mediated by AKAPs,
is critical to consolidate long-term contextual fear memory
whereas PKA anchoring to AKAPs may put a constraint on
extinction.
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