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PATHOPHYSIOLOGYOF ALCOHOLIC LIVER
DISEASE

Liver disease related to alcohol consumption can be
classified into different categories: Fatty liver, alcoholic
hepatitis, and cirrhosis. Fatty liver, which occurs after
prolonged alcohol intake, is normally reversible with ab-
stinence and does not predispose to any chronic form of
liver disease provided that abstinence and/or moderation

are maintained (1). Alcoholic hepatitis is an acute form of
alcohol-induced liver injury that covers a spectrum of
severity ranging from an asymptomatic unbalance of liv-
er biochemistry to liver failure and death. The develop-
ment of alcoholic hepatitis generally involves consump-
tion of a large amount of alcohol for a long period of
time, sometimes years (2). Cirrhosis implies replacement
of the normal hepatic parenchyma with collagen fibers
along with insufficient extracellular matrix remodeling,
leading to clinical manifestations of portal hypertension
and liver failure (3).

The main sites for alcohol metabolism are the liver
and, to a lesser extent, the gastrointestinal tract (4). With-
in the liver, the alcohol dehydrogenase (ADH) and cy-
tochrome p450 2E1 (CYP2E1) are the main pathways of
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RESUMEN
El consumo agudo y crónico de alcohol aumenta la producción

de especies reactivas de oxígeno (ERO) y potencia la peroxidación
de los lípidos, las proteínas y ADN. El mecanismo por el que el al-
cohol produce lesión celular no está del todo claro, pero se piensa
que las ERO y los productos de la peroxidación lipídica intervie-
nen de forma decisiva. Se cree que muchos mecanismos partici-
pan en el proceso por el que se induce estrés oxidativo, como los
cambios de estado redox, la producción de acetaldehído, el daño
mitocondrial, la lesión en la membrana, la apoptosis, la hipoxia
inducida por etanol, los efectos sobre el sistema inmune y la pro-
ducción alterada de citoquinas, el aumento de los niveles de endo-
toxina y la activación de las células de Kupffer, la movilización del
hierro, la modulación de la defensa antioxidante, especialmente
del glutatión (GSH) mitocondrial, la oxidación monoelectrónica
del etanol al radical 1-hidroxi-etilo y la inducción de la CYP2E1.
Estos mecanismos no son excluyentes entre sí y es probable que
sean varios, probablemente muchos, los sistemas que contribuyan
a la capacidad del etanol de inducir un estado de estrés oxidativo.

Palabras clave: Apoptosis. Muerte celular. Hepatocito. Hepato-
patía alcohólica. Especies reactivas de oxígeno.

ABSTRACT
Acute and chronic alcohol consumption increases the produc-

tion of reactive oxygen species (ROS), and enhances lipid peroxi-
dation of lipids, proteins, and DNA. The mechanism by which al-
cohol causes cell injury is still not clear but a major role for ROS
and lipid peroxidation-end products is considered. Many pathways
have been suggested to play a role on how ethanol induces a state
of “oxidative stress”, including redox-state changes, acetaldehyde
production, damage to the mitochondria, membrane injury, apop-
tosis, ethanol-induced hypoxia, effects on the immune system and
altered cytokine production, increased endotoxin levels and acti-
vation of Kupffer cells, mobilization of iron, changes in the antiox-
idant defense, particularly mitochondrial glutathione (GSH), one
electron oxidation of ethanol to 1-hydroxy-ethyl radical, and in-
duction of CYP2E1. These pathways are not exclusive of one an-
other and it is likely that several, indeed many systems contribute
to the ability of ethanol to induce a state of oxidative stress.

Key words: Apoptosis. Cell death. Hepatocyte. Alcoholic liver
disease. Reactive oxygen species.



alcohol metabolism. ADH is a hepatocyte cytosolic en-
zyme that metabolizes alcohol to acetaldehyde (5).
CYP2E1 is a microsomal membrane protein which con-
verts alcohol to acetaldehyde when alcohol levels are
high enough to reach ADH saturation. Acetaldehyde in
turn is transformed to acetate via the mitochondrial ma-
trix enzyme acetaldehyde dehydrogenase (6).

Liver injury occurs through several interrelated path-
ways. ADH and acetaldehyde dehydrogenase cause the
reduction of NAD+ to NADH. The altered ratio of
NAD+/NADH promotes fatty liver via inhibition of glu-
coneogenesis and fatty acid oxidation (7). CYP2E1,
which is up-regulated in chronic alcohol consumption
and stabilized by alcohol itself, generates free radicals
through the oxidation of NADPH to NADP+ (8). In addi-
tion, chronic alcohol exposure activates Kupffer cells to
generate tumor necrosis factor-α (TNF-α), which subse-
quently induces production of reactive oxygen species in
the mitochondria (ROS) (9). Oxidative stress induces he-
patocyte necrosis and apoptosis (10), both elevated in al-
coholic patient with low antioxidants such as glutathione
(GSH) and vitamin E (11). ROS promote lipid peroxida-
tion, which induces inflammation and fibrosis (12). In-
flammation is also initiated by acetaldehyde which, when
bound covalently to cellular proteins, forms antigenic
adducts (13). The earliest changes at the histological lev-
el in alcoholic hepatitis are located predominantly around
the central vein. Alcohol generates a gradient of hypoxia
from the portal vein to the central vein, indicating that the
hypoxia induced by chronic alcohol intake may con-
tribute to hepatic injury (14).

HEPATOCYTES AND ROS PRODUCTION

Oxidative stress results from the imbalance between
pro-oxidant and antioxidant mechanisms leading to cell
injury, and it appears to be involved in liver disease such
as chronic viral hepatitis, alcoholic hepatitis, non-alco-
holic steatohepatitis (NASH), cirrhosis, and chronic
cholestasis (15,16). ROS include a variety of species such
as superoxide anion (O2

.-), hydrogen peroxide (H2O2), and
hydroxyl radicals (HO.-). Some of these species (e.g. O2

–

and HO.-) are free radical species as they contain unpaired
electrons and therefore are extremely unstable, while oth-
ers like H2O2 are highly diffusible and relatively stable.
Endogenous sources of ROS in hepatocytes include mito-
chondrial damage, xanthine oxidase, cytochrome P450
metabolism, peroxisomes, and NADPH oxidase; many of
which are present in the hepatocytes.

Energy sources such as glucose are initially metabo-
lized in the cytoplasm. The products are imported into the
mitochondria which continues catabolism through meta-
bolic pathways such as the Krebs cycle, fatty acid oxida-
tion, and amino acid oxidation (17). The end result of
these pathways is the production of two energy-rich elec-
tron donors, NADH and FADH2. Electrons from these

donors are transferred through an electron transport chain
to O2, which is reduced to water (18,19). This is a multi-
step redox process that occurs in the mitochondrial inner
membrane (20-22). The enzymes that catalyze these reac-
tions have the remarkable ability to simultaneously create
a proton gradient across the membrane (23). Although
electron transport occurs with great efficiency, a small per-
centage of electrons are prematurely leaked to O2, resulting
in the formation of the toxic free radical, O2

.- (23). Under
normal conditions, O2

.- will hardly diffuse into the cytosol
and will undergo dismutation to generate H2O2 which can
cross the mitochondrial membrane (23). During liver in-
jury, however, due to damage to the mitochondrial mem-
brane, O2

.- may diffuse into the cytosol triggering the sub-
sequent cascade or ROS-mediated reactions (24).

Xanthine oxidase is a cytosolic molybdenum and iron
containing hydroxylating enzyme involved in the degra-
dation of purine-like nucleotides. Xanthine oxidase cat-
alyzes the oxidation of hypoxanthine to xanthine and can
further catalyze the oxidation of xanthine to uric acid
(25) generating ROS in the process.

Many pathways have been suggested to contribute to the
ability of ethanol to induce oxidative stress. One central
pathway is the induction of CYP2E1, a member of the cy-
tochrome P450 mixed-function oxidase system. CYP2E1 is
of interest because of its ability to metabolize and activate
many toxicological substrates, including ethanol, to more
reactive toxic products (12,26-30). Levels of CYP2E1 are
elevated under a variety of physiological and pathophysi-
ological conditions, and after acute and chronic alcohol
treatment. CYP2E1 is also an effective generator of ROS
such as O2

.- radical and H2O2, and in the presence of iron
catalysts, it produces powerful oxidants such as hydroxyl
radical and 1-hydroxy ethyl radical (31).

Peroxisomes contain oxidative enzymes, such as cata-
lase, D-amino acid oxidase, and uric acid oxidase. Certain
enzymes within the peroxisome, by using O2, remove H
atoms from specific organic substrates in an oxidative re-
action to produce H2O2. Catalase uses H2O2 to oxidize oth-
er substrates, including phenols, formic acid, formalde-
hyde and alcohol, thus eliminating the H2O2 in the process
(32). This reaction is important in hepatocytes where per-
oxisomes detoxify various toxic substances that enter the
blood stream. About 25% of the ethanol is oxidized to ac-
etaldehyde in this way (33). In addition, when excess
H2O2 accumulates in the cell, catalase converts it into
H2O through this reaction. Amajor function of the perox-
isome is the β-oxidation of fatty acids whereby fatty
acids are broken down by two carbons at a time, convert-
ed to Acetyl-CoA, which is then shuttled back to the cy-
tosol for further use (34). β-oxidation can occur in the
mitochondria as well.

The NADPH oxidase complex although not described
in hepatocytes it is highly expressed in macrophages,
Kupffer cells, stellate cells, and neutrophils, all of which
play major roles in alcoholic liver disease (ALD) (35).
The NADPH oxidase complex is normally latent and it is
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activated to assemble in the membranes during the respi-
ratory burst. It generates O2

.- by transferring electrons
from NADPH inside the cell across the membrane and
coupling these to O2 to produce the O2

.-. ROS can also be
produced in hepatocytes by exogenous substances, in-
cluding environmental toxins, xenobiotics, radiation, ul-
traviolet light, metal ions and in drug metabolism.

Oxidant stress can be counterbalanced by the hepato-
cyte antioxidant defense which induces both enzymatic
and non-enzymatic mechanisms. Among the enzymatic
antioxidant defense are: a) Superoxide dismutase (SOD) of
which SOD1 is localized in the cytosol and in the mito-
chondrial inter-membrane space, SOD2 is localized in the
mitochondria, and SOD3 is extracellular and interacts with
matrix components (36). All three isoforms dismutate O2

.-

into H2O2 and O2; b) Catalase is an iron-containing enzyme
found in peroxisomes whose role is to remove H2O2 gener-
ating H2O and O2; (37); and c) Glutathione peroxidase and
Glutathione reductase using the cofactor NADPH are able
to decompose H2O2 while oxidizing glutathione (37).

Non enzymatic mechanisms of antioxidant defense in-
clude: a) Glutathione (GSH), a tri-peptide (γ-glutamyl-
cysteinylglycine) synthesized in the cytosol, in a two-step
energy consuming process, and distributed in different
organelles, such as endoplasmic reticulum, cytosol, and
mitochondria. Glutathione is found almost exclusively in
its reduced form, since the enzyme which converts it
from the oxidized form (GSSG) to the reduced form
(GSH), glutathione reductase, is constitutively active and
inducible upon oxidative stress. In fact, the ratio of GSH
to GSSG within cells is often used as a measurement of
cellular toxicity. GSH detoxifies ROS produced in the
mitochondrial electron transport chain. Mitochondrial
GSH depletion may compromise mitochondrial function
and sensitizes cells to oxidant-induced toxicity, leading to
cell death (38); b) Metal-binding proteins help iron and
copper to remain in a non-reactive state and avoid the for-
mation of hydroxyl radicals. Transferrin and lactoferrin
bind iron whereas albumin binds copper; and c) Vitamins
such as vitamin C (ascorbate), vitamin E (α-tocopherol),
and carotenoids (vitamin A precursors) act as free-radical
scavengers (12,39). Tocopherols and flavonoids inhibit
peroxidation by acting as chain-breaking peroxyl-radical
scavengers. Finally, other molecules like bilirubin, mela-
tonin, and uric acid are natural antioxidants (40,41).

HEPATOCYTE CELLDEATH IN LIVER DISEASE

During acute and chronic liver disease, hepatocytes
are exposed to increased levels of ROS, cytokines, and
bile acids. Even though hepatocytes have good detoxify-
ing capacity, over-exposure to high levels of ROS may
disrupt their redox state resulting in cell death (necrosis
and/or apoptosis). While necrosis is a passive mechanism
involving ATP depletion, rupture of the plasma mem-
brane, and drop out of the cellular content triggering in-

flammation (42); in contrast, apoptosis, or programmed
cell death (42-44), is an active process characterized by
mitochondrial swelling, chromatin condensation, forma-
tion of apoptotic bodies, and eventually activation of cas-
pases (45-47). Apoptosis represents a regulated form of
cell death and it is important in processes such as cell se-
lection during development, immunologic responses and
homeostasis. Regulation of apoptotic cell death allows
therapeutic intervention strategies. The most important
modes of apoptotic response in hepatocytes under ROS
stimulation are: a) the death receptor-mediated apoptosis;
and b) the mitochondrial-mediated apoptosis.

Death receptor-mediated apoptosis. In death receptor-
mediated apoptosis, death ligands on effector cells, such
as Fas ligand (FasL, CD95, Apo1), TNFα, or TNF-relat-
ed apoptosis-inducing ligand (TRAIL), bind to death re-
ceptors expressed on the surface of the target cell. Upon
death receptor binding, intracellular adaptor molecules
are recruited, and these molecules can, in turn, associate
with initiator caspases through death effector domain
(DED) or caspase recruitment domain interactions lead-
ing to their activation, thereby starting the caspase cas-
cade with the final end of the cell as a result.

Hepatocytes express Fas (CD95) but not Fas ligand.
The expression of Fas is markedly increased in the livers
of patients with non-alcoholic steatohepatitis (NASH)
(48) or in fat-laden mouse hepatocytes (49). Furthermore,
selected drugs, alcohol abuse, and Wilson’s disease,
which elevate ROS production, cause Fas ligand expres-
sion in hepatocytes, leading to apoptosis (50). Hepato-
cytes also express Tumour necrosis factor Related Apop-
tosis Inducing Ligand-receptor-1 (TRAIL-R1), TRAIL
receptor-2 (TRAIL-R2) and tumour necrosis factor-re-
ceptor type-1 (TNFα-R1) (51). Unlike Fas or TRAIL-R1
and TRAIL-R2, TNF-R1-mediated intracellular sig-
nalling is more complex as it activates both apoptotic and
survival signals. Patients with NASH have both high he-
patic TNF-α mRNA levels and high TNF-R1 expression
(52). Upon activation by TNF-α, trimerization of TNF-
R1 is followed by recruitment of the adaptor protein
TNF-Receptor Associated protein with Death Domain
(TRADD). TRADD recruits Fas Associated Death Do-
main (FADD) and it is also capable of activating path-
ways like Nuclear Factor kappa B (NF-κB) and Mitogen-
activated protein kinases (MAPKs). FADD contains a
death effector domain, which, through Death-Inducing
Signalling Complex (DISC), mediates the recruitment of
caspases-8 and -10 activating the death signalling cascade.
Active caspase-8 is involved in the cleavage and activation
of effector caspase-3, the central executioner molecule as it
cleaves various proteins thereby disabling important cellu-
lar structural and repair processes.

Mitochondria and apoptosis. Release of toxic proteins
form the inter-membrane space of the mitochondria trig-
gered by permeabilization of the outer mitochondrial
membrane constitutes a “point of no return” in most cases
of apoptosis. Members of the Blc-2 family control this
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process tightly: upon apoptotic signals, pro-apoptotic Bcl-
2 proteins such as Bax and Bak are activated, resulting in
an increase in the outer mitochondrial membrane perme-
abilization (53-55). In contrast, anti-apoptotic Bcl-2 family
members, such as Bcl-2 and Bcl-XL, can prevent this oc-
currence by heterodimerization with Bax-like proteins.
Other pro-apoptotic Bcl-2 proteins which contain only the
BH3 domain (e.g., Bad, Bid, Bim, Bmf, and Noxa) act by
opposing the inhibitory effect of Bcl-2 or Bcl-XL, or by ac-
tivating Bax-like proteins by direct binding (56).

A second mechanism of permeabilization of the outer
mitochondrial membrane is the opening of a permeability
transition pore in the inner mitochondrial membrane.
This allows water and small molecules (up to 1.5 kDa) to
pass through the pore, leading to swelling of the inter-
membrane space and rupture of the outer mitochondrial
membrane. The first protein released from the mitochon-
dria upon apoptotic stimuli is cytochrome c, an essential
component of the respiratory chain. Upon release into the
cytoplasm, it forms, in the presence of ATP, the so-called
“apoptosome” together with Apaf-1 and caspase 9, trig-
gering the classic apoptotic cascade, and leading to apop-
totic cell death (57-60). The catalytic function of cy-
tochrome c is safeguarded by members of the inhibitor of
apoptosis proteins family, which are in turn controlled by
two other mitochondrial proteins, Smac/DIABLO and
OMI/HtrA2 (61). In this way, OMI/HtrA2 plays a role in
caspase-dependent cell death, but it can also act as an ef-
fector protein in necrosis-like apoptosis. Apoptosis in-
ducing factor (AIF) is a mitochondrial protein that plays
a pivotal role in apoptosis, it is normally retained in the
inter-membrane mitochondrial space, acting as an oxi-
doreductase. Similar to the bi-functional role of cy-
tochrome c, AIF induces cell death when it is released to
the cytosol; it then translocates to the nucleus and triggers,
possibly together with endonuclease G, peripheral chro-
matin condensation and high molecular weight (50 kb)
DNA loss. The lethal effects of AIF are controlled by the
anti-apoptotic protein heat shock protein 70 that interacts
with AIF and protects against its apoptotic effects (61).

HEPATOCYTE SURVIVAL PATHWAYS IN LIVER
DISEASE

Among the signalling pathways activated in response
to oxidant injury heme oxygenase, ERK1/2, p38, PI3K,
and NF-κB signalling pathways are considered survival
pathways whereas JNK is usually related to apoptosis.

Nuclear factor kappa B (NF-κB) signalling pathway.
NF-κB is an ubiquitous heterodimeric transcription factor
that is sequestered in the cytoplasm by proteins of the
IκB family (62). IκB, is regulated by a protein complex
that includes two kinases IKKα and IKKβ, both capable
of phosphorylating IκB, and a regulatory subunit IKKγ
(NEMO). Phosphorylation and degradation of IκB frees

NF-κB and exposes a nuclear localization sequence,
leading to the translocation of NF-κB to the nucleus.
Once in the nucleus, NF-κB binds to κB binding sites in
promoters of target genes, inducing their transcription.
NF-κB is activated by inflammatory cytokines, such as
TNF-α and IL-1β, oxidative stress (63), endotoxin (LPS)
(64), protein kinase C (PKC) and phosphatidylinositol-3
kinase (PI3K). NF-κB signalling pathway has been de-
scribed to antagonize hepatocyte cell death by influenc-
ing the balance between pro- and anti-apoptotic signals.
NF-κB inhibits TNF-α-induced accumulation of ROS
that normally mediate prolonged c-Jun N-terminal kinase
(JNK) activation and cell death (65). Indeed, inhibition of
NF-κB activity induces apoptosis in hepatocytes, suggest-
ing its role in the transcription of anti-apoptotic genes (66).

Mitogen-activated protein kinases (MAPKs) signaling
pathways. The MAPK cascade includes a mitogen-acti-
vated protein kinase kinase kinase (MAPKKK), mitogen-
activated protein kinase kinase (MAPKK) and MAPK. In
the large MAPK family, three subgroups have been iden-
tified: the c-Jun N-terminal kinase (JNK), p38 MAPK
and the extracellular signal-regulated kinase (ERK1/2),
which have been shown to be activated by ROS, and af-
fect cell survival (67). ERK1/2 and p38 MAPK have
been associated to cell survival, whereas JNK has been
linked to cell death (10,68). The balance between
ERK1/2, p38, and JNK activation is crucial in determin-
ing cell fate between death and survival. Inhibition of
JNK activation, using specific inhibitors or dominant-
negative mutants for JNK, suppresses apoptosis.

Phosphoinositide 3-kinase (PI3K)/Akt signaling path-
way. The PI3-kinase family is a super family including
three different classes of enzymes that are linked with
cell survival. Class I enzymes have been characterised
and subdivided into two groups of PI3-kinases IA and IB.
The catalytic subunit of class IA interacts with adaptor
proteins and it is involved in activation by growth factor
receptors (e.g. the epidermal growth factor receptor:
EGF-R), while class IB is required for G-protein-coupled
receptor systems (69). Class I PI3-kinase reside mainly in
the cytosol until recruited into active signalling complex-
es in the plasma membrane, where they are involved in
the generation of 3’-phosphorylated phosphoinositides,
that function as signalling intermediates in signal trans-
duction cascades. Targets of PI3K, such as the serine ki-
nase Akt, also known as protein kinase B, have been as-
sociated with the inhibition of apoptosis in a variety of
ways (70,71). The PI3K/Akt pathway transduces survival
signals through phosphorylation processes and regulates
pro- and anti-apoptotic factors, such as BAD, caspase-9,
and IKKα. It has been reported that Akt activates
ERK1/2, NF-κB and inhibits JNK and Bax phosphoryla-
tion and thus protects against mitochondria disruption
and apoptosis (72,73). Crosstalk between pro- and anti-
apoptotic pathways is described, such as PI3K/Akt and
JNK MAPK pathways, modulating the balance between
cell survival and cell death.
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Src family signaling pathways. Src-family protein-ty-
rosine kinases are intermediate regulatory proteins that
play important roles in differentiation, motility, prolifera-
tion and survival. Src activates the anti-apoptotic
PI3K/Akt pathway in human colon tumour cell lines (74).
In addition, Src increases Bcl-XL expression in rat in-
testinal epithelial cells (75). Transforming growth factor-
β (TGF-β regulates hepatocyte growth, inhibiting prolif-
eration and inducing apoptosis, it also activates
PI3-k/Akt pathway in hepatocytes by a mechanism de-
pendent on EGF receptor and c-Src activity (76).

Heme oxygenase. Heme oxygenase (HO) catalyzes the
oxidation of heme to form equimolar amounts of ferrous
iron, carbon monoxide (CO) and biliverdin, which is
rapidly converted into bilirubin by NAD(P)H:biliverdin
reductase. Three different isoforms of HO have been de-
scribed (77). These isozymes are products of different
genes and differ in their tissue distribution and molecular
properties. The HO-2 isoform is constitutively expressed
and is present in high levels in brain and testes (78). HO-
3 has catalytic activity and functions as a heme-binding
protein (79). In contrast, HO-1 is ubiquitously distributed
and is highly inducible by a variety of stimuli, most of
them associated with oxidative stress (80). HO-1 may act
as an inducible defense system against oxidative stress,
e.g. in models of inflammation, ischemia-reperfusion,
hypoxia and hyperoxia-mediated injury (81). In the liver,
HO-1 induction protects against ischemia/reperfusion in-
jury (82,83) and endotoxemia (84, 85). In addition, over-
expression of HO-1 by gene transfer has been shown to
protect against hyperoxia induced by lung injury (86) and
to from immune-mediated apoptotic liver damage in
mice (87). However, the mechanisms by which HO-1
mediates cytoprotection have not been elucidated yet.
Protective effects of both biliverdin and CO (10,88) have
been reported and several studies suggest that biliverdin
protects against oxidative stress by acting as an anti-oxi-
dant in different models of liver injury (89,90).

In spite of the highly efficient detoxification mecha-
nisms, over-exposure to high level of ROS results in ox-
idative stress and cell death. Under oxidative stress con-
ditions, the mode of cell death (apoptosis or necrosis) is
primarily dependent on the variety of ROS and the cell
type. In chronic liver diseases, such as alcoholic and viral
hepatitis (16,91,92), NASH (93-95) and cholestasis, he-
patocytes are invariably exposed to oxidative stress from
different sources, which induces cell damage and subse-
quently hepatocyte cell death and loss of liver function.
Therefore, further knowledge on the cellular mechanisms
controlling liver cell death is of clinical and scientific rel-
evance to identify targets for the development of novel
therapies to treat liver disease.
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