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ABSTRACT: We extend the system of ungauged N = 2,d = 4 supergravity coupled to
vector multiplets and hypermultiplets with 2-form potentials. The maximal number of
2-form potentials that one may introduce is equal to the number of isometries of either the
special Kéahler or quaternionic Kéhler sigma model. We show that the local supersymmetry
algebra can be realized on the 2-form potentials. These 2-forms couple electrically to strings
which we refer to as stringy cosmic strings. The 1/2 BPS bosonic world-sheet actions for
these strings are constructed and we discuss the properties of the 1/2 BPS stringy cosmic
string solutions.
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1. Introduction

1=

When constructing a matter-coupled supergravity theory one usually concentrates on the

fields that describe the physical states of the theory in question. Generically the bosonic

states are represented by the graviton, and a set of matter fields that generically are
differential forms of low rank (d —2)/2 > p > 0 for d even and (d —3)/2 > p > 0 for d



odd, respectively. To describe the coupling to branes one is naturally led to consider the
dual (d — p — 2)-form potentials as well. For p # 0 and at leading order, the construction
of the dual potentials is rather straightforward since the original low-rank differential form
fields always occur via their curvatures. This means that one may even eliminate the
potentials of the theory in favor of their duals. However, at higher orders, there may be
non-derivative couplings and, while the dualization would still be possible, the elimination
would not. A prime example of this is the trilinear coupling of the 3-form potential of d = 11
supergravity. In this case one can introduce a dual 6-form potential without being able to
eliminate the 3-form potential. This is related to the fact that the 6-form field transforms
under the gauge transformations of the 3-form potential leading to a non-trivial bosonic
gauge algebra [I].

The situation is more involved for the scalar fields, i.e. p = 0 since often they appear
via non-linear non-derivative couplings. It is instructive to consider the explicit example
of IIB supergravity which has two scalars: the dilaton and the RR axion. Together they
parameterize the scalar coset SL(2,R)/ U(1). The dualization of the RR axion is straight-
forward since at leading order it only appears under a derivative. The dual RR 8-form
potential couples to the D7-brane. However, the definition of the axion is basis-dependent.
Using another coordinate system for the SL(2,R)/U(1) coset manifold one can define a
new axion y’ which is different from the RR axion as explained in [B]. Dualizing x’, which
is a function of the old dilaton and RR axion, leads to a new 8-form potential that is not
related to the RR 8-form potential by any SL(2,R) duality transformation. To obtain a
manifestly SL(2,R)-covariant dualization prescription of all possible axions one must du-
alize the Noether currents associated to the presence of isometries of the scalar manifold.
After all, in an appropriate coordinate system, these isometries become shift symmetries
of given scalar fields. In the case of SL(2,R)/U(1) there are three isometries and this
procedure leads to three dual 8-form potentials. Since there are only two scalars and one
cannot have more dual 8-form potentials than scalars one finds that the triplet of 8-form
potentials satisfies a single duality-invariant constraint [}, f, fl]. Another way to see this
is by noting that one of the three scalars on which the isometries act as shifts does not
correspond to a (discrete) isometry of the quantum moduli space SL(2,Z)\ SL(2,R)/SO(2)
so that effectively only two 8-forms need to be considered.

The 8-form potentials of IIB supergravity play an important role when discussing the
supersymmetry properties of 7-branes in ten dimensions [}, fj]. Likewise in four dimensions
2-form potentials are dual to those scalars which parameterize the Noether currents. They
couple electrically to 1-dimensional branes which we refer to as stringy cosmic strings in
analogy with the terminology used in where a subset of the stringy cosmic strings of
the SL(2,R)/ U(1) coset was studied.

In this paper we generalize the case of the SL(2,R)/ U(1) coset in four dimensions
to N = 2 supergravity coupled to an arbitrary number of vector and hypermultiplets
whereby we assume that the scalar sigma models admit some isometry group. This is in
no way a restrictive condition because without isometries one cannot even define a 2-form
potential. It was shown in [[i] that one cannot in general dualize just any scalar into a
2-form potential. The objects to dualize are those Noether currents associated with the



isometries of the scalar sigma models which extend to be symmetries of the full theory.
Dualizing the Noether currents one obtains as many 2-forms as there are isometries. In
general the field strengths of these 2-forms satisfy constraints such that the number of
2-form degrees of freedom equals the number of scalar degrees of freedom which occur in
the Noether currents.

We explicitly construct the Noether currents for all the duality symmetries of ungauged
N = 2,d = 4 supergravity coupled to both vector multiplets and hypermultiplets. Via a
straightforward dualizing prescription we construct the 2-form potentials and prove that
the supersymmetry algebra can be closed on them. Once we have found the explicit
supersymmetry transformations for the 2-forms we proceed to construct the leading terms
of a half-supersymmetric world-sheet effective action. Finally we discuss to some detail the
properties of the half-supersymmetric stringy cosmic string solutions. The above program
is first performed for the duality symmetries associated with the scalars coming from the
vector multiplets and then repeated for the duality symmetries associated with the scalars
coming from the hypermultiplets.

In dualizing the 2-forms which are dual to the scalars of the vector multiplets it turns
out to be necessary to incorporate into the discussion both the 1-forms and their duals.
This is because the gauge transformations of the 2-forms involve both the 1-forms and
their duals. We will therefore also briefly discuss the supersymmetry properties of the dual
1-forms and as a side result construct world-line effective actions for O-branes carrying an
arbitrary number of electric and magnetic charges. These O-brane effective actions may be
used as sources for extreme supersymmetric black holes with electric and magnetic charges.

This paper is organized as follows. In section Pl we give a brief description of N = 2,d =
4 supergravity coupled to vector multiplets and hypermultiplets. In section [] we study
dual 1-forms and their supersymmetry transformation rules. These are used in section
to construct symplectic-invariant O-brane word-line actions. The symplectic invariance
refers to the fact that the world-line actions contain both the 1-forms and their duals. In
section || we construct the 2-forms dual to the scalars of the vector multiplets in three
steps. In section p.1] we construct the Noether current 1-forms associated to the isometries
of the special Kihler manifold. They are on-shell dualized into 2-forms in section [5.3. The
supersymmetry transformations of these 2-forms are constructed in section p.d. In section fj
we will apply our results to construct the stringy cosmic string world-sheet effective actions.
The supersymmetric stringy cosmic string solutions associated to these effective actions are
discussed in section f]. In sections [ to [L(] we repeat this program for the isometries of the
quaternionic Kahler manifold which lead to the 2-forms dual to the hyperscalars. Our
conclusions are contained in section [L1].

2. Matter-coupled, ungauged, N = 2, d = 4 supergravity

Our starting point is N = 2,d = 4 ungauged supergravity coupled to ny vector and ngy
hypermultiplets. This is the same theory that was studied in [§], whose conventions we use
here.! In this section we will briefly review it for the sake of self-consistency, referring the

IThey are those of ref. [E] with some minor changes introduced in refs. E, E]



reader to [B, ], the reviews [[I0, [L1]] and the original papers [[3, [[J] for more details. Our
conventions have been summarized in appendix [].

The bosonic fields of the theory are those of the N = 2, d = 4 supergravity multiplet
(metric and graviphoton) and of ny vector multiplets (ny complex scalars and ny vectors)
and ny hypermultiplets (4ny real scalars). The graviphoton together with the ny vectors
are combined into the vector Aﬁ where A = 0,1,...,ny. The complex scalars will be
denoted by Z* with ¢ = 1,...,ny while the real scalars will be denoted by ¢“ with u =
1,...,4ng.

The action of the bosonic fields of the theory is

S = / d2\/Tg] [R + 2Gij+0, 70" 23" + 2H 0" 0" q"

(2.1)
+2SmN\ FAEE ,, — 2ReNps FAW*FE T

where the complex scalars Z* parameterize a special Kiahler manifold and where the real
scalars ¢* parameterize a quaternionic Kéhler manifold. For their definitions and properties
we refer the reader to appendices B and [J. The metric on the special Kihler manifold is
denoted by G;;-, where the index (j*)i is a (anti-)holomorphic index. The field strengths
of the vectors Ai} are I ﬁ\u = 0, A% — 8,,Aﬁ. The scalars couple to the vectors via the period
matrix May, whose definition is given in appendix §. The last term in (B.I)) is topological
with

% — X po
R 1|g| €upo =17 (2.2)

It is an important feature of the above action that the period matrix A is only a
function of the complex scalars Z* and Z**" of the vector multiplets and does not depend
on the quaternionic scalars g% of the hypermultiplets. The vector and hypermultiplets only
interact gravitationally.

The field strengths F* v of the vector potentials AN p satisfy the Bianchi identity

V,(CFMH =0 or dF*=0, (2.3)

and the equation of motion
1 65
8y/lg] 943

where we have defined the dual vector field strength F by

b 1 s
Apw = ="k
g 4y/1g] 0" F

The equation of motion (.4) can be interpreted as a Bianchi identity for the dual field

— V,("F\)* =0, (2.4)

= ReNas F” . + SmNys* F¥ . (2.5)

strength Fj,
dFy =0, (2.6)

implying the local existence of ny + 1 dual vector fields Ay, i.e. locally Fo = dAp. The
equation of motion and Bianchi identity for A%, eqs. (B4) and (B.3), respectively, can be
summarized as

dF =0, (2.7)



where F is the (2ny + 2)-dimensional vector of field strengths

A
]—"z(?A). (2.8)

The Maxwell equations and Bianchi identities are left (formally) invariant by the trans-
formations of the vector field strengths

A B

’ =
F=8F, S_<OD

> € GL(2ny + 2,R), (2.9)

A,B,C and D being (ny + 1) x (ny + 1) matrices. The (2ny + 2)-dimensional vector of

potentials
AA
A= (AA) , (2.10)

whose local existence is implied by eqs. (2.7), transforms in the same way. However, since
the dual potentials, Ay, depend in a non-local way on the ‘fundamental’ ones, A%, these
transformations are non-local and are not symmetries of the action, which only depends
on the fundamental potentials, but only of the Maxwell equations and Bianchi identities.

We have to take into account, however, that the definition of the dual field strength
F involves the period matrix Nyx. In order to preserve this relation, the period matrix
must transform under the above GL(2ny + 2,R) transformations as

N' = (DN +C)(BN + A)~'. (2.11)

The period matrix Ay is symmetric in its indices A and 3. Demanding that this symmetry
is preserved under the transformation (R.11)) one finds that the matrices A, B, C, D must
satisfy

DI'B=BTD, CTA=ATC and DTA-BTC=1, (2.12)
or
T . (0 -1
stas=0 with a=[ |, (2.13)

so that § € Sp(2ny + 2,R) and only this subgroup of elements S € GL(2ny + 2, R) can be
a symmetry of all the equations of motion of the theory.?

It can be checked that this condition is enough for the transformations to leave invariant
the Einstein equations as well, but, to be symmetries of all the equations of motion, they
have to leave invariant the scalar equations of motion as well.

Since the period matrix is a function of the complex scalars, Nay, = Nax(Z, Z*), the
transformations (R-I1) induce transformations of the complex scalars Z*. The kinetic term
for Z in (R.1) will be invariant when the scalar transformations (R.11]) are isometries of the
metric G;j+. Thus, out of the group GL(2ny +2,R), only the subgroup Gy of isometries of

2This, in fact, is the largest possible electro-magnetic duality group of any Lagrangian depending on
Abelian field strengths, scalars and derivatives of scalars as well as spinor fields [@]



the special Kéhler manifold that can be embedded in Sp(2ny + 2,R) is a symmetry of the
full set of equations of motion and Bianchi identities. In order for Gy to be a symmetry of
the complete supergravity theory, it must satisfy some extra conditions that we will study
in section p.J}, see (5.3]). There can be further symmetries which are the isometries of
the quaternionic Kéhler manifold, i.e. isometries of the metric H,,. These isometries are
unrelated to the electromagnetic duality group Sp(2ny + 2,R). All these symmetries and
the extended objects associated to them will be the subject of this paper.

The fermionic fields of the theory are those of the N = 2, d = 4 supergravity multiplet
(two gravitini Wy, , I = 1,2), ny vector multiplets (ny gaugini A1) and of ny hypermulti-
plets (2ng hyperini (,, o = 1,...,2ng). We take all spinors to be complex Weyl spinors.
We define A" ; = (A1)* and (“ = ((,)*. The index «a is an Sp(2ny) index where by
Sp(2ngr) we mean the compact symplectic group Sp(2ng) ~ U(4ng) N Sp(4ng, C).

The R-symmetry group of N = 2, d = 4 supergravity is SU(2) x U(1). The U(1)
gauge connection is the Kahler connection 1-form, denoted by Q, and the spinors all carry
a particular Kéhler weight with respect to Q (see appendix [B for more details). The SU(2)
gauge connection is denoted by A;/ and acts on all objects which carry an SU(2) index
I = 1,2 (see appendix [J for more details about A;”).

From this point on we will refer to the upper case Greek indices as symplectic indices

X = (iﬁ) (2.14)

as symplectic vectors. Given two symplectic vectors X and Y we define the symplectic-

and to vectors X given by

invariant inner product, (X | Y), by
(X|Y)=XTay = X, Y4 - X v, . (2.15)

When writing forms inside a symplectic inner product we will implicitly assume that
we are taking the exterior product of both. One should then keep in mind that (X, |
Yig) = (—1)pq+1(Y(q) | X(p)), where X(;,) and Y(,) are p- and g-forms, respectively. Later
in section | we will encounter symplectic inner products of the form (X, | T'Y(,)) where
T is a generator of sp(2ny + 2,R) satisfying T7Q + QT = 0 with Q as in eq. (2:13). For
such inner products we have the property (X(,) | T'Y{y)) = (=1)PU Yy [ T X))

We next discuss the supersymmetry transformations of all the fields of the theory. To
lowest order in fermions, the supersymmetry transformations of the bosonic fields are

0y = —iq/jlufyael—kc.c., (2.16)
1 - 7 =712
5€AAH = ZﬁA 61J¢£€J + §©Z£A E[J/\IZ’}/“EJ +c.c., (2.17)
. 1_,.
62" = Z)\IZEI, (2.18)
1 _
(55(]“ = ZUQIUCOCEI +c.c., (219)

where £ is defined in appendix [B as the upper part of the symplectic section V in terms
of which a special Kéhler manifold can be defined and where ©;£" is the Kéhler-covariant



derivative of £ on the special Kéhler manifold. The object U*'* which appears in
eq. (R-19) is the complex conjugate of the so-called inverse Quadbein, i.e. UM% = (U,r%)*.
A Quadbein, denoted by U, is a Vielbein of the quaternionic Kéhler manifold and is
defined in appendix [J. The index pair a on a Quadbein originates from the fact that the
holonomy group of a quaternionic Kahler manifold is Sp(1) x Sp(2ng) with Sp(1) ~ SU(2).
The index pair ol is raised and lowered under complex conjugation, e.g. Uar, = (U ,)*.

The fermionic field supersymmetry transformations are

Sctbry = Dper + ers T e’ (2:20)
5€>\i1 ] aZiEI—I—EIJ Gi+EJ- (2‘21)
56COC = anIu ﬁquela (222)

The derivative ®, is the Lorentz, Kéhler and SU(2) covariant derivative acting on objects
with nonzero Kéahler weights and SU(2) indices I,J. In particular, it acts on the local
supersymmetry transformation parameter ey as

i
Ouer = (Vi + 5 Qu) e + Aurl ey, (2.23)

where Q,, is the pullback of the Kiihler connection defined in eq. (B-3) and where A, ;7 is
the pull back of the SU(2) connection A;” of the quaternionic-Kéhler manifold,

A,uIJ = AuIJapqu . (224)

In the variation of the gravitini the hyperscalars only appear via the SU(2) connection
A 17, while in the variation of the gaugini the hyperscalars do not appear at all. The
2-forms T+ and G'* appearing in egs. (-20) and (.21) are the self-dual parts of the
graviphoton and matter vector field strengths, respectively. They can be written in a
manifestly symplectic-invariant form as

T = (V| F), (2.25)
Git = %g"ﬂ'*(@j*v* | F). (2.26)

The commutator of two supersymmetry transformations on the bosonic p-form fields pre-
sented in this section, i.e. scalars and 1-forms, has the universal form3

[5777 56] = 5g.c.t.(£) + 5gaugo (A) 5 (2.27)

where dg ¢+ (§) is an infinitesimal general coordinate transformation with parameter {# and
dgauge(A) is a U(1) gauge transformation with parameter A?. The parameters £° and A
are given by the spinor bilinears

& = —iﬁly”q +c.c., (2.28)

1
AN = —gf’A;} + 1 (EAEUﬁIeJ +c.c.) . (2.29)

30n the Vierbein and the spinors the commutator also contains a local Lorentz transformation that does
not act on the p-forms since these carry no Lorentz vector or spinorial indices.



In the next sections we will define new dual fields of N = 2,d = 4 supergravity which
will satisfy the same universal algebra with the possible addition of specific gauge trans-
formations which do not act on the original ‘fundamental’ fields that we have introduced
in this section.

3. The 1-forms

The N = 2,d = 4 supergravity theory coupled to ny vector multiplets contains ny + 1
‘fundamental’ vector fields AA“ whose supersymmetry transformation rules are given in
eq. (BI7). The potentials AN u couple electrically to charged particles. In the next section
we will construct the leading terms of the bosonic part of the x-symmetric world-line
effective actions for particles electrically charged under AAM.

As we mentioned in section f}, the equations of motion of the potentials AN s eas. (B4),
can be understood as providing the Bianchi identities for a set of dual field strengths
F) defined in eq. (R.). These equations imply the on-shell local existence of ny + 1
dual potentials Aj,. The dual potentials Aj, couple electrically to particles which are
magnetically charged under the fundamental vector fields AAN. In this section we will
derive the supersymmetry transformation rules for the dual potentials Ay ,. This result
will then be used in the next section to construct the leading terms of the bosonic part
of the k-symmetric world-line effective actions for particles electrically charged under the
App-

The fundamental potentials and their duals can be seen as, respectively, the upper
and lower components of the symplectic vector A,, defined in eq. (B10). Electric-magnetic
duality transformations act linearly on it. This suggests the following Ansatz for the
supersymmetry transformation rule of A:

1 - 1 ~Ti
0 A, = ZV qu/)/ieJ + §©iV E[J)\Iz’quJ + c.c.. (3.1)

This Ansatz agrees with the supersymmetry transformation rule of the fundamental po-
tentials A® 4 as given in eq. (2.17) and with the fact that the AN u transform linearly under
Sp(2ny + 2,R). Indeed, the supersymmetry algebra closes on the symplectic vector of 1-
forms A,, with the above supersymmetry transformation rule. We find for the commutator
of two supersymmetries acting on A,,,

[5777 5&]-'4;1 = 5g~c.t.(5)-'4u + 5gaug0(A)~Au- (3.2)
The general coordinate transformation of A, is given by
5g.c.t.(£)-'4,u = £§A,u = éyauAu + (8“5”),41, ) (3'3)

with £¢ denoting the Lie derivative and where the infinitesimal parameter { is given in
eq. (R-28). The gauge transformation of A, is given by

dgauge (M)A, = O, A, (3.4)



where the gauge transformation parameter A is the symplectic-covariant generalization of
AD as given in eq. (B.H) and is given by

1
=—(PA, + 1 (VEUﬁIeJ +c.c.) . (3.5)

4. World-line actions for 0-branes

In this section we will construct the leading terms of the bosonic part of a k-invariant
world-line effective action for O-branes that couple to the 1-form potentials A* pand Ay .
In doing so we will take into account the symplectic structure of the theory. The actions will
be invariant under symplectic transformations provided we also transform an appropriate
set of the charges, in the spirit of ref. [[J.

It is clear that the O-branes of N = 2,d = 4 supergravity coupled to ny vector
multiplets can carry both electric charges ga and magnetic charges p® with respect to the
fundamental potentials A u- The couplings of the magnetic O-branes are, however, better
described as electric couplings to the dual potentials A, ,. A 0-brane with symplectic

A
q= <SA> . (4.1)

will couple electrically to the potential A. The only symplectic-invariant coupling is (g | A).

charge vector

We thus propose the following Wess-Zumino term

[artal a0 ", (4.2

where 7 is the world-line parameter and X* the embedding coordinate of the O-brane.
This Ansatz is clearly the only one satisfying the requirements of symplectic invariance
and gauge invariance.

The corresponding kinetic term in the O-brane action is not much more difficult to
guess. Symplectic invariance requires that the charges ga and p* appear in a symplectic
invariant combination with the scalars in the tension. The simplest combination is just the
central charge

Z=(q|V), (4.3)

whose asymptotic absolute value is known to give the mass of supersymmetric black holes
of these theories. Then, the world-line effective action takes the form

dXH* dXV dX*

a S

Using the supersymmetry transformations (R.16), (:18) and (B.J) we find that the

action (f.4) preserves half of the supersymmetries with the projector given by

. Z Yr J
€] +i—erg———e’ =0, (4.5)
1Z] " Varr



where the subindex 7 means contraction of a space-time index p with dX*/dr. This is
the same constraint that the Killing spinors of supersymmetric N = 2,d = 4 black holes
satisfy [§, [[d—[[§. In the static gauge, XH = dX"/dr = 6, assuming a static metric, so
that (/g = e, and denoting by €'® the phase of the central charge Z, the above projector
takes the form

er +ie®er e’ = 0. (4.6)

This equation is satisfied for spinors of the form
er = | X|V2e2%y, ero +iery0e’* =0, (4.7)

in which the €7 are constant spinors and with |X| some real function.

5. The 2-forms: the vector case

In this section we will construct the most general 2-forms associated to the isometries of
the special Kéahler manifold one can introduce in N = 2,d = 4 supergravity coupled to ny
vector multiplets and ng hypermultiplets. The 2-forms associated to the isometries of the
quaternionic Kéhler manifold will be discussed in section §. For the subset of commuting
isometries a similar program has been performed in [[J] where also actions for the dualized
scalars, which are part of so-called vector-tensor multiplets, are given.

5.1 The Noether current

As explained in section J| only the group Gy of isometries of the special Kahler manifold
which can be embedded in Sp(2ny + 2,R) are symmetries of the full set of equations of
motion and Bianchi identities. Despite the fact that these duality transformations only
leave invariant the equations of motion together with the Bianchi identities, it is possible
to construct a conserved Noether current associated to this invariance [[[4]. This is because
under variations of the scalars §z L+ dz+ L the Lagrangian is invariant up to the divergence
of an anomalous current, denoted here and in [[[4] by J#. Hence, we have

S7L + 67 L = —8,(/]glT") . (5.1)

In the case of p-brane actions coupled to supergravity the Noether current associated to

the super-Poincaré invariance of the coupled system contains a similar anomalous contri-

bution [R(], which is known to give rise to central charges in the supersymmetry algebra.
Applying the Noether theorem we get

. oL . oL R
7' —— 70— | = —-9,(+/ H 2
so that the Noether current
JN =62 —— 0L | sz oL _ | ju : (5.3)

\/ga (0.27) \/ga W2

is covariantly conserved, i.e. VMJ]’\‘, = 0. In this Subsection we will compute J]’\‘, for the
isometries of the Kéahler metric G;;+ which are embedded in Sp(2ny + 2,R).

— 10 —



Infinitesimally, the symmetries under consideration act on the complex scalars as

67" = ok (Z), (5.4)

where the k4*(Z) are dim Gy holomorphic Killing vectors? (4 = 1,--- ,dim Gy) and where
a?t denotes a set of real infinitesimal parameters. The Lie brackets of the Killing vectors
give the Lie algebra of Gy with structure constants f45¢,

[ka, kp] = —fapke, (5.5)

where kg4 = kA'0; + ka*" O;x.
On the vector field strengths the symmetries act as an infinitesimal Sp(2ny + 2,R)
transformation

§F =TF, (5.6)

where T € sp(2ny + 2,R), i.e. T7Q + QT = 0. The matrix T can be expressed as a
linear combination of the generators of the isometry group Gy of G;;« that is embedded in
sp(2ny + 2,R). In other words,

T = a7y, (T4, Tg) = fan®Tc, Ty € sp(2ny + 2,R). (5.7)

ab
T:<cd), (5.8)

then, the condition 77Q + QT = 0 implies

On the other hand, if

'=c¢, b'=0b, and o =—d. (5.9)

To find the current J* we start by writing the Lagrangian of (B1) in the following
form

1 A oL
=-F v inv 1
L 5 n OFAW+£ (5.10)
where
Liny = \/ |g| [R + 252-]-*8“2@'8“2*]'*} R (5.11)
is the part of the Lagrangian that is invariant under (5.4) and where
oL
5 = 4V FAMY . 12

Next we compute the variation of £ with respect to the variation of the scalars
6z L+ 67+ L =0L—0pL, (5.13)

where 6L is the total variation and dp£L denotes the variation of £ with respect to the field
strength F) /f,/. The total variation of £ under the transformations (f.4) and (5.9) is

5L =6 (—2 ]g\FAW*FA‘“’) = —2/|g| [FFA" VAR Fy  + < FA Y ep s F2 ], (5.14)

4The holomorphicity of the components k4* follows from the Killing equation.
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where we have used eqs. (5.9). The variation, dpL, is

oL

_ A
L = OF o~

= —4\/]g| [xFA" a’ F>,, + xFAM 6" Fy )] (5.15)

Using once again eqs. (f.9) it then follows that
0L — 6pL =24/ |g[(*F" | TFu ). (5.16)

'~

The result eq. (p.16) can be written (on-shell) as the divergence of an anomalous current
J i.e. one can show, using eqs. (B.3) and (R.4), that

~0,(VglJ*) = 6L — 5pL, (5.17)
where J¥ is given by
JP = —4(xF™ | TA,). (5.18)

At the same time we have for the right hand-side of this equation

. oL + 0L
0L —0pL =90 Oz« L = 07' —— 4+ 07" ———— 1
L—0pL 7L+ 07+L =0, ( 9(0,27) + 8(8MZ*Z*)> ) (5.19)
so that the Noether current, JY;, is given by
-1 oL w1 oL .
JN =02 4 60—+ JH, 5.20
Y e Y 00,77 >:20)

with J# given by eq. (F:13), and satisfies
9, <\/|g|JK,) ~0. (5.21)

Under gauge transformations of the 1-form potentials A the anomalous current JH and
hence J K, are not invariant: they transform as the divergence of an anti-symmetric tensor.
We will have to take this point into account in the next subsection when dualizing the
Noether current into a 2-form.

It will be convenient to write the scalar part of the Noether current, i.e. the part
In — J , in terms of the symplectic sections V instead of the physical scalars since V
transforms linearly under Sp(2ny + 2, R). This is achieved using

OV =020,V + 62" 0V, (5.22)
and egs. (B.§) and (B.9). We have
. 0L
7z _ = 2 By*y. 2
) H0n 7 i/ |g|{ oV | DFV*) (5.23)

Hence, the Noether current (p.20)) can be expressed in terms of V as

Jh = =2i(8V | DHV*) +c.c. + JF. (5.24)
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We continue to find an explicit expression for §). The symplectic sections transform
under global Sp(2ny +2,R) and under local Kéhler transformations. The Kéhler potential
transforms as

0k = Lo K = (ka0 + k" 0:K) = NZ)+2(27), A(Z) =a™Ma(2).
(5.25)
It can be shown that the functions A4(Z) satisfy

kYoidp — k004 = — fa® e . (5.26)

When A # 0 all the objects of the theory with non-zero Kéhler weight (in particular all the
spinors and the symplectic section V) will feel the effect of the symplectic transformation
through a Kéhler transformation. Infinitesimally one has

1
5Kéhlerv = _5(/\ - A*)V7 (527)

as follows from eq. (B-IJ). Next we introduce the momentum map, denoted by 77% and
defined by
PO = ika'0K —ida. (5.28)

One then readily shows that 6V, given via equations (5.29) and (5.4), can be written as
, 1
oV = o’ (kA’DiV +iPYV — 5(ha— AZ)V) . (5.29)

Since V only transforms under symplectic and Kihler transformations we conclude® that
we must have

1 .
W=TV=c(A=X)W,  where TV= at (ka"D;V +iPYV) | (5.30)

where T' is a generator of sp(2ny + 2). Taking the product of the r.h.s. of the second
equation with V we get the additional condition that the generators of Gy must satisfy:

(V| T4V) =0. (5.31)

The set of generators T4 which satisfy the constraint (5.31]) and which form a subgroup of
sp(2ny +2,R) is sometimes referred to as the duality symmetry Lie algebra [R1)]. Since, on
the other hand

8V = £oay,V = a? (kAiaiv + k:A*i*a,-*v) , (5.32)

we can write

1
Loap,V =TV + (A= X)W =0, (5.33)

5 Actually, this is a consequence of requiring that the reparametrizations generated by the Killing vectors
preserve not just the metric but the whole special Kéhler geometry. This is what we are implicitly doing
here and it is a condition necessary to have symmetries of the complete supergravity theory and not just
of the bosonic equations of motion. We thank Patrick Meessen for a useful discussion on this point.
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as the necessary and sufficient condition for the transformation to be a symmetry of the
supergravity theory.5

One verifies that the above way of writing the action of T on V, see eq. (5.30)), satisfies
eq. (b.1). By decomposing TV into the complete basis {V,D;V, V*, D;«V*} for the space
of symplectic sections (see appendix [§ below eq. (B.9)) we find

Pl=—(V|TaV*), and ka'=—iG7 9;-PY. (5.34)

Substituting (5.30) into expression (5.24) we obtain a manifestly symplectic-invariant ex-
pression for the Noether current

Inp = 2i(D,V* | TV) + c.e. — 4(xF | TAY). (5.35)

5.2 Dualizing the Noether current

In form notation the conservation of the Noether current 1-form Jy is just dxJy = 0. We
can define a 3-form” G = xJy, which satisfies dG = 0, so that locally G = dB. Note that
G is not gauge invariant because Jy is not, either, due to the term J (Ogauge G = 5gaugcj ).
We can write this term in the form

*xJ =—4(F|TA), (5.36)

where the exterior product between the forms in the symplectic inner product is always
assumed and as a result the 2-form B gauge transformation is given by

Sgauge B = dAy — 4(F | TA), (5.37)

where the symplectic vector A is defined through eq. (B-4).
We can define the following gauge-invariant 2-form field strength

H=dB+4(F|TA). (5.38)
It is then clear that H is dual to the scalar part of the Noether current Jy,
H=x(Jy—J). (5.39)

The scalar part of the Noether current is proportional to the Killing vectors. At any given
point there are only 2ny (real) independent vectors. Thus, if we allow for Z’-dependent
coefficients, in general we will find linear combinations of scalar parts of the Noether
currents. As a result, there will be as many constraints on the 2-form field strengths H 4
and, at most there will be 2ny independent real 2-forms.

5This condition can be read in two different ways: the Lie derivative of the section V has to vanish up
to symplectic and Kahler transformations or the symplectic- and K&hler-covariant Lie derivative of V has
to vanish identically.
“0Of course, we have dim Gy Noether currents and as many dual 3-forms G 4 but it is convenient to work
. _ A
with G = a”G 4.
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5.3 The 2-form supersymmetry transformation

In the previous Subsection we have constructed a set of 2-forms associated to the isome-
tries of the special Kéhler manifold of ungauged N = 2,d = 4 supergravity and we have
found their gauge transformations. Our goal in this section is to find their supersymmetry
transformations. The main requirement that the proposed supersymmetry transformation
of the 2-form B must satisfy is that the commutator agrees with the universal local super-
symmetry algebra of the theory given in eq. (2:27) and which may be extended to include
2-forms to

[5777 55] = 5g.6~t.(£) + 5gaugC(A) + 5gaugC(A1) : (5-40)

The expressions for ¢ and A are given by eqs. (R.2§) and (B.g), respectively. The 2-form
gauge transformation parameter Ay is to be found in terms of 7 and e.

Since B is defined by dB = xJy, the commutator of two supersymmetry variations on
B must close into the algebra (5.40). We have

5g.c.t.(£)B,uV = £§B,uz/ = gpapB;w + (8u£p)BpV + (auép)B,up = ép(dB)p;w - ZO[M (ngu]p) )

(5.41)
with £¢B,,, the Lie derivative of B, with respect to . Further, dgauge(A1) B, is given in
eq. (b-37). Hence, the supersymmetry transformations of B, must lead to the commutator

1
—c -
Vial ™

where we have substituted the duality relation, eq. (5.39), for (dB),,, in (5.41).
We make the following Ansatz for the supersymmetry transformation of B, (up to

[5177 5E]B;w = ép JINT — 4<‘F/Jl/ | TA> + 26[/1 (AV] - ngl/}p) ) (542)

lowest order in fermions),

8By = a(DV | TV*) 2! + c.c.
+o(V | TV*) e yipp) + cc
+e( Ay | TéA) - (5.43)
This Ansatz is based on the requirement that all terms must have Kéhler weight zero and
that the 2-forms are real valued. The matrix 7" satisfies eq. (5.31)).
We evaluate the commutator as follows. First we perform standard gamma matrix
manipulations, change the order of the spinors, evaluate the complex conjugated terms

and use relations from special geometry. Exhausting all such operations using formulae
from appendices [f] and [§ leads to the following expression for the commutator

(6,6 By = 4ia§0\/%eawp (DAY | TV — (DPV* | TV)] x
X [+ 4ia(DV | TV )GT (DV* | Fu ) My
=26V | TV (V" | Fw >61Jﬁ[6j + c.c.]
= 8al, Oy (V | TV ) + 4ib(V | TV* )0 + c(Ap | [0y, 0] Ay ), (5.44)
where it has been assumed that a and ¢b are real parameters. The parameter £ is given
by (R.2§). The notation [--- + c.c.] means that one should take the complex conjugate of
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whatever is written on the left within the brackets. The parameter a has been chosen to
be real in order to obtain the scalar part of the Noether current in the first line of (5.44).
The parameter ib has been chosen to be real so that the Ké&hler connection 1-form Qu
appearing in 6.¥;, cancels when adding the complex conjugated terms. We then take
2b = 4ia so that the first and the second term of the third line of eq. (p.44) combine into
a 2-form gauge transformation parameter. Expression (p.44) is further manipulated using
the completeness relation eq. (B.I0). This is the step where we impose the condition that
T must satisfy eq. (5.31). Using next the result for the 1-form commutator, eq. (B.9), to
write out the term proportional to ¢ in (5.44), we obtain

1
[0 0] Buw =410E7 ——= oy [(DPV | TV*) — (DPV* | TV)] — 8ady, ((V | TV )E,))

Vol

c ., 1 A
+ 16a( Fu | T(A+EPAy)) — gﬁ —meowpﬂ — O (A | T(A+EPAY))
c
+ 5o | TA) + e(Fou | TEPA,) (5.45)

where A is the 1-form gauge transformation parameter given in (B.H). This can be seen to
be equal to the desired result, eq. (5.49), for ¢ = —16a and a = —1/2. We thus obtain the
following supersymmetry variation rule for B,

1 .
0By = —5(DV | TV") eyt + c.c.
—i(V | TV*) e ypabp,) + cc.
+8<A[“ | Té. A, ). (5.46)
The 1-form gauge transformation parameter A, is given by

A =2V | TV )& — 40 Ay | T(A+E°A,)) + €°B,,. (5.47)

6. World-sheet actions: the vector case

In this section we will construct the leading terms of the bosonic part of a k-invariant
world-sheet action for the stringy cosmic strings that couple to the 2-form potentials B
that were constructed in section f|. Just as in the O-brane case of section [, we will construct
actions which are manifestly symplectic invariant.

According to the results of the previous sections we expect to have strings which carry
charges with respect to each of the dim Gy 2-forms By, that one can define. We define a
dim Gy -dimensional charge vector ¢4. Symplectic invariance suggests a world-sheet action

S = qA/d2U V| TAV*>1/‘9(2)’ +CqA/BA, (6.1)

where g(o) and By are the pullbacks of the space-time metric and 2-forms onto the world-

with leading terms

sheet, respectively and where c is some normalization constant that will be fixed later. The
tension of the string is given by the momentum map PY as given in eq. (5.34).
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Under supersymmetry the 2-form Bo appearing in the Wess-Zumino term of Eq (p.1),
transforms in part to 1-forms, see eq. (f.46). For the case of D-branes, one also encounters
higher rank forms that transform non-trivially under gauge transformations of lower rank
forms. In that case the structure of the Wess-Zumino term is constrained by the require-
ment of gauge invariance. This leads to the introduction of Born-Infeld vectors on the
world-volume. However, in the present case it is impossible to make (f.1)) gauge invariant
under the gauge transformation (5.37) by adding additional terms to the Wess-Zumino
term without adding more (scalar) degrees of freedom to the 2-dimensional world-sheet
theory. If we restrict ourselves to backgrounds on which the 1-form field strengths are
vanishing then the action (6.1]) preserves half of the supersymmetries with the projector

1 . 1
5(1 + 46"}/01)6] =0 with c¢= 1 (6.2)

Actually, the same problem arises in the construction of a x-symmetric world-sheet
action for the heterotic superstring in backgrounds with non-trivial Yang-Mills fields since
the NSNS 2-form transforms under Yang-Mills gauge transformations similar to eq. (5.37).
In the 10-dimensional case of strings propagating on backgrounds with non-trivial Yang-
Mills fields the solution to this puzzle lies in the addition of heterotic fermions to the
world-sheet action whose gauge transformations cancel against the Yang-Mills part of the
NSNS 2-form gauge transformation [RJ. We suggest that a similar effect could be at
work here. So the terms (Aj, | T9.4,)) in the 2-form supersymmetry transformation
rule, eq. (F.46), and in the 2-form gauge transformation, eq. (5.37), should be canceled by
anomalous terms in the supersymmetry transformations and gauge transformations of the
world-sheet spinors.

We will see in the next section that the stringy cosmic string solutions for which the
above action provides the sources require in order to preserve half of the supersymmetries
exactly the same condition to be satisfied by the Killing spinor.

7. Supersymmetric vector strings

Stringy cosmic string solutions of N = 2,d = 4 supergravity coupled to vector multiplets
were found in [§].% They preserve half of the original supersymmetries and belong to the
‘null class’ of supersymmetric solutions characterized by the fact that the Killing vector
that one can construct from their Killing spinors is null. Generically solutions in this class
have Brinkmann-type metrics

ds? = 2du(dv + Hdu + &) — 2e %% dzdz* (7.1)

where K is the Kahler potential of the vector scalar manifold and where @ is determined
from the equation
(d) o = 2ie™%0Q,, (7.2)

8Solutions related to these by dimensional reduction have been obtained in a 3-dimensional context in

ref. [E] .
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with Q,, the pullback of the Kahler 1-form connection given in eq. (B:2). The complex
scalars Z* are functions of u and z.

It is not easy to interpret physically these solutions for a generic dependence on the
null coordinate u. When there is no dependence on u we can take @ = 0 and the metric
is that of a superposition of cosmic strings (described by K) lying in the direction u — v
and gravitational and electromagnetic waves (described by H) propagating along the same
direction.

Setting H = 0 (which generically requires that we switch off all the electromagnetic
fields) we obtain solutions that only describe cosmic strings. In order to study the behavior
of these solutions under the symmetries of the theory, it is convenient to express them in
an arbitrary system of holomorphic coordinates, which amounts to the introduction of an
arbitrary holomorphic function f(z) whose absolute value appears in the metric and whose
phase appears in the Killing spinors of the solution

ds® = 2dudv — 2e%2) | f2dzdz*

er = (f/f) %10, Yer€ro =0.

If we take z = xo + ix3 then the condition v,«e;g = 0 is equivalent to eq. (.2).

The holomorphic functions Z*(z), f(z) are assumed to be defined on the Riemann
sphere C, but, generically, they will not be single-valued on it due to the presence of
branch cuts. These branch cuts are to be associated with the presence of cosmic strings
just as was done in the particular case of the SL(2,R)/ U(1) special Kdhler manifold studied
in refs. [} and [f].

As a general rule bosonic fields must be single-valued unless they are subject to a gauge
symmetry which forces us to identify as physically equivalent those configurations which
are related by admissible gauge transformations. In the theories that we are considering the
complex scalars Z*(z) do not transform under any gauge symmetry. Only the global group
of isometries Gy of G;;+ acts on them and only a discrete subgroup Gv(Z) C Sp(2ny +2,7Z)
will be a global symmetry at the quantum level.

In the resulting theories two values of Z%(z) may be considered equivalent if they are
related by a Gy (Z) transformation. This enables one to construct solutions in which the
scalars Z*(z) are multi-valued functions with branch cuts related to the elements of Gy (Z).
The source for a branch cut is provided by the Wess-Zumino term of a cosmic string. This
is explained in detail for the 10-dimensional case of the 7-branes in [J].

Next we discuss the emergence of axions related to the presence of Killing vectors. For
every Killing vector a*k4* one can always find an adapted coordinate system {Z%} such
that the metric G;;» does not depend on the real part of the coordinate Z 1 say. In this
coordinate system a’k4%0; = 0; and the isometries generated by it act as constant shifts
of Z! by a real constant:

§Z' =ccR. (7.4)
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This transformation only acts on the real part of Z1, x!, which is, then, what it is sometimes
meant by an axion: a real scalar field with no non-derivative couplings to the other scalars
and with a shift symmetry.”

It is clear that we can, in principle, define as many different axion fields as there are
independent Killing vectors,'? i.e. dim Gy, i.e. as many as 2-forms, which can be understood
as their duals. Their (both those of the axions and 2-forms) equations of motion are not
necessarily independent, though, and they will satisfy a number of constraints, as discussed
before, and, at most, there can be 2ny independent axions.

We now discuss the properties of the cosmic string solutions in a local neighborhood of
the location zg in the transverse space of a cosmic string. Infinitesimally the transformation
of the scalars Z¢ when going around zq is given by eq. (b.4). In some coordinate basis, the
transformation will only be an axion shift.

Besides the scalars Z° also the Killing spinors e; will undergo transformations when
going around the cosmic string at zy. This is because when the scalars transform as in
eq. (b-4) the Kahler potential transforms as

K(Z'Z")=K(Z,Z*) + Ma(Z) + N(Z7) . (7.5)
From the fact that the Killing spinor e; has Kéhler weight 1/2 it then follows that
e1(z) — eilPamaltavae (2) (7.6)

when going around zg. The phases ¢, relate to the fact that in general the spinors transform
under the double cover of Gy,.!1 The Killing spinor €; is defined in terms of the holomorphic
function f(z) via eqs. (F.3). The monodromy of f when going around zy must be

f(2) = el#EF g (), (7.7)

The cosmic string solutions contain information about the moduli space of the theory,

i.e. the space of inequivalent values for Z?. The classical moduli space is defined by the
requirement

Im My <0, (7.8)

9A more precise definition would require x! to be a pseudoscalar too. Actually, the real and imaginary
parts of the complex scalars in N = 2, d = 4 vector supermultiplets have different parities, but, in a general
model with arbitrary coordinates one should look at the couplings to the vector fields to determine the
parity of x!.

On the other hand, the action of N = 2,d = 4 supergravity indicates that the axions must appear in

1
e Nas:, which couples to the parity-odd term F* A F¥. Under symplectic transformations (1)> Re N

C
is shifted to Re N + C, as one expects from axions. This suggests another possible characterization of
axions: ! is an axion if its shifts are embedded in the Abelian subgroup of symplectic transformations of
10
c1)

YHowever, they cannot be used simultaneously, since we can only use simultaneously adapted coordinates

the form

for commuting isometries.

1 One can even include yet another phase factor in the transformation rule for the Killing spinors which
incorporates the fact that e; may come back to itself up to a sign, i.e. one can include nontrivial spin
structures.
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in order that the kinetic terms of the 1-forms have the right sign in the action (R.1). The
zeros of the polynomial §Z° = ak4® which belong to the space ([-§) (or possibly on the
boundary thereof) are fixed points of the monodromy and therefore comprise the loci of
the cosmic strings in the quantum moduli space:

{Z"|Im Npx < 0}/Gv(Z). (7.9)

Drawing from the analogy with the SL(2,R)/U(1) case studied in [[] one can expect
all physical properties of globally well-defined stringy cosmic string solutions to be mapped
into geometrical properties of the space ([.9). Such properties are the total mass, possible
deficit angles at the sites of the cosmic strings, orders of monodromy transformations (the
number of times the same monodromy has to be applied in order to equal the identity),
etc. Here we will not attempt to work out the global properties of these solutions, since
they are strongly model-dependent.

In the SL(2,R)/U(1) case one could have derived all geometrical properties of the
quantum moduli space SL(2,Z)\ SL(2,R)/ U(1) by studying the globally well-defined su-
persymmetric stringy cosmic string solutions. It is therefore natural to ask the question
whether this is generally true, i.e. whether (some class of ) quantum moduli spaces of Calabi-
Yau reduced supergravities can be obtained by studying the properties of the stringy cosmic
string solutions.

We leave this for a future investigation.

8. The 2-forms: the hyper case

If we consider N = 2, d = 4 supergravity with general matter couplings, we can have
apart from the complex scalars in the vector multiplets 4ng real scalars when coupling
gravity to ny hypermultiplets. In the following we repeat the program of introducing
2-forms in order to dualize the hyperscalars which parameterize the Noether currents of
some isometry group of the quaternionic Kahler manifold. We first construct the Noether
currents, dualize them and subsequently construct the supersymmetry transformation rule
for the dual 2-forms. For the subset of commuting isometries a similar program has been
performed in [24] where also actions for the dualized scalars are given.

8.1 The Noether current

The transformations we are dealing with are just the isometries of the quaternionic Kéahler
manifold that we write in the form

o0q" = aAk;A“(q), (8.1)

where k4" are the components of the Killing vectors k4 = k"0, that generate the isometry

A

group Gy of Hy,. The parameters a“ are real parameters.

— 20 —



Associated to each of the isometries we can define a momentum map'? P4/ defined
by the equation

guPAIJ = _JIJuvavy (8'2)

where J;7 . is the triplet complex structures of the quaternionic-Kaher manifold.
We write the triplet of complex structures J;7,, in terms of the Quadbeins as follows

37 = %(ax)ﬂﬁm with  J2% = —U (0,) 1/ Uas™ (8.3)

where the o, z = 1,2, 3, are the three Pauli matrices. We will often write P;/ = a4P ;.
The Noether current associated to the these isometries, which do not act on the vector

fields, is just
oL

1
W 9(9uq)

Jh = 6q" = 4H,,0"q¢"6q"% , (8.4)

and satisfies VHJ]’\‘, =0.

8.2 Dualizing the Noether current

Since the isometries of the quaternionic Kéhler manifold do not act on the vectors of the
theory they are symmetries of the action and there will be no anomalous contribution to
the Noether current such as J which we encountered when discussing the isometries of the
special Kahler manifold. We can thus immediately define the gauge-invariant 3-form field
strength H via

H=dB=xJy, (8.5)

where H = a*H4 and B = a” By.

8.3 The 2-form supersymmetry transformation

We know that, since B is defined by dB = xJy, the commutator of two supersymmetry
variations on B must close into the algebra (5.4(), i.e. it must lead to the commutator

1
[577756]B/w = §p—6pMVUJNJ + 28[# (A,,} — prV]p) . (8.6)

VIl

In order to achieve this, we make the following Ansatz for the supersymmetry variation of
the 2-form (up to lowest order in fermions)

563“,, = aP[JEI’}/[/ﬂﬁJh,} + c.c.
+0U o "D P17 €y, ¢ + coc. (8.7)

where a and b are arbitrary complex constants.

12Momentum maps play a crucial role in the gauging of the isometries. It is therefore interesting to note
that the mathematics which governs the 2-forms is similar to that used in gauged matter coupled N = 2,
d = 4 supergravity.
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Evaluating the commutator and assuming that a and ¢b are real parameters we obtain
5020 By = — o brclg" Mo
+gz’bJ,Kw5q“a@qwxme
+20), (A — €°By,) — adrvwdq” 0,0 X k" (8.8)
where we have defined the matrix of vector fields
X! = =" vuer — e’ (8.9)
and where the gauge parameter A, is given by
A= _gXJI“PIJ +&7Byp. (8.10)
Next we choose a = %ib and we are left with

3 N w v
[0, 0] By = = 5ib(xdq" )& Howdg” + 20y, (Ay) = €7 By - (8.11)

If we compare this expression with eq. (B-6) using eq. (B4) we read off that ib = —3, so
that a = —4.
The supersymmetry transformation of the 2-forms dual to the hyperscalars parame-

terizing the Noether current (8.4) is thus

0eBuy = —4P[J€I’Y[M1/1J|V} + c.c.

8
+§ZUQJ“©HP1J€IVW§O‘ +c.c., (8.12)

and the 2-form gauge parameter A, is given by

Ay =2X,1 P17 +¢°B,,. (8.13)

9. World-sheet actions: the hyper case

Stringy cosmic strings in the hyper case are strings electrically charged under the 2-forms
B constructed in section f. In this section we will construct the bosonic part of the string
effective action, which preserves half of the supersymmetries of the theory. In analogy with
the Ansatz that we made for the strings in the vector case we again express the tension of
the string in terms of the momentum maps. We make the following Ansatz

S = /d%ﬁ,/yg@)\ +ch/BA, (9.1)

where c¢ is some real number which will be fixed later. The tension is given by

Ti = /(P?*)2  where P%=aP¥, with PIJ:%Px(Um)IJ (9.2)
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and in taking the square we sum over x = 1,2, 3.

Performing a supersymmetry variation of the action (0.1) using the transformation
rules (£.16)), (R.19) and (B.1) we find that the string action preserves half of the super-
symmetries with a projector given by

8ci

1
=3 ) WPI‘]WH), I;7¢! =0, where ¢ = T (9.3)

An important distinction with the analogous string action constructed in section ff is
that in the present case the Wess-Zumino term is gauge invariant up to a total derivative
whereas in the case of strings coupled to 2-forms dual to vector scalars the Wess-Zumino
term is not by itself gauge invariant, cf. the discussion below eq. (f.1]). In fact one may
consider the action (P.1)) as the first example of a 1/2 BPS (d — 3)-brane action which is
well-defined (at the bosonic level) for all possible (d — 2)-form potentials. In the d = 10-
dimensional situation only the brane actions related to the D7-branes are well understood.
For the other 8-forms which couple to the Q7-branes of [f] there are still open problems
regarding a proper understanding of the world-volume dynamics. The fact that in the
particular case of the hyperstrings we can construct well-defined actions supports the idea
that in general one can treat all isometries of any scalar sigma model in any supergrav-
ity on an equal footing (provided they pertain to be discrete isometries of the quantum
moduli space). This suggests that in order to find the full spectrum of 1/2 BPS states one
best considers the same supergravity theory in various coordinate systems in which these
isometries take on a simple form.

10. Supersymmetric hyperstrings

In ref. [PJ] it was shown that the c-map transforms supersymmetric stringy cosmic string
solutions of the vector scalar manifold into supersymmetric stringy cosmic string solutions
of the hyperscalar manifold. The latter belong to the timelike class of supersymmetric
solutions characterized by the fact that the Killing vector that one can construct from
the Killing spinors of the solution is timelike. The metric for this class of solutions (for
vanishing vector multiplets) takes the following form

ds? = dt* — yppdr™dz" . (10.1)

The 3-dimensional spatial metric v, (or its Dreibeins V*,,) is related to the hyper-
scalars ¢"(z) by two conditions. The first condition is

V™ Opg® U™, (04) 7 = 0, (10.2)
and the second condition reads, in a given SU(2) and Lorentz gauge,
WY = e"A, Ong”, (10.3)

where w,,,"? is the spin connection 1-form of the 3-dimensional metric and A®,0,,q" is the
pullback of the SU(2) connection of the quaternionic-Kéhler manifold parameterized by
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the scalars ¢%. In the gauge in which eq. ([[0.d) holds the Killing spinors take the form

: x 1 x
€] = €10, %7 ejo=0 with II%;7 = 5[51‘] - ’70( ) (U(x))[‘]] (10.4)

where the notation (x) in ([[0.4) means that = is not summed over so the constraints are
imposed for each non-vanishing component of the SU(2) connection.

We now repeat for the hyperscalars parameterizing a quaternionic Kahler manifold
with isometry group Gy the discussion of section []. The fields will only depend on two
spatial coordinates (z! and 22, say, that can always be combined into a complex coordinate
z) which parameterize the transverse space of the cosmic string. The metric will take the

form
ds? = dt? — (dz®)? — 22 ) dzdz* | (10.5)

and the hyperscalars will be real functions ¢*(z, z*). A convenient Dreibein basis is

A~

Vi=da®, Vi=Vdz, VZ =V*ds*, |V]?=e2E7), (10.6)

In this Dreibein basis the supersymmetry conditions egs. ([[0.9) and ([[0.3) take the respec-
tive form

U*?,0,q¢" = U ,0..¢* = 0, (10.7)
@, = A3, 0,q", (10.8)
Aly Omg" = A%, Omg" = 0. (10.9)

The Killing spinors of these solutions, in this basis, are given by
€] = €10, H?’[‘] €j0=0. (10.10)

It can be shown that in this gauge the pullbacks of the complex structures J! and J?
vanish while J? remains nonzero and one recovers the projection operator eq. @) Asin
the case of the vector scalars, it is convenient to work in a more general coordinate system
in which the metric takes the form

ds? = dt? — (da®)? — 2e®&*)| f12dzdz (10.11)

where f(z) is a holomorphic function. The supersymmetry conditions, egs. ([L0.7)
and ([[0.9), do not change and eq. ([[0.§) is still satisfied with the old spin connection.
If the new spin connection is computed with respect to the new frame

V3=dz?, VP=Vf'dz, V¥ =V*fd*, (10.12)

then, we find that
@, = w, " gq+ 0. log f, (10.13)

and then the Killing spinors take the form

e = eBlosU/ N (10.14)
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the constant spinor €rp obeying the same constraints as above, egs. (JL0.1(J). These same
constraints allow us to rewrite it in the equivalent form

1 = exp {5 log(f/)as} Teo. (10.15)

The multi-valuedness of the Killing spinors e¢; of these solutions is related to the
U(1) € SU(2) gauge transformation where the U(1) subgroup is associated to the non-
vanishing component A3,0,¢" of the SU(2) connection pulled back on the space-time. The

transformations of the Killing spinors determine the monodromy properties of the holo-
morphic function f similarly to what happens in the case of the vector scalars.

11. Conclusions

In this paper we have shown how, consistent with the supersymmetry algebra, the standard
set of bosonic fields of N = 2,d = 4 supergravity coupled to vector and hypermultiplets can
be extended to include ny + 1 additional “magnetic” vector fields and dim Gy 2-form fields
dual to vector multiplet scalars, as well as dim Gy 2-form fields dual to hypermultiplet
scalars. These fields couple, respectively, to magnetic O0-branes (black holes) and cosmic
strings for which there are well-known classical solutions that we have reviewed. They
are necessary to construct k-symmetric effective world-volume actions for these solutions.
We have studied the construction of these actions in a symplectic-covariant form and
checked that their supersymmetry to lowest order precisely leads to the 1/2 BPS condition
one expects for these solutions. The vector string action is 1/2 BPS on backgrounds of
vanishing 1-form field strengths because the WZ term is not invariant under the 1-form
gauge transformations. This problem is analogous to that of the gauge invariance of the
heterotic string on a background of Yang-Mills fields. We propose that it may be solved
in the same fashion [2J], thanks to a cancelation with anomalous gauge transformations of
fermions, which we are not considering at this order of approximation.

One possible extension is based on the idea that there may also be 3- and 4-form
potentials (also known as deformation potentials and top-form potentials, respectively)
unrelated by duality to any of the standard fields of the theory and which do not carry
any (continuous) degree of freedom. Deformation and top-form potentials have been found
and studied in 10-dimensional supergravities [P§—PJ]. These potentials can be associated
with higher-dimensional objects such as domain-walls and space-time-filling branes. For a
recent derivation of the representations of these potentials for maximal supergravity from
a Kac-Moody point of view, see [B0, BI]. It would be very interesting to carry out a similar
analysis in the N = 2,d = 4 theories. For the cases that the special Kéhler manifold
corresponds to a coset geometry the representations of these potentials again follow from a
Kac-Moody approach [BJ]. Alternatively, some of the deformation and top-form potentials
should be related by dimensional reduction to those of minimal d = 5 supergravity, which
have recently been constructed in [BJ].1® Further, the deformation potentials carry a great

13All the deformation and top-form potentials of minimal d = 5 supergravity will give rise to top-form
potentials in 4 dimensions. However, in general, not all these potentials can be obtained from a higher-
dimensional theory, the best-known example being the RR 9-form potential of N = 2A,d = 10 supergravity.
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deal of information about possible gaugings or massive deformations (hence the name) of
the supergravity theory. It would be interesting to work these things out in detail for the
N = 2,d = 4 theories.

There is yet another interesting connection between gauged supergravity and the
(d — 2)-form potentials that we have studied here which is worth exploring. It is known
that if one performs generalized (Scherk-Schwarz) dimensional reductions associated to
one isometry of a sigma model metric in d space-time dimensions, one gets gauged super-
gravities [B4- 0] in d — 1 space-time dimensions. Locally, these generalized dimensional
reductions can be interpreted as reductions in the background of the (d — 3) brane that
would couple to the (d — 2)-form potential dual to the Noether current associated to the
isometry used in the reduction [{, 0, i1]]. After reduction, in the transverse direction, the
(d — 3) branes become domain-wall solutions in the reduced theory and should couple to
deformation potentials directly obtainable from the (d — 2)-form potentials of the original
theory.

In particular, in the case at hand, we should be able to perform explicit generalized
dimensional reductions using isometries of the special Kédhler manifold in a way consistent
with all the symmetries of the theory (as it was done in [B]) down to 3 dimensions, obtaining
gauged 3-dimensional supergravities on the one hand. On the other hand, we should be
able to relate the deformation parameters that appear in 3 dimensions with deformation
potentials (i.e. 2-form potentials) which can be obtained from the 4-dimensional 2-form
potentials that we have obtained here. At the same time one should be able to relate the
4-dimensional cosmic string solutions to the 3-dimensional domain-wall solutions. Similar
relations between the 5- and 4-dimensional theories must exist. Work on these subjects is

in progress.
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A. Conventions

The signature is mostly minus. Flat tangent space indices are denoted by lower case Latin
indices a whose values are a = 0,1,2,3. Curved space-time indices are denoted by lower
case Greek indices p whose values are = t,1,2,3. The tangent space Levi-Civita symbol

0123

is taken to be € = —¢p123 = 1. The curved Levi-Civita tensor whose indices are lowered

with the metric is taken to be

T = /]glelt - - elitett M (A1)

where el is the inverse Vielbein. The Hodge dual of a k-form w is defined to be

1

(*w)ﬂl"'ﬂdfk = Wem"'udfklfl"'l/kwylmyk : (A'Z)

The Riemann tensor is defined by R,,,,7 = 9,I'), +---.

We work in the Majorana representation which in signature (+ — ——) has all the
gamma matrices purely imaginary,
R (A.3)
The anticommutator is
{Va, W} = +2na - (A.4)
The chirality matrix is defined by
5 = —in’y1y% = i, €aveay V7" (A.5)

With this chirality matrix, we have the identity

N T
yHe :((41771)16“1 anb1biony b5 (A-6)

where [n/2] is the highest integer less than or equal to n/2. The following two gamma
matrix identities are used in the text

YurYp = Yuvp + YuGvp — Vvup > (A7)
Y Yoo = Z.E,uypo’yf) - 2gu[pga}u - 2/7;1[ng}1/ + 2gu[p70}u : (AS)

We use 4-component chiral spinors x whose chirality is related to the position of the
SU(2) index I or the position of the Sp(2ny) index «,

vsxr = —xr, vx' =x', (A.9)
YXa = —Xas VX" =Xx"- (A.10)

The position of the SU(2) index I and of the Sp(2np) index « is raised and lowered under
complex conjugation
Xi=x" and X} =x". (A.11)
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The conjugated spinor is taken to be
=i and  Xa =i(x*)"0. (A.12)

The spinors are anticommuting and we take the convention that they do not change their
order under complex conjugation. We have the following property for spinor bilinears

[(n+1)/2] ¢

X1y X = (—1) X2yt (A.13)

where x1 and yo are arbitrary spinors.

B. Special Kahler geometry

A Kihler manifold M is a complex manifold with coordinates Z% and (Z%)* = Z*¥" whose
Kahler 2-form 7 is closed. The Kahler 2-form is then locally given by J = dQ with Q
the Kéhler connection 1-form. Both the metric and the Kéhler connection 1-form can be
expressed in terms of the Kéhler potential IC as follows

ds? = 2G= dZ'dZ*"  with  Gy» = 0;0-K, (B.1)
Q = (2i)"Y(dZ'9;K — dZ*¥ 9;-K) . (B.2)

The non-vanishing components of the Levi-Civita connection on a Kéhler manifold are
given by
ijl — gm* 8]91% 7 Fj*k*l* _ gl*laj*gk*i . (B3)

The Kéahler potential is not unique. It is defined up to Kéhler transformations,
K(Z,Z*) = K(Z,Z*)+ AN(Z) + X\ (Z"), (B.4)

where ) is any holomorphic function of the complex coordinates Z°.
An object X is said to have Kéhler weight ¢ when X transforms under the above
Kahler transformations as
X — e (@P-aN)2x (B.5)

The Kahler-covariant derivative ® acting on X has the following holomorphic and anti-
holomorphic components

where V is the standard covariant derivative associated to the Levi-Civita connection,
egs. (B.3), on M. For objects with K&hler weight ¢ the space-time pullback of the Kahler-
covariant derivative is given by

D, =V, + i, . (B.7)

where V, is the standard space-time covariant derivative plus the pullback of the Levi-
Civita connection on M if necessary and where Q,, is the pullback of the Kéhler 1-form of

eq. (B2).
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A special Kihler manifold is the base manifold of a Sp(2ny +2,R) x U(1) bundle [[LT].
There exist sections V such that

oA V|V =L5My — LAMG = i,
V= M I @i*v = (82* - %OZ*IC)V = 0, (B.8)
- DV V) =0,
where ©;V = (0; + %(%IC)V.
It follows from the basic definitions, eqs. (B.§), that

Dix DV = Gy« V, (D;V | Di=V*) = i Gy,
DV |V =0, (D:V[V) =0, (B.9)
0,0,V V) =0, (D, D) = 0.

If we now group together V and ©;V into Ep = (V,D;V) we can see that (Ex | £%4) is a
non-degenerate matrix. Using {Es,£*5} as a basis for the space of symplectic sections we
obtain the following completeness relation

il=— | VYW |+ | VOV | =G | DVNDeV* | 4G | D VNDV | . (B.10)

We write for the components of ;) the following

D,V = <£A> . (B.11)

The period matrix Ny is defined by the following two relations
My = NysL”, hai = N asf™. (B.12)

The identity (D;V | V*) = 0 implies that N is symmetric in its symplectic indices.
From the properties, eqgs. (B.§), one concludes that V transforms under Kihler trans-
formations as
1 *
YV — e 2y (B.13)
For further details and identities the interested reader can consult the basic refer-

ences [0, (- [H4], the review [[L1]] or ref. [}, {] whose conventions and results we follow.

C. Quaternionic Kahler geometry

A quaternionic Kéahler manifold is a real 4npg-dimensional Riemannian manifold HM en-
dowed with a triplet of complex structures J* : T(HM) — T'(HM), (z = 1,2, 3) that satisfy
the quaternionic algebra

JPY = =6 + e"VF )7 (C.1)

and with respect to which the metric, denoted by H, is Hermitean

H(J*X, J°Y ) = H(X,Y), VX,Y € T(HM). (C.2)
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This implies the existence of a triplet of 2-forms K*(X,Y) = H( J*X,Y") globally known
as the su(2)-valued hyperKéahler 2-forms.

The structure of a quaternionic Kéhler manifold requires an SU(2) bundle to be con-
structed over HM with connection 1-form A® with respect to which the hyperKéahler 2-form
is covariantly closed, i.e.

DK? = dK* + " AY ANK® = 0. (C.3)
Then if the curvature of this bundle
F* = dA" + %6”2 AY N A7, (C.4)
is equal to minus the hyperKahler 2-form
F* = —K*, (C.5)

the manifold is a quaternionic Kéhler manifold as it appears in supergravity.
The SU(2) connection acts on objects with vectorial SU(2) indices, such as the chiral
spinors in this article, as follows

Dér = dér+ArE, (C.6)
Oy = dy! + Al 7. (C.7)
The vector SU(2) indices on A ; are raised and lowered under complex conjugation as
Al = (Ar)". (C.8)
Following ref. [I(] we put
Al = % A" (02)1”, (C.9)
J

and similarly for the curvature F;/ where the 3 matrices (0,);” are the Pauli matrices.
The holonomy group of a quaternionic Ké&hler manifold HM is Sp(1) x Sp(2ng) where
Sp(2npg) ~ U(4ng) NSp(4nm, C), so that Sp(1) ~ SU(2). It is convenient to use a Vielbein

on HM, denoted by
U = uel, d¢*, where uw = 1,...,4ng, (C.10)
having as ‘flat’ indices a pair o consisting of one Sp(2ny) index a = 1,...,2ny and one

SU(2) index I = 1,2. We shall refer to this object as the Quadbein. This Quadbein is
related to the metric Hy, by

Hy = U, U, e15Chp, (C.11)

where €77 = —e 7 and C,3 = —Cg, are the flat Sp(2ny) and SU(2) invariant metrics. It
is required that
2 Ual(u UﬁJU) (cag = HquI‘],

C.12
(Ualu)* = E[J(Caﬁ Uﬁ‘]u. ( )

UaIu
yThe inverse Quadbein U%,; satisfies

Ugr® UM, =64, (C.13)

For further details and identities see e.g. refs. [0, f5, 6], the review [[[1] or ref. [2F]
whose conventions and results we follow and use.
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