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ABSTRACT
We present a new and completely general technique for calculating the fine-grained phase-

space structure of dark matter (DM) throughout the Galactic halo. Our goal is to understand

this structure on the scales relevant for direct and indirect detection experiments. Our method

is based on evaluating the geodesic deviation equation along the trajectories of individual DM

particles. It requires no assumptions about the symmetry or stationarity of the halo formation

process. In this paper we study general static potentials which exhibit more complex behaviour

than the separable potentials studied previously. For ellipsoidal logarithmic potentials with a

core, phase mixing is sensitive to the resonance structure, as indicated by the number of

independent orbital frequencies. Regions of chaotic mixing can be identified by the very rapid

decrease in the real-space density of the associated DM streams. We also study the evolution

of stream-density in ellipsoidal NFW haloes with radially varying isopotential shape, showing

that if such a model is applied to the Galactic halo, at least 105 streams are expected near the

Sun. The most novel aspect of our approach is that general non-static systems can be studied

through implementation in a cosmological N-body code. Such an implementation allows a

robust and accurate evaluation of the enhancements in annihilation radiation due to fine-scale

structure such as caustics. We embed the scheme in the current state-of-the-art code GADGET-3

and present tests which demonstrate that N-body discreteness effects can be kept under control

in realistic configurations.

Key words: stellar dynamics – methods: N-body simulations Galaxy: kinematics and dyna-

mics – dark matter.

1 I N T RO D U C T I O N

Dark matter (DM) is still to be directly detected. The first indirect

indications of its existence came in the 1930 s, with measurements

of the velocities of galaxies in clusters. The cluster mass required to

gravitationally bind the galaxies was found to be more than an order

of magnitude larger than the sum of the luminous masses of the in-

dividual galaxies (Zwicky 1933; Smith 1936). The early detection

of large amounts of unseen matter associated with the Local Group

(Kahn & Woltjer 1959) was followed in the 1970s by observations

of the rotation curves of spiral galaxies which showed that these are

flat, or even rising, at distances far beyond their stellar components

(Rubin & Ford 1970; Faber & Gallagher 1979; Rubin, Thonnard

& Ford 1980). Studies of satellite systems suggested that the mass

distributions of most galaxies might be an order of magnitude larger

and more massive than their visible parts (Einasto, Kaasik & Saar

1974; Ostriker, Peebles & Yahil 1974). All these discoveries led to

the conclusion that a large fraction of mass in the Universe is dark.

�E-mail: vogelsma@mpa-garching.mpg.de (MV); swhite@mpa-garching.

mpg.de (SDMW); ahelmi@astro.rug.nl (AH); volker@mpa-garching.mpg.

de (VS)

This has also been supported by recent gravitational lensing stud-

ies that demonstrate the existence of extended massive DM haloes

(e.g. Mandelbaum et al. 2006).

As the dominant mass component of galaxies and large-scale

structures, DM has necessarily become a key ingredient in theories

of cosmic structure formation. The most successful of these theories

is the hierarchical paradigm. In the current version of this model,

the DM is composed of non-baryonic elementary particles known

as cold dark matter (CDM) (Peebles 1982). The term ‘cold’ derives

from the fact that the DM particles had negligible thermal motions

at the time of matter–radiation equality. Their abundance was set

when the interaction rate became too small for them to remain in

thermal equilibrium with other species in the expanding universe.

The first objects to form in a CDM universe are small galaxies.

They then merge and accrete to give rise to the larger structures

we observe today. Thus structure formation occurs in a ‘bottom-up’

fashion (Blumenthal et al. 1984; Davis et al. 1985; Springel, Frenk

& White 2006).

The crucial test of this paradigm undoubtedly consists in the deter-

mination of the nature of DM through direct detection experiments.

Among the most promising candidates from the particle physics

perspective are axions and neutralinos. Axions were introduced to

explain the absence in nature of strong-CP (charge conjugation and
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Fine-grained phase-space of CDM haloes 237

parity) violations (Peccei & Quinn 1977). The cosmological popu-

lation formed out of equilibrium as a zero-momentum Bose conden-

sate. They can be detected through their conversion to photons in the

presence of a strong magnetic field (e.g. Sikivie 1983, 1985; Ogawa,

Matsuki & Yamamoto 1996; Hagmann et al. 1998). Neutralinos are

the lightest supersymmetric particles, and may be considered as a

particular form of weakly interacting massive particles (WIMPs)

(Steigman & Turner 1985). The most important direct detection

process for neutralinos is through elastic scattering on nuclei.

Today many experiments are searching for these particles (Akerib

et al. 2004; Sanglard et al. 2005; Schnee 2006; Aprile, Baudis &

Cabrera 2007; Spooner 2007). The main challenge lies in the large

background they encounter. Having an idea about what the detector

signal might look like can help substantially in fine-tuning the ex-

periments in order to increase the chance of a detection. In addition,

many experiments are attempting to detect WIMPs indirectly by

searching for γ -ray emission from their annihilation (de Boer 2005;

de Boer et al. 2005; Bergström & Hooper 2006; Hooper & Serpico

2007). Predictions for this radiation are currently uncertain because

very substantial enhancements are possible, at least in principle,

from fine-scale structure such as caustics in the DM distribution

(Dalcanton & Hogan 2001; Mohayaee, Shandarin & Silk 2007).

The differential rate for WIMP–nucleus scattering is sensitive to

the local velocity distribution (Jungman, Kamionkowski & Griest

1996):

dR

dQ
= AF2(Q)

∫ ∞

vmin

[
f (v)

v

]
dv, (1)

where Q is the energy deposited in the detector, F(Q) is the elastic

nuclear form factor and f(v) is the local velocity distribution of the

WIMPs relative to the detector. The coefficient A is defined as

A = ρ0σ0

2mχ m2
r

,

where ρ0 is the WIMP density near the Earth and σ 0 the total cross-

section. The reduced mass mr is given by

mr = mχ mN

mχ + mN

,

where mχ is the WIMP mass and mN the nucleus mass. The minimal

incoming velocity of incident WIMPs that can deposit the energy Q
is given by

vmin =
√

mN Q

2m2
r

.

From equation (1) it is evident that the count rate in a direction-

insensitive experiment depends on the velocity distribution of the

incident particles and will be modulated by the orbital motion of

the Earth around the Sun (Drukier, Freese & Spergel 1986). In most

studies, an isotropic Maxwellian distribution relative to the Galac-

tic halo has been assumed (e.g. Freese, Frieman & Gould 1988),

although there are other models in the literature, discussing, for ex-

ample, multivariate Gaussians (Evans, Carollo & de Zeeuw 2000).

Some attempts at understanding the effect of fine-scale structure

in the velocity distribution of DM particles have also been made

(Sikivie 1998; Hogan 2001; Stiff, Widrow & Frieman 2001).

A significant signal could come from what are known as streams

of DM (Sikivie, Tkachev & Wang 1995; Helmi, White & Springel

2002; Natarajan & Sikivie 2005). Both axions and WIMPs are cold.

In the absence of clustering their present-day velocity dispersion

would be negligible (δv ∼ 10−10 c for WIMPs and δv ∼ 10−17 c
for axions). They are effectively restricted to a 3D hypersurface, a

sheet in 6D phase-space. The growth of structure results in continual

.
(x ,x )0 0

x

x

.

Figure 1. Sketch of an idealized CDM phase-space sheet in the (x, ẋ) plane.

The thickness of the line represents the local velocity dispersion within each

stream. The small wiggles correspond to initial density perturbations and

the multivalued region reflects the multiple streams created by winding in

non-linear regions. Depending on x position an observer sees one or three

streams. At points where the number of streams changes by two, a caustic

with a very high DM density is present. Such caustics may be significant for

the total annihilation flux. The number of streams at each point is a measure

of the local amount of mixing. The dashed line represents the Hubble flow.

The cross marks the phase-space coordinates of a particular CDM particle

embedded in the flow.

stretching and folding in phase-space of this initially almost uniform

sheet. This process is called mixing. The more strongly the system

mixes, the more streams of DM particles are present at a given

location in configuration-space. Mixing stretches each sheet and so

its density decreases. The existence of distinct streams is a direct

consequence of the collisionless character and the coldness of CDM.

The situation is sketched in Fig. 1. At the points where the number

of streams changes by two, the local configuration-space density of

DM becomes extremely high. These are caustics of the kind studied

by catastrophe theory (Gilmore 1982; Tremaine 1999). Note that

Liouville’s Theorem prevents the CDM phase-space sheet from ever

tearing, although it can be arbitrarily strongly stretched.

If the DM density in the solar neighbourhood is dominated by

a small number of streams, its velocity distribution will effectively

consist of a few discrete values, one for each stream. If, on the other

hand, the number of streams is very large, the velocity distribution

will be smooth and individual streams will be undetectable. This

issue has so far been addressed only under simplified conditions

and divorced from its proper cosmological context (Helmi et al.

2002; Natarajan & Sikivie 2005). This is largely because the only

tool capable of studying cosmological structure formation in full

generality, namely N-body simulations, cannot resolve the relevant

scales. For example, Natarajan & Sikivie (2005) estimate that of

the order of 1012 particles would be required in a simulation of

the Milky Way’s halo to begin to resolve the streams in the solar

neighbourhood. Even the largest simulation so far published, the

Via Lactea model (Diemand, Kuhlen & Madau 2007), is four or-

ders of magnitude short of this minimum requirement. It is thus

impossible to figure out the number of streams near the Sun and

the properties of ‘typical’ streams with current N-body capabilities.
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238 M. Vogelsberger et al.

We note that some simulations under quite restricted condi-

tions and with very special care taken could resolve some fine-

grained phase-space features (Stiff et al. 2001; Alard & Colombi

2005).

A related issue that has been much discussed is whether caustics

can affect direct or indirect detection experiments. Some authors

claim that caustics play an important role as stable phenomena con-

nected to any collapsing CDM halo and taking the form of relatively

massive rings, shells or other geometries (Sikivie 1999; Natarajan

& Sikivie 2006). Other authors have argued that caustics should be

more abundant, weaker and dynamically negligible (Helmi et al.

2002). Even if caustics negligibly affect the gravitational poten-

tial, they may have very substantial effects on the annihilation

rate of DM (Bergström, Edsjö & Gunnarsson 2001; Hogan 2001;

Pieri & Branchini 2005; Mohayaee & Shandarin 2006; Mohayaee,

Shandarin & Silk 2007; Natarajan 2007). All these papers were able

to evaluate the enhancements due to caustics only under restrictive

and unrealistic assumptions about symmetry, formation history, etc.

Although there are some claims that there are observational hints

for their correctness (Kinney & Sikivie 2000; Sikivie 2003; Onemli

& Sikivie 2007). While they demonstrate that large enhancement

factors may be possible, they do not provide reliable estimates for

the actual enhancement expected. The method we present below is

capable of providing such estimates for haloes growing as predicted

by the �CDM model.

In this paper we will present a novel approach that directly anal-

yses structure in the fine-grained phase-space distribution. We cir-

cumvent the ‘number of particle’ problem by solving the geodesic

deviation equation (GDE) for every DM particle. This allows us

to calculate the local properties of the DM stream each simulation

particle is embedded in, in particular, its configuration-space den-

sity and its local velocity distribution. The mass-weighted number

of streams near any point is then the total local density divided by

the mean density of the individual local streams. Caustic passages

can be detected robustly from the properties of each particle’s lo-

cal stream, and the particle’s instantaneous annihilation probability

within this stream can be evaluated simply and integrated accurately

through caustics.

This paper is the first of a series. Here we introduce our method

and apply it to study the evolution of streams in static potentials

that are too complex to be analysed using previous techniques.

We also implement our scheme in a state-of-the-art N-body sim-

ulation code, and use simple test problems to demonstrate that

N-body discreteness effects can be kept under control in realis-

tic applications. Later papers will address issues associated with

mixing, caustics and annihilation radiation in the full cosmological

context.

The outline of our paper is the following. In Section 2 we present a

detailed derivation of the GDE and show how it can be used to quan-

tify mixing, to locate caustics, and to calculate stream-densities and

annihilation rates. Section 3 describes our code, DAMAFLOW, which

is designed to solve the GDE for single orbits in a wide variety

of potentials. In Section 4 we analyse static, separable potentials

and compare results from our method to previous work. Section 5

applies our scheme to non-integrable, but still static potentials, re-

vealing their complex phase-space structure. In Section 6 we turn

to more realistic non-spherical CDM halo potentials and discuss

the influence of halo shape on stream-density behaviour. Section 7

discusses the implementation of our method in an N-body code and

presents results of simple tests of when discreteness effects com-

promise studies of stream-densities and caustics. The final section

summarizes our results and gives some conclusions.

2 T H E G E O D E S I C D E V I AT I O N E QUAT I O N

Our scheme for calculating the evolution of the fine-grained phase-

space distribution in the neighbourhood of a DM particle is based on

the evolution of the distance between two infinitesimally separated

particle trajectories. This evolution is described by the GDE. We

use the following notation to clearly distinguish between 3D and

6D quantities: an underline denotes a R
3 vector and two of them

denote a R
3×3 matrix. An overline denotes a R

6 vector and two of

them denote a R
6×6 matrix. Thus a general phase-space vector is

composed of two 3D vectors: x = (x, v).

To derive the GDE we first write down the equations of motion

for a DM particle. These are simply

ẍ(t ; x0, v0) = −∇x	(x(t ; x0, v0)), (2)

with initial conditions x(t0; x0, v0) = x0 v(t0; x0, v0) = v0.

As ẋ = v the equation of motion in phase-space can be written

as

ẋ (t ; x0) =
(

v

−∇x	(x(t ; x0))

)
= 
 (x (t ; x0)) , (3)

with initial conditions x(t0; x0) = x0 = (x0, v0).

We want to calculate the local stream-density around the DM

particle whose trajectory in phase-space is given by x(t ; x0). To do

so, we first ask how the displacement vector to a neighbouring DM

particle in phase-space evolves with time:

δ(t) = x(t ; x0 + δ0) − x (t ; x0) . (4)

Note that δ(t) is the displacement between the reference DM particle,

which was at x0 at time t0, and another particle which was at x0 +δ0

at t0. We are interested in properties in the immediate neighbourhood

of the reference particle, so δ0 is an infinitesimal displacement. This

allows us to work to linear order:

δ(t) ∼= (δ0 · ∇x0
)x(t ; x0). (5)

Introducing the phase-space distortion tensor D (note that this is a

6 × 6 tensor)

D (t ; x0) ≡ ∂x

∂x0

(t ; x0) , (6)

we can rewrite equation (5) as a simple linear transformation from

the starting phase-space displacement δ0 to the displacement δ(t) at

time t:

δ(t) ∼= D (t ; x0) δ0. (7)

Because δ0 is an arbitrary displacement vector, the distortion ten-

sor describes how the complete local phase-space neighbourhood

around the reference DM particle gets distorted while it is orbiting

in the given potential. The time evolution of δ(t) follows from the

time evolution of the two trajectories. Again we can work this out

in linear order:1

˙
D(t ; x0)δ0

∼= δ̇(t)

= 
(x(t ; x0) + δ(t)) − 
(x(t ; x0))

∼= (δ(t) · ∇x )
(x(t ; x0))

∼= ((D(t ; x0)δ0) · ∇x )
(x(t ; x0)). (8)

To derive the equation of motion for the distortion tensor itself we

evaluate equation (8) for six unit vector phase-space displacements

δ
( j)

0 with δ
(j)
0,α = δα j , where α, j = 1, 2, . . . , 6, and δab is the Kronecker

1 As δ0 can be chosen arbitrarily small, this is always possible.
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delta. Taking into account Einstein’s sum convention this yields for

each component of equation (8):

Ḋi j (t ; x0) = Ḋiα (t ; x0) δ
( j)
0,α

∼=
(

Dβγ (t ; x0) δ
( j)
0,γ

∂

∂xβ

)

i (x (t ; x0))

=
(

Dβγ (t ; x0) δγ j
∂

∂xβ

)

i (x (t ; x0))

=
(

Dβ j (t ; x0)
∂

∂xβ

)

i (x (t ; x0))

= Tiβ (t ; x0) Dβ j (t ; x0) , (9)

where we have introduced the phase-space tidal tensor

T (t ; x0) =
(

0 1

T
(

t ; x0

)
0

)
, (10)

and T is the configuration-space tidal tensor given by the second

derivatives of the gravitational potential Ti j = −∂2	/∂xi∂xj . As we

are only interested in linear order we replace ∼= by = in equation (9)

and get an equation of motion for the 6D distortion tensor:

˙
D (t ; x0) = T (t ; x0) D (t ; x0) . (11)

Note that this first-order tensor differential equation represents a

system of 36 coupled ordinary first-order differential equations. To

solve them we need to specify initial conditions. These follow from

the constraint

δ0 = D (t0; x0) δ0 ⇒ D (t0; x0) = 1. (12)

DM behaves like a collisionless fluid and its fine-grained phase-

space density f (x, t) is described by the well-known Vlasov equa-

tion:

∂ f

∂t
+ v · ∇x f − ∇x	 · ∇v f = 0. (13)

Using the Lagrangian derivative this reads D f /D t = 0, meaning that

the local fine-grained phase-space density has to be conserved along

the orbit of every particle in the system. Imagine N particles that fill a

small phase-space volume dV0 = dx0dv0 around the DM reference

particle at time t0. At a later time t these particles fill a volume

dV = dxdv around the reference particle at x(t ; x0). Conservation

of phase-space density implies that the two volumes are the same

dV0 = dV . The evolution of the initial displacement vectors δ
(n)

0 from

the reference particle to one of the N other particles in the volume

is described by the distortion tensor associated with the reference

particle:

δ
(n)

(t) = D (t ; x0) δ
(n)

0 n = 1, 2, . . . , N . (14)

The change in volume due to this linear transformation is given by

the determinant det(D(t ; x0)). As this volume has to be conserved,

the determinant of the phase-space distortion tensor has to be con-

served. Note that not only must the volume be conserved, but also

the orientation of the volume element. This means that the sign of the

determinant is also fixed. From the initial conditions equation (12)

one gets det(D(t ; x0)) = 1 at all times. This fact can be used to

check numerical solutions of the equations.

The structure of equation (11) allows the equations of motion for

the distortion to be broken down to a set of equations that is more

convenient to work with. Let us first rewrite equation (11) using

blocks of 3 × 3 tensors:2

d

dt

(
D

xx
D

xv

D
vx

D
vv

)
=

(
0 1

T 0

)(
D

xx
D

xv

D
vx

D
vv

)

=
(

D
vx

D
vv

T D
xx

T D
xv

)
.

Writing down the equation for each matrix block yields four equa-

tions:

Ḋ
xx

= D
vx

; Ḋ
xv

= D
vv

(15)

and

Ḋ
vx

= T D
xx

; Ḋ
vv

= T D
xv

. (16)

These can be combined to give

D̈
xx

= T D
xx

; D̈
xv

= T D
xv

. (17)

Thus we get two identical differential equations of second order

for two 3 × 3 tensors whose dynamics is driven by the ordinary

tidal tensor. From the initial condition for the 6D distortion one

can see that the only difference between D
xx

and D
xv

lies in the

appropriate initial conditions: D
xx

(t0; x0) = 1, Ḋ
xx

(t0; x0) = 0

and D
xv

(t0; x0) = 0, Ḋ
xv

(t0; x0) = 1 in the two cases. From the

solutions of these two initial condition problems the 6D distortion

solution can then be constructed:

D =
(

D
xx

D
xv

d/dt D
xx

d/dt D
xv

)
. (18)

Up to this point we have worked out all equations in phase-space.

As we are interested in the stream-density in configuration space,

we need to project down to this space. As already mentioned, CDM

lies on a thin sheet in phase-space. This sheet has a certain ori-

entation at the starting point of the reference DM particle. Take

(x, v) : v = V (x ; t0, x0) to be the local parametrization of the

sheet surrounding this particle at time t0.3 Now we ask how an in-

finitesimal displacement δ0,x in configuration-space is distorted by

evolution. First, we note that any displacement in x implies a dis-

placement in velocity-space due to the restriction of particles to the

sheet:

δ0,v = V
x

(x0) δ0,x ; V
x

(x0) = ∂V

∂x
(x0; t0, x0). (19)

The phase-space distortion D describes how the corresponding

phase-space displacement (δ0,x , δ0,v) evolves. We are here interested

in the configuration-space part of the phase-space displacement at

time t:

δx (t) = D
xx

(t ; x0) δ0,x + D
xv

(t ; x0) V
x

(x0) δ0,x . (20)

The evolution of the displacement in configuration-space can also

be described by a linear transformation:

δx (t) = D (t ; x0) δ0,x ,

where we have introduced the configuration-space distortion tensor

(note that this is a 3 × 3 tensor)

D (t ; x0) = D
xx

(t ; x0) + D
xv

(t ; x0) V
x

(x0) . (21)

2 We suppress the argument t ; x0 to avoid confusion.
3 Such a parametrization is always possible locally, but due to mixing there

is, in general, no simple global parametrization of the stream. This is only

possible for very early times, where the sheet is dominated by the Hubble

flow, the x – v relation is one to one, and the stream-density is almost uniform.
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240 M. Vogelsberger et al.

This tensor can also be derived with the help of two projection

operators:

D (t ; x0) = (
1 0

)
D (t ; x0)

(
1

V
x

(x0)

)
. (22)

As in the case of phase-space distortion, the change in volume due

to the linear transformation in equation (21) is given by the deter-

minant, so that the stream-density in configuration-space is propor-

tional to the inverse of this determinant:

ρstream(t) ∝ 1

|det(D(t ; x0))| . (23)

At time t0 the configuration-space distortion tensor equals unity.

Thus, if we norm the stream-density to its initial value, we get the

following relation for the normed stream-density:

ρnormed
stream (t) = 1

|det(D(t ; x0))| . (24)

In the rest of this paper we will almost always discuss this normed

stream-density.

In Fig. 2 we sketch the distortion of the infinitesimal cloud around

the reference DM particle. Note the difference between the stream-

density evolution in configuration-space and in phase-space. The

volume of the small cloud grows in Fig. 2 and is not constant

anymore! This is a result of the projection from phase-space to

configuration-space. Nearby trajectories spatially diverge in time.

This formalism can be used to identify caustics in a very effi-

cient way. If the DM particle passes through a caustic along its orbit

det(D) passes through zero, and the stream-density goes to infinity

(for perfectly cold DM). A small cloud surrounding the reference

particle turns inside out as it passes through the caustic. This corre-

sponds to a change in sign of the determinant, and thus can easily be

identified numerically. This property allows the location of caustics

to be mapped accurately even in complex configurations. Note that

the possibility of sign changes explains why we took the modulus

of the determinant in equation (23).

The complex fine-grained phase-space structure and especially

the caustics expected in CDM haloes are likely to substantially en-

hance annihilation radiation. These effects have so far been anal-

ysed only under quite simplified conditions (Bergström et al. 2001;

Hogan 2001; Pieri & Branchini 2005; Mohayaee & Shandarin 2006;

Mohayaee et al. 2007; Natarajan 2007). As a result, it is unclear how

strong such enhancement effects will be in the proper cosmologi-

cal context. Previous studies of annihilation radiation from N-body

haloes had realistic formation histories but were unable to resolve

= D(t)

δ
0

δ (t)

δ (t) δ
0

x
0

x(t)

Distortion tensor

Figure 2. The configuration-space distortion tensor D describes how an ini-

tial small configuration-space displacement δ0 evolves in time. This reflects

the stretching of an infinitesimally small cloud of virtual particles around

the reference particle that is placed at x0 at time t0. The stretching of the

cloud is driven by the tidal field that the DM particle encounters as it orbits.

caustics. They estimated emissivities from the local mean CDM

density, thus effectively excluding contributions from single streams

(Stoehr et al. 2003; Diemand et al. 2007). Hogan (2001) noted that

this results in an underestimation of the annihilation rate, and sug-

gested that annihilation might, in fact, be dominated by contributions

from the neglected caustics (which he baptized as ‘micropancakes’).

Our formalism enables a robust and accurate calculation of the

contribution to the annihilation radiation from individual streams.

The annihilation rate for each particle due to encounters with other

particles in its own stream can be evaluated directly from the local

stream velocity distribution and density. Integrating these rates along

the trajectories of all particles produces a Monte Carlo estimate of

the intrastream annihilation rate for the system as a whole. This

automatically includes the contributions from all caustics and is

exactly the fine-scale contribution which is missing from standard

N-body-based estimates of annihilation luminosities.

We now discuss briefly how this is done. Given the very small

primordial velocity dispersion σ 0 of CDM, and approximating the

initial configuration-space density as a constant ρ0 we can write the

phase-space density around a reference particle at the initial time t0

as follows:4

f (x, t0) = ρ0 N0 exp

(
− 1

2
(x − x (t0; x0))†W 0(x − x (t0; x0))

)
,

where

W 0 = σ−2
0 diag(0, 1)

and N0 = (2π)−3/2σ−3
0 . Note that this represents a Gaussian distribu-

tion in velocity-space and a constant density in configuration-space.

Using δ(t) = D(t)δ0 we obtain the phase-space density around

the particle at the later time t:

f (x, t) = ρ0 N0 exp

(
−1

2
(x − x (t ; x0))†W (t)(x − x (t ; x0))

)
,

where

W (t) = (D(t)−1)†W 0(D(t)−1).

The configuration-space density around the reference particle at

x(t ; x0) is simply the integral of the phase-space density over all

velocities evaluated at x(t ; x0):

ρ(t) = ρ0

σ1(t)σ2(t)σ3(t)

σ 3
0

, (25)

where the velocity dispersions σ i (t) are given by 1/
√

λi (t) and λi (t)

are the eigenvalues of the velocity submatrix of W (t). The veloc-

ity distribution in the principal axis frame of the velocity ellipsoid

centred on the particle’s position and velocity is given by

g
(
v
) = N (t) exp

(
−1

2
v†diag (σ1(t), σ2(t), σ3(t))−2 v

)
,

where N(t) = 1/((2π)3/2σ 1(t)σ 2(t)σ 3(t)). Note that this velocity

distribution is normalized, i.e. its integral over velocity-space is

unity.

These quantities allow us to calculate the instantaneous annihila-

tion rate at each point on the particle’s trajectory:

dA

dt
= ρ(t)

m

∫
d3v σA(v)vg

(
v
) = ρ(t)〈σAv〉

m
, (26)

4 † denotes the transpose of a matrix.
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where m is the particle mass and σ A(v) the annihilation cross-

section. We note that in many WIMP models the annihilation cross-

section is inversely proportional to encounter velocity, and in this

case 〈σ Av〉 is independent of the actual local velocity distribution

(Jungman et al. 1996). An image of the system in annihilation ra-

diation can be constructed by integrating all particles forward over

a short time interval and summing their annihilation contributions

into a pixel array. We note that equation (26) exhibits near-singular

behaviour as particles pass through caustics and as a result special

care is needed to obtain the correct contribution to the annihilation

luminosity in this situation. This will be discussed more fully in

later papers.

3 T H E D A M A F L OW C O D E

We have developed the code DAMAFLOW to test our GDE scheme

by analysing the behaviour of streams in a broad range of static

potentials. DAMAFLOW integrates the equations of motion and in

parallel the GDE for a single orbit within user-specified potentials.

This requires solving 3 + 18 second-order differential equations

in parallel. The integration algorithm can be chosen to be a sym-

plectic second-order leapfrog [drift-kick-drift (DKD) or kick-drift-

kick (KDK) formulation] or alternatively the energy-conserving and

adaptive Dop853 algorithm (Hairer, Norsett & Wanner 1993) of the

order of 8 that allows dense output and is very fast. Studies fo-

cusing on complex phase-space structures, especially in the field

of chaos analysis, often use the Dop853 algorithm (or even higher

order schemes) because of its high precision. On the other hand

N-body codes often implement the leapfrog method because it is

the best compromise between performance and accuracy. We find

that with a moderate fixed time-step, both formulations of leapfrog

are able to give comparable results to Dop853. This is an important

point because it is not possible to run N-body simulations with slow

but accurate high-order ODE solvers like Dop853.

DAMAFLOW is also set up to do a numerical analysis of funda-

mental frequencies (NAFF) (Laskar 1988, 1990; Papaphilippou &

Laskar 1996; Laskar 2003) and of the resonances associated with

the chosen orbit. The fundamental frequencies are revealed by an

integer programming routine. This is needed so that we can study

the relation between the existence of well-defined fundamental fre-

quencies or resonances and stream-density behaviour. The NAFF

method determines a quasi-periodic approximation to the orbital

motion. For ordinary fast Fourier transforms the accuracy of the

determination of the frequencies is of the order of 1/T , where T is

the sampling interval. The NAFF method has an accuracy of 1/T4.

Thus it makes spectral analysis a lot faster compared to classical

Fourier techniques, for example, those used in Binney & Spergel

(1982).

To scan large parts of phase-space, DAMAFLOW can be run in par-

allel on batch systems in order to integrate a large number of differ-

ent orbits simultaneously. A fast automated stream-density fitting

routine was built in to facilitate efficient analysis of the underlying

phase-space without user interaction. Before this fitting can be done,

the stream-density has to be smoothed to remove the large-density

spikes produced by caustics. DAMAFLOW does this by extracting and

fitting the lower envelope of the stream-density time-series. This

envelope is constructed while the orbit integration is running by an

iterative on-the-fly minimum finder.

From a numerical point of view, solving the GDE is quite difficult

in chaotic regions of phase-space. In these regions the infinitesimal

phase-space volume around the reference particle gets distorted very

strongly. This produces large numerical values in the phase-space

distortion tensor. And this can lead to overflows and round-off er-

rors in numerical computations. In chaos analysis it is an established

method to do some kind of renorming to suppress these problems.

We can do something similar to follow the evolution of phase-space

density evolution. We use the transitivity of the phase-space distor-

tion tensor:

Dt1→t3 = Dt2→t3 Dt1→t2 , (27)

where Dti →t j with i < j is the solution of the GDE with Dti →t j (ti ) =
1 evaluated at time tj . So the phase-space volume can be written as

det(Dt1→t3 ) = det(Dt2→t3 ) det(Dt1→t2 ). (28)

Thus dividing the time-integration interval and re-initializing the

distortion after each interval avoids large numerical values. This is

very similar to the renorming techniques used for calculating the

largest Lyapunov exponents of chaotic systems, where the renorm-

ing frequency is chosen to be of the order of the dynamical time-scale

(Lichtenberg & Lieberman 1983; El-Zant 2002). Although this ap-

proach works nicely for such applications, it does not help us when

calculating the stream-density evolution, because we need the entire

phase-space distortion information from initial to final time. It is not

possible to separate the configuration-space part of the phase-space

distortion and to do a similar renorming. Thus one cannot avoid large

numbers during the calculation. DAMAFLOW therefore calculates all

quantities in double precision (64 bits = 8 bytes). Even in chaotic

regions this is enough to follow the system for a substantial amount

of time. We note that the phase-space density calculation involves

the determinant of a 6 × 6 matrix, whereas the stream-density only

involves the determinant of a 3 × 3 matrix. As a result stream-

density calculations are less strongly affected by large numbers and

overflows. We note that special software libraries can provide even

higher precision (e.g. the GMP library5).

Since we wish to implement the GDE formalism also into an

N-body code, execution speed and memory consumption are im-

portant considerations. For each particle we need to store the full

6D phase-space distortion tensor and the particle’s tidal tensor. This

results in 36 + 6 extra numbers per particle. Thus a 5003 particle

simulation in double precision needs already about 39 GB of RAM

just for the GDE calculation, assuming we store all information for

every particle.

4 I N T E G R A B L E P OT E N T I A L S

Before presenting some results for the evolution of stream-densities

in integrable potentials we want briefly to discuss the choice of the

initial sheet orientation that goes into V
x
(x0) in equation (19). This

depends, of course, on the starting time t0 and the problem that is to

be studied. For example, in a cosmological context V
x
(x0) is given

by the linear initial conditions, so by the coupled initial density and

velocity fields. We note that, to zeroth order, the sheet orientation is

simply given by the Hubble flow: v(x0, t0) = H (t0)x0.

What is the impact of the initial orientation on later evolution?

In Fig. 3 we show the evolution of the normed stream-density, as

calculated from equation (24), for a single orbit with four different

choices of initial stream orientation. For this test we have used a

spherical Hernquist potential:

	(r ) = − G M

r + a
, (29)

5 http://www.gmplib.org.
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Figure 3. Stream-density evolution for different initial sheet orientations

V
x
(x0) in a static Hernquist potential. The general shape of the four curves

is very similar. The long-term behaviour does not in general depend on the

initial sheet orientation.

with M = 1.86 × 1012 M and a = 34.5 kpc. The reference

particle begins its orbit with x0 = (35 17.6 4) kpc and v0 =
(−316.9, −16.3, −4) km s−1. The initial sheet orientations were

chosen to be (in units of km s−1 kpc−1): a : 0, b : 1,

c :

⎛
⎝ 1 10 0

10 1 0

0 0 1

⎞
⎠ and d :

⎛
⎝ 1 1 −2

−1 1 −1

2 −1 1

⎞
⎠ .

It is striking that all four curves have very similar shape and very

similar caustic spacings, although the caustic locations vary. The

long-term behaviour does not depend on initial sheet orientation, at

least in this case. Orientation c produces lower densities than the

others because the scale of V
x
(x0) is larger, but the shape of the

lower envelope is very similar.

Natarajan & Sikivie (2006) show that the caustic shape in

configuration-space is, in general, affected by the relative size of

the V
x
(x0) matrix elements. A detailed analysis of caustic shape

thus requires choosing V
x
(x0). For example, in their model of a

CDM halo Natarajan & Sikivie (2006) initialized trajectories at the

turnaround sphere with a V
x
(x0) loosely motivated by tidal torque

theory. This restricted the form and scale of the matrix, but still left

a lot of freedom. Here our main motivation is not to analyse caustic

shapes, but rather the long-term behaviour of the fine-grained phase-

space distribution, in particular of stream-densities. The initial sheet

orientation is thus not an important issue for us. In the following we

will consider quite general orbits, but will arbitrarily set V
x
(x0) = 0

unless otherwise stated.6 Note that the choice of V
x
(x0) does not

influence the dynamical evolution of the distortion tensor as it is not

part of the initial conditions for the GDE. Only the final projection

to configuration-space is affected by initial sheet orientation.

From a dynamical point of view, static, integrable potentials are

very simple. The motion within them can be described in terms of

action/angle variables and their Hamiltonian can be expressed solely

as a function of the actions H = H(J). All motion in these potentials

is regular, so there are no chaotic regions in their phase-space. In

action–angle space the orbits lie on tori and are characterized by a

6 Orbits starting on axes of symmetry in phase-space can show non-generic

stream-density behaviour for V x (x̄0) = 0 as we will discuss in the section

on non-integrable potentials (Section 5).
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Figure 4. The stream-density evolution calculated using the GDE integrator

DAMAFLOW is compared to the analytic result obtained by a linearized treat-

ment in action/angle variables (HW). The results agree essentially perfectly.

Notice how well the numerical calculation matches the caustics. The upper

panel clearly shows that the numerical result also has the correct 1/(t/torbital)
3

behaviour at late times. The initial quasi-exponential decay is also visible.

fixed number of fundamental frequencies. DM particles in integrable

potentials will experience only phase mixing.

Because of these simple properties Helmi & White (1999), here-

after HW, were able to develop an analytic linearized treatment based

on action–angle variables to derive results for the stream-density be-

haviour. In their paper they did not specifically focus on CDM, but

rather analysed how Gaussian clouds in action–angle space evolve

with time.

As an example of an integrable potential, we apply our method

to several Eddington potentials 	(r, θ ) = 	1(r) + η(β cos θ )/r2

(Lynden-Bell 1962). These are separable in spherical coordinates.

The third integral for this type of potential is I3 = (1/2)L2 +
η(βcos θ ). We chose the following example of an Eddington po-

tential,

	(r , θ ) = v2
h log (r 2 + d2) + β2 cos2 θ

r 2
, (30)

with vh = 1 km s−1, d = 1 kpc, β = 2.5 kpc km s−1,7 and studied

an orbit which starts at x0 = (5, 3, 2) kpc with a velocity of v0 =
(0.62, 0.62, 0.104) km s−1.

In Fig. 4 we show the evolution of the stream-density for this or-

bit, i.e. the projection from phase-space to configuration-space for

an initial condition with V
x
(x0) = 0. Here and elsewhere (unless

7 These values do not have any specific meaning. We have chosen them just

in a convenient way.
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otherwise stated) we define the ‘orbital period’ as the radial oscil-

lation period for the purpose of making such plots. The late-time

behaviour of the stream-density can be fitted by an analytic formula

derived by HW:

ρ(x, t) = A
1

r 2 sin θ |pr pθ |
1

(t/torbital)3
, (31)

with only one fitting parameter A. Comparing this to the result for

the long-term behaviour in HW equation (37) it is clear that A just

reflects the initial phase-space distribution and the orbital param-

eters (the derivatives of the fundamental frequencies with respect

to the actions). The results in HW are calculated for a Gaussian

cloud in phase-space, not a cold sheet as in our case. Since the ini-

tial distribution only affects A, the long-term behaviour of the two

configurations is the same, as shown in Fig. 4.

One can clearly see that our method produces caustics at the

correct positions and is also able to recover the secular evolution of

the stream-density, the 1/(t/torbital)
3 density decrease. We note also

the initial quasi-exponential stream-density decrease that is often

referred to as Miller’s instability (Miller 1964). Recently Helmi

& Gomez (2007), hereafter HG, showed this is a generic feature of

Hamiltonian dynamics and not, as long believed, an artefact specific

to N-body integrations (Hemsendorf & Merritt 2002; Kandrup &

Sideris 2003). HG discuss the effect in detail for spherical potentials.

All our tests with spherical, axisymmetric and triaxial potentials

show a similar quasi-exponential initial decay. Since DAMAFLOW

integrates the equations of motion for a single particle in a perfectly

smooth potential, it is evident that this behaviour has nothing to do

with N-body effects.

A NAFF frequency analysis of particle orbits in the Eddington po-

tential reveals, as expected, three linearly independent frequencies.

It is this number that dictates the speed with which stream-densities

decrease in static, separable potentials. One can see this very clearly

from Fig. 5. Here we show the density decrease in a simple Kepler-

like toy model:

	(r ) = − 1

rα
. (32)

For α = 1 the orbit was started from x0 = (−0.33, 0.97, 0) and v0 =
(−1.0, −0.07, 0) with an energy E = −0.5. This orbit has only one

fundamental frequency. Changing α to 0.75 increases the number of

frequencies to two; the loops of the orbit no longer close. The starting

Figure 5. Stream-density evolution for the normal Kepler potential (α =
1) and for a modified potential (α = 0.75). Orbits in the Kepler potential

have a single fundamental frequency. Changing the potential exponent from

α = 1 to 0.75 increases the number of fundamental frequencies to 2. As

a result, the long-term stream-density behaviour changes from 1/(t/torbital)

to 1/(t/torbital)
2. For integrable potentials the long-term stream-density de-

crease on each orbit is dictated by the number of fundamental frequencies.

point for this second case has been set to x0 = (−0.27, 1.28, 0)

and v0 = (−0.76, 0.24, 0), corresponding also to E = −0.5. The

increased number of frequencies results in a more rapid decrease

in stream-density: 1/(t/torbital) for one fundamental frequency, and

1/(t/torbital)
2 for two. In this sense the long-term behaviour of streams

in static, integrable systems is very simple and is determined only

by the number of fundamental frequencies.

5 N O N - I N T E G R A B L E P OT E N T I A L S

Analytic methods like the HW formalism are only able to deal with

integrable potentials. This is a serious limitation since realistic po-

tentials are rarely integrable. To demonstrate that the GDE method

can also deal with more complex phase-space structure we now dis-

cuss the well-known ellipsoidal logarithmic potential with a core,

	(x, y, z) = 1

2
v2

0 ln
(
r 2

c + x2 + (y/q)2 + (z/p)2
)

, (33)

analysing its stream-density behaviour and its phase-space structure.

There are two reasons why we have chosen this potential: first,

there has been substantial previous work on its phase-space structure

(Binney & Spergel 1982; Papaphilippou & Laskar 1998), so we can

compare directly with these earlier results. Secondly, this potential

is often considered as a good model for galactic haloes because it

reproduces a flat rotation curve and its shape can easily be tuned by

two parameters that correspond to the axial ratios of the ellipsoidal

isopotential surfaces. It has been used, for example, for dynamical

studies of the debris streams of the Sagittarius dwarf galaxy (Helmi

2004a). The ellipsoidal logarithmic potential without a core (rc =
0) has also been used to study the influence of halo shape on the

annual modulation signal in DM detectors (Evans et al. 2000).

It is known that, depending on the degree of triaxiality, the phase-

space of the logarithmic potential can be occupied to a large extent

by chaotic orbits (Papaphilippou & Laskar 1998). In Fig. 6 we show

how the stream-density evolves along one of these chaotic orbits.

This orbit was integrated in a potential with q = 1.5, p = 0.5, v0 = 1,

rc = 1, E = 3 and started at x0 = (10, 1, 5), v0 = (0.16, 80, −0.16).

Here we apply the same system of units as Papaphilippou & Laskar

(1998) and write all quantities as dimensionless numbers. It is ev-

ident from this plot that the system mixes very rapidly along this

orbit. This is chaotic mixing, and contrasts with the phase mixing

that we found before for regular motion in separable potentials. We

note that chaotic orbits are difficult to handle from a numerical point
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Figure 6. Stream-density evolution along a chaotic orbit in the ellipsoidal

logarithmic potential with q = 1.5, p = 0.5. The density decreases very

rapidly, reflecting the chaotic mixing along this orbit. Note that the decrease

is no longer a power law, as in the case of regular motion.
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of view because of the rapid spread in phase-space that character-

izes them. To check whether we can rely on our stream-density

values, we also calculated the 6D phase-space density along this

orbit. Over the full integration range shown in Fig. 6 (40 orbits) it

remained constant to an accuracy of 10−7.

Using DAMAFLOW we have scanned the phase-space of box orbits

within the logarithmic potential, identifying chaotic and regular re-

gions by calculating the stream-density evolution for about 5 × 104

different orbits. Each orbit was integrated for a fixed time interval

of 2000 using 2 × 105 time-steps. This corresponds to about 103

orbital periods. We chose this very long integration time in order to

distinguish between chaotic and regular regions.8

Our results can be compared directly to previous work

where the same potential was analysed using frequency shifts

(Papaphilippou & Laskar 1998). This method is based on the fact

that chaotic motion, contrary to regular motion, has no stable fun-

damental frequencies, so that frequency estimates shift with time.

By looking for such shifts one can distinguish between chaotic

and regular motion. Fig. 7 shows maps of orbit type for two dif-

ferent sets of axial ratios q, p. This figure can be compared di-

rectly to figs 6(c) and 4(b) in Papaphilippou & Laskar (1998).

For the first of these calculations we adopted the following values:

q = 1.8, p = 0.9, v0 = √
2, rc = 0.1 and E = −0.404 858. For

the second case we changed the potential shape by instead taking

q = 1.1, p = 0.9.

The maps of Fig. 7 are constructed as follows. We start each or-

bit at the centre of the potential to be sure to get a box orbit with

zero angular momentum. Each individual orbit can be labelled by its

initial vx and vy velocity components. The value of vz is then deter-

mined by the chosen value of the energy, E = −0.404 858. This is,

of course, a very special point within the potential, and it turned out

that our standard choice of initial stream orientation, V
x
(x0) = 0,

produces highly non-generic stream-density behaviour in this case;

the stream-density remains constant! In order to get properly repre-

sentative behaviour we therefore took V
x
(x0) = 1 when producing

Fig. 7. With this set-up, we scanned the whole vx – vy plane and saved

the stream-density of each orbit after a fixed amount of time. The

grey-scale in the plots corresponds to the stream-density decrease

after that fixed time. Black points denote a very rapid stream-density

decrease, thus regions of chaotic mixing. Grey regions show a slower

density decrease, reflecting phase mixing and regular motion. Much

of the box-orbit phase-space is chaotic for q = 1.8, p = 0.9. Re-

ducing the asphericity to q = 1.1, p = 0.9 results in a much larger

fraction of the boxes being regular.

A comparison of Fig. 7 to figs 6(c) and 4(b) in Papaphilippou

& Laskar (1998) shows excellent and detailed agreement. Regions

of high frequency shift correspond, as expected, to those of rapid

stream-density decrease and chaotic mixing. Thus the GDE and the

frequency-shift technique work equally well for delineating regions

of chaotic and normal phase mixing. We note that the Lyapunov

exponent technique for identifying chaotic behaviour is closely re-

lated to the GDE (Lichtenberg & Lieberman 1983; El-Zant 2002),

since these exponents are obtained from the eigenvalues of the 6D

distortion tensor. Identifying and characterizing chaotic behaviour

is not the main goal of our work here, so we will not pursue this

connection further in this paper.

8 For chaotic orbits elements of the distortion matrices can become very

large. Here we are only interested in separating chaotic and regular orbits

reliably. Thus we do not care about round-off errors in the calculation of

these matrices.

Figure 7. Chaos maps for box orbits in the logarithmic ellipsoidal potential

for two different sets of axial ratios. The upper plot is for a highly aspherical

potential with q = 1.8, p = 0.9, whereas the lower plot is for a rounder

potential with q = 1.1, p = 0.9. The grey-scale indicates the stream-density

decrease after a fixed time interval (2000 time units or about 100 orbital

periods). Black regions mark the very low final stream-densities found for

chaotic orbits, while grey regions mark the higher stream-densities found for

regular orbits. Densities decay quasi-exponentially in the former case, but

only as a power law of time in the latter. These plots can be directly compared

to figs 6(c) and 4(b) in Papaphilippou & Laskar (1998), where a frequency-

shift analysis of the same system reveals exactly the same structures.

So far we have classified orbits as either regular or chaotic, but

the regular part of phase-space has substructure in the form of reso-

nances (Carpintero & Aguilar 1998; Wachlin & Ferraz-Mello 1998;

Merritt & Valluri 1999). These are regions where the frequencies of

motion are commensurate m1ω1 + m2ω2 + m3ω3 where the mi are

integers and the ωi are the three frequencies of the regular motion.

As shown above, resonance influence the stream-density behaviour

over long time-scales (HW; Siegal-Gaskins & Valluri 2007). This

is because they restrict the motion to a lower dimensional region in

phase-space, implying that the orbit does not fill its Kolmogorov–

Arnold–Moser torus densely. In simple terms, the system cannot
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Figure 8. Stream-density evolution on resonant orbits. Stream-density

drops at a rate which depends on the number of independent orbital fre-

quencies. Non-resonant orbits have three independent frequencies, and their

stream-density decreases like (t/torbital)
−3 at late times. Resonances reduce

the number of independent frequencies and slow the decrease of stream-

densities. With one resonance there are two independent frequencies; the

stream-density then falls as the inverse square of time. With two resonances,

only one independent frequency remains and density falls as the inverse

first power of time. The number of resonances also strongly affects the orbit

shape in configuration-space. As is visible for the examples in the lower

plot, non-resonant orbits (red) fill a 3D volume, whereas orbits with two

resonances (green) are restricted to a line.

spread as fast as it would do in the non-resonant case because it

occupies a space of lower dimension.

Fig. 8 shows the stream-density evolution along three differ-

ent box orbits for q = 1.8, p = 0.9, v0 = √
2, rc =

0.1, E = −0.404 858. The initial conditions for these orbits

were chosen so that they have different numbers of orbital res-

onances (non-resonant, one resonance, two resonances): x0 =
(−0.08, −0.70, −0.090), v0 = (−0.60, −1.50, −0.07), x0 =
(−0.01, −0.67, −0.08) v0 = (−0.53, −1.60, −0.06) and x0 =
(0.08, −0.63, −0.14), v0 = (−0.51, −1.51, −0.52). It is clear that

the number of resonances has a major effect on the final stream-

density decrease over time-scales similar to those shown in this plot.

The difference in stream-density between the non-resonant case and

the case with two resonances is about three orders of magnitude af-

ter 350 orbits! Resonances also have a strong influence on the shape

of the orbit in configuration-space, as shown in the lower panel of

Fig. 8. Two resonances restrict the orbit to a line. From the shape

of the orbits it is evident why the stream-density changes so much

with the resonances. The particles cannot spread over a large region

if they are confined to a space of small dimension.

The regular region of phase-space for the logarithmic potential is

occupied by resonant and non-resonant regions. We used DAMAFLOW

to scan the regular region (as for the chaos maps above) and fitted

the stream-density decrease by a power law in time. A non-resonant

motion then gives an exponent of 3, whereas regions with two res-

onances should give 1. We binned these power-law exponents (bin

Figure 9. Resonance structure of a logarithmic potential as revealed by the

GDE. Green indicates regions with no resonance (i.e. three independent or-

bital frequencies). Stream-densities for these orbits decrease as (t/torbital)
−3

at late times. Red indicates orbits with one resonance, for which stream-

densities decreases as (t/torbital)
−2. Orbits with two resonances are coloured

blue. This map was constructed by integrating 450 × 450 orbits, each for

about 104 orbital periods, using DAMAFLOW in parallel. Each orbit required

25 × 106 time-steps using a KDK leapfrog algorithm.

size 0.1) and coloured them. The result of this procedure is shown

in Fig. 9. For this map we integrated a total 450 × 450 orbits for

about 104 orbital periods. Each integration required 25 × 106 KDK

leapfrog time-steps. The chaotic regions are shown in grey, while

the regular regions are shown in three different colours depending

on their stream-density behaviour. We note that the chaos detection

here was carried out by imposing a threshold 10−15 on the stream-

density decrease. Every orbit that crosses this threshold during its

evolution is considered as chaotic and marked as grey in the map.

This is the reason why the chaotic pattern here is not identical to

that in Fig. 7.

Most of the regular phase-space in this figure is occupied by non-

resonant orbits shown in green. Superposed on these is a fine network

of resonance lines shown in red. In blue regions the stream-density

decreases linearly with time because there are two resonances. Note

how well our method locates the resonance lines in the initial con-

dition space spanned by vy and vx . Papaphilippou & Laskar (1998)

analysed resonances with frequency maps by plotting the rotation

numbers defined as a1 = νL/νS and a2 = νM/νS, where νi are the

fundamental frequencies along the long (L), short (S) and middle

(M) axes. It is straightforward to identify the resonance lines in

Fig. 9 with those in the frequency map of Papaphilippou & Laskar

(1998) by applying a NAFF frequency analysis to the orbit cor-

responding to any specific initial condition, for example, one on

a given resonance line. It turns out that we can identify all reso-

nance lines in Fig. 9 with similar lines in the frequency map. At

the intersection of these lines we have periodic orbits (satisfying

two resonance conditions) with the same rotation numbers as those

found in Papaphilippou & Laskar (1998). For example, the line go-

ing from the upper left-hand corner to the lower right-hand corner

corresponds to the (3, 1, −2) resonance, meaning that 3a1 + 1a2–

2 = 0.

We conclude that our method can resolve the structure of phase-

space equally as well as the standard frequency mapping technique.
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6 T R I A X I A L DA R K M AT T E R H A L O E S

In CDM cosmologies DM haloes are not spherical. Furthermore,

simulations suggest that their shape should vary with radius, both

equidensity and equipotential surfaces being rounder (on average)

at larger radii. Several studies have tried to constrain the shape of

the Milky Way’s halo by analysing the properties of observed tidal

streams like that of the Sagittarius dwarf galaxy (Ibata et al. 2001;

Helmi 2004a,b; Johnston, Law & Majewski 2005; Fellhauer et al.

2006), but there is still an ongoing controversy what the shape ac-

tually looks like. Recently, Hayashi, Navarro & Springel (2007)

analysed the radial variation in potential shape of simulated haloes

that might correspond to that of the Milky Way. Although there

is substantial object-to-object scatter, on average they found a rel-

atively rapid transition from aspherical to almost spherical which

occurs near the scale radius rs of the best-fitting NFW profile. They

provide a simple fitting formula for this mean behaviour,

log

(
b

a
or

c

a

)
= α

[
tanh

(
γ log

r

rα

)
− 1

]
, (34)

for the principal axial ratios b/a and c/a. [Note that they actually

provide two different sets of fitting parameters for equation (34) de-

pending on the principal axial ratios.] They also propose a modified

NFW potential that takes into account the variation in shape, but this

potential is not very convenient because it is not straightforward to

derive the corresponding equations of motion. The examples given

above show that potential shape can have a substantial effect on

stream-density evolution, so it is interesting to see how strong such

effects can be in a realistic model.

To analyse this we have built a simple extension of the NFW

model that qualitatively reproduces the shape variation found by

Hayashi et al. (2007) but which has simple equations of motion

that can easily be implemented in DAMAFLOW. (For another similar

model, see Adams et al. (2007).)

We model the variable shape of the NFW halo by replacing the

Euclidean radius in the formula for the potential of a spherical NFW

halo by a more general ‘radius’ r̃ given by

r̃ = (ra + r ) rE

(ra + rE)
. (35)

Here ra is a transition scale where the potential shape changes

from ellipsoidal to near spherical and rE is an ellipsoidal ‘radius’

given by

rE =
√(

x

a

)2

+
(

y

b

)2

+
(

z

c

)2

, (36)

where we require a2 + b2 + c2 = 3. Thus for r � ra r̃ ∼= rE and

for r � ra r̃ ∼= r . We then take the potential to be 	(x, y, z) =
	NFW(r̃ (x, y, z)) which reproduces the general behaviour found by

Hayashi et al. (2007) with a smooth transition around ra.

For a specific example, we have chosen the transition scale to be

the scale radius of the NFW profile and have taken values for a,

b and c that give central principal axial ratios that are comparable

to those found by Hayashi et al.: b/a = 0.78 and c/a = 0.72. Our

choice is a = 1.18, b = 0.92, c = 0.85. For the NFW profile we used

a concentration of r200/rs = 7.0. We checked Poisson’s equation for

this potential to ensure that it implies a positive density everywhere.

The check was performed by DAMAFLOW evaluating the negative

of the trace of the tidal field on a fine 3D grid. This is just the

Laplacian of the potential and so proportional to the corresponding

density. Since the density field is continuous, positive density values

on the grid should guarantee a positive density everywhere.
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y/rs
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– 4.0

– 4.0

x/
rs
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0.0

– 4.0

– 4.0

0.0 – 0.1– 0.1
y/rs

0.0

– 0.1

– 0.1

x/
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0.0

– 0.1

– 0.1

Figure 10. Isopotentials for the outer and inner parts of one of our triaxial

NFW haloes. It is obvious that the halo becomes rounder as one moves

outwards. In this case the transition scale ra was chosen to be equal to the

scale radius rs of the NFW profile.

Fig. 10 shows isopotentials in the outer and inner parts of the

halo. All distances are expressed in terms of the scale radius rs of

the NFW profile. The transition from spherical to aspherical can

clearly be seen as the centre is approached. Fig. 11 compares the

radial variation in axial ratios in our model and in the simulations

of Hayashi et al. (2007). The simulation axial ratios are calculated

with equation (34) using the average values for α, γ , rα found in

Hayashi et al. (2007). The lines for our model are calculated as

follows. For a given value of r̃ we computed the intersections of

the corresponding isocontour with the x-, y- and z-axes. So we get

three values a′ ′, b′ ′, c′ ′. To look for their variation over distance

we define the mean distance r ′′ =
√

(a′′)2 + (b′′)2 + (c′′)2. This is

essentially the same procedure which Hayashi et al. (2007) applied

when fitting the isopotentials of their simulated haloes. Thus we

can compare directly with their results as in Fig. 11. The qualitative

behaviour of our model is very similar to that of the simulations.

It is not necessary to demand an exact fit since the scatter between

different haloes studied by Hayashi et al. (2007) is quite large.

We implemented this potential into DAMAFLOW and looked at four

different orbits with the following apocentre/pericentre distances

in units of rs: 8.9/6.1, 20/5.9, 2.2/0.5, 1.2/0.4. We compared the

stream-densities predicted for our triaxial model to those predicted
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Figure 11. Comparison of the radial variation of isopotential axial ratios

for N-body haloes (Hayashi et al. 2007) to that for our simple triaxial NFW

model. The N-body values are the average of those found in Hayashi et al.

(2007). The transition scale ra of our model has been set equal to the scale

radius rs of the underlying NFW profile.

in the corresponding spherical NFW profile. We fixed the starting

point and the velocity direction to be the same in the two cases. The

amplitude of the velocity was then set to give the same energy in

the two cases. With this procedure the orbits covered comparable

regions in configuration-space and had nearly the same apocentre

and pericentre distances. Note that it is impossible to get identical

orbital shapes in the two potentials. Especially in the inner parts

of the halo, where the two potentials differ substantially, the orbits

have different shapes. In a spherical potential orbits are confined to

a plane by conservation of angular momentum, but this is not the

case in a triaxial potential.

In Fig. 12 we show the stream-density evolution for these four

orbits. Two belong to the outer halo with pericentre and apocentre

Figure 12. Stream-densities in a spherically symmetric NFW potential are compared to those expected in a more realistic DM halo with a shape that varies

with radius. Orbits with pericentre inside the transition scale ra = rs show a substantial difference between the two cases. After about 100 orbits streams are

roughly 100 times less dense in a triaxial halo than in a spherical one. Thus spherical models for the Milky Way’s halo are likely to underestimate the number

of streams in the solar neighbourhood by two orders of magnitude.

beyond the scale radius. As expected their stream-density behaviour

is very similar in the two potentials. As soon as orbits penetrate

the inner halo, however, the behaviour is quite different in the two

cases. After 100 orbits, streams are about 100 times less dense in a

triaxial halo than in a spherical one. Note that this is just what one

would predict, given the (t/torbital)
−2 and (t/torbital)

−3 density evolu-

tion expected for regular motion in spherical and triaxial potentials,

respectively.

In the case of a cored ellipsoidal potential we showed above that,

depending on the level of triaxiality, substantial fractions of phase-

space can be occupied by chaotic orbits. Thus we may expect such

orbits to be present in our triaxial NFW profile also. Previous work

on galactic dynamics has demonstrated the presence of chaotic orbits

in the potentials corresponding to a variety of cuspy, triaxial density

profiles (Merritt & Fridman 1996; Merritt & Valluri 1996; Valluri

& Merritt 1998; Kandrup & Siopis 2003; Capuzzo-Dolcetta et al.

2007). To search for chaotic orbits in our model, we have integrated

2 × 104 different representative orbits and studied the predicted

behaviour for the density of their associated streams. For simplicity

we have chosen the initial conditions for these orbits at random

from the known analytic distribution function of a Hernquist sphere

matched to the mean radial density profile of our triaxial NFW

model. A self-consistent Hernquist sphere has density profile and

potential:

ρ(r ) = M

2π

a

r

1

(r + a)3
; 	(r ) = − G M

r + a
. (37)

We match to our NFW model by an appropriate choice of the

scalelength a (Springel, Di Matteo & Hernquist 2005a). A standard

inversion technique can then be used to select a random set of ini-

tial orbital positions from this (spherically symmetric) distribution.

Appropriate initial velocities can be generated by applying the von

Neumann rejection technique (Press et al. 1992; Ascasibar & Binney
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2005) to the analytically known distribution function of the self-

consistent Hernquist model (Hernquist 1990). This procedure does

not, of course, sample orbits with a weighting which would self-

consistently reproduce our triaxial NFW model. Nevertheless, the

similarity of the NFW and Hernquist models should ensure that our

selected orbits cover the regions of phase-space which would be

populated in a truly self-consistent model in a reasonably represen-

tative way. This is sufficient to evaluate the overall importance of

chaotic orbits in the model.

We integrated each orbit as long as required to guarantee max

(xcross, ycross, zcross) = 103, where icross is the number of crossings

along the i coordinate, i = x, y, z. The integration was done by

the Dop853 algorithm with a very high precision to get an relative

energy error below 10−10 over the whole integration time. We have

chosen such high-energy conservation to be sure that the integration

works correctly even though the potential is cuspy.

We plot the final stream stream-density using a grey-scale just as

in Fig. 7. The axes of the resulting plots in Fig. 13 are the orbital

energy in the triaxial NFW potential and the circularity based on

the spherical Hernquist profile that was used to generate the ini-

tial conditions. Black points correspond to very large decreases in

stream-density, hence to non-regular motion. The upper panel shows

all orbits whereas the lower panel takes only box orbits into account.

We distinguished box and tube orbits by looking at the angular mo-

menta around the symmetry axes. For a box orbit the sign of all

three momenta changes along the orbit. On the other hand a tube

orbit has one axis along which the angular momentum has a fixed

sign.

First of all it is quite striking from these plots that there are orbits

that are not regular and show up as black points. A line of fixed

pericentre (1/3 rs) in Fig. 7 clearly shows that these are orbits that

reach the innermost part of the halo, where they feel the strong

triaxiality and the cusp. This is not surprising because previous

studies showed that cuspy, triaxial potentials exhibit chaos (Valluri

& Merritt 1998; Kandrup & Siopis 2003). These studies found that

box orbits are primarily affected but also some tube orbits. This

behaviour can clearly be seen in Fig. 13.

It is not clear how to distinguish between regular and chaotic

motion based on the stream-density decrease after a given number

of orbital periods. There is no ‘gap’ in the stream-density distribution

which might separate regular and chaotic motion. Methods like the

frequency shift derived from a NAFF analysis run into the same

problem (Valluri & Merritt 1998). Lyapunov methods are better

suited to this problem, but may also have problems making a clear

distinction (Kandrup & Sideris 2002). As our objective here is not

a precise chaos analysis of our triaxial NFW potential, we take

a fiducial value of 10−25 for the stream-density which separates

regular and chaotic motion. This value is based on the stream-density

distribution function and corresponds to a stream-density below the

‘regular motion bump’. Orbits with a stream-density below 10−25

will be considered as chaotic. With this criterion about 35 per cent

of the orbits with binding energy between 0.91 |E0| and 1.00 |E0| are

chaotic. This fraction is not particular high compared to previous

studies. Valluri & Merritt (1998), for example, find fractions up to

80 per cent depending on the parameters they use for their triaxial

density profile. Recent studies of self-consistent models of cuspy

triaxial galaxies with DM haloes (Capuzzo-Dolcetta et al. 2007)

also find chaotic orbits to play an important role. Although we have

carried out only a qualitative analysis it is clear that chaos plays a

role in the centre of our model also. Box orbits are mostly affected

by chaotic mixing because they reach the innermost part of the

halo. We note that the four orbits shown in Fig. 12 are regular.
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Figure 13. Qualitative view of the phase-space structure of our triaxial

NFW potential. These plots give results for 2 × 104 orbits. The grey-scale

represents the stream-density decrease after max (xcross, ycross, zcross) = 103.

Black points correspond to orbits with a very strong density decrease, thus

to non-regular orbits. Such orbits are found primarily in the inner regions of

the potential. Orbits with lower binding energy are mostly regular, showing a

much smaller stream-density decrease. The black points were plotted last to

avoid overplotting by the grey ones. E0 corresponds to a particle at rest at the

centre of the potential. The solid red line represents the constant pericentre

line (rperi = 1/3 rs). In the lower panel only the box orbits are plotted. Most

of the non-regular orbits are boxes deep inside the potential.

None of them has a pericentre distance below the ‘critical’ distance

1/3rs.

These results show that stream-densities near the Sun are pre-

dicted to be much lower for a realistic triaxial potential than for the

corresponding spherical potential. The orbital period near the Sun

is about 2.5 × 108 yr and the distance of the Sun from the Galactic

Centre is roughly 0.2–0.3 rs. Fig. 12 suggests that mixing will have

reduced stream-densities from their values at infall by roughly four

orders of magnitude for typical streams in the solar neighbourhood.

Since the mean DM density near the Sun is substantially greater

than typical stream-densities at infall, we expect at least 105 CDM

streams to contribute to the density in the solar neighbourhood. We

note that this is still likely to be a substantial underestimate, as it

is based on a static, smooth halo model and so neglects additional
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mixing effects which may be important, in particular mixing in pre-

cursor objects, mixing due to scattering by halo substructure, and

chaotic mixing. Such effects can only be treated properly by ap-

plying the GDE to structure formation in its proper cosmological

context. This requires the use of N-body simulations. We note that

particles orbiting the innermost part of the halo are also affected

by the disc potential leading to a non-spherical contribution to the

potential.

7 F I N E - G R A I N E D P H A S E - S PAC E A NA LY S I S
I N N - B O DY C O D E S

The main motivation of our work is the desire to address issues

of mixing and fine-scale structure in full generality by building

the GDE into current state-of-the-art N-body codes. We have done

this for the current version of the GADGET code (Springel 2005).

This is a massively parallel N-body code which has already been

used to carry out very large cosmological simulations (Springel

et al. 2005b). It calculates the gravitational forces with an efficient

TreePM method (Xu 1995; Bode, Ostriker & Xu 2000; Bagla 2002)

and uses a domain decomposition scheme based on space-filling

(fractal) Peano–Hilbert curves to achieve good work load balance

in parallel operation.

To implement the GDE within GADGET we needed to extend vari-

ous parts of the code. The dynamics of the distortion tensor are driven

by the ordinary gravitational tidal field. The corresponding tidal ten-

sors for each DM particle have to be calculated using the same Tree

or TreePM method as the forces in order to provide the correct dri-

ving term in the GDE. While the forces are given by the first

derivative of the potential, the tidal tensor is made up of second

derivatives. The particles in an N-body simulation can be thought of

as a Monte Carlo sampling of the real DM phase-space distribution,

but the coarseness of this sampling introduces unwanted discrete-

ness or ‘two-body’ effects which are likely to be more serious for

higher derivatives of the potential. Such effects are usually mitigated

by softening the gravitational potential of each particle. GADGET uses

a spline softening kernel function with compact support:

W2(u) =

⎧⎪⎪⎨
⎪⎪⎩

16
3

u2 − 48
5

u4 + 32
5

u5 − 14
5
, 0 � u < 1

2
,

1
15u + 32

3
u2 − 16u3 + 48

5
u4

− 32
15

u5 − 16
5
, 1

2
� u < 1,

− 1
u , u � 1.

The softened potential of a point mass is then given by 	s(x) =
(Gm/h)W2(|x |/h) with a softening length h = 2.8ε, where ε is the

Plummer equivalent softening length. The potential (and so force

and tidal field) become Newtonian if |x | � h. From this softened

potential we can calculate the softened tidal field of a point mass:

T s
i j

(
x
) = −∂2	s

(
x
)

∂xi∂x j
= δi j mg1

( |x |
h

)
+ xi x j mg2

( |x |
h

)
,

where

g1(u) = 1

h3
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Thus the softened tidal field acting on particle k at position xk (its

tidal tensor) is given by

Ti j

(
xk

) =
∑
l �=k

[
δi j ml g1

( |xl − xk |
h

)

+ (xl,i − xk,i )(xl, j − xk, j )ml g2

( |xl − xk |
h

)]

=
∑

l

[
δi j ml g1

( |xl − xk |
h

)

+ (xl,i − xk,i )(xl, j − xk, j )ml g2

( |xl − xk |
h

)]

− δi j mk g1 (0) . (38)

The last step highlights a difference between the tidal field calcu-

lation and the normal force calculation. The tidal field is obtained

using the same tree walk as the forces. The latter are calculated

by evaluating the full sum �l , without excluding particle k. This is

simply to avoid additional bookkeeping; the particle–particle force

vanishes when l = k so including the self-term does not affect the

result. This is not the case for the tidal field, for which one must

add an extra term to the diagonal tidal tensor elements to remove

the self-tidal field. This is similar to the self-energy correction that

is needed when using the tree to evaluate the total potential energy

of the system.

For larger simulations it is not efficient to use the tree alone. In

such cases the TreePM method can be much faster. In this scheme

the potential is split into short- and long-range parts 	 = 	short +
	long. Specifically, in Fourier space GADGET takes

	
long
k = 	k exp

( − k2r 2
s

)
, (39)

where rs defines the spatial scale of the force split and should not be

confused with the scale radius of the NFW profile. The long-range

potential is calculated by mesh-based Fourier techniques. In Fourier

space the tidal field can be calculated by just pulling down −(ik j )
2

with j = x, y, z. The short-range potential in real space is given by

	short

(
x
) =

∑
l

	s (rl ) erfc

(
rl

2rs

)
, (40)

and the corresponding short-range part of the tidal field by

Ti j (x) =
∑

l

{
T s

i j

(
xl

) [
erfc

(
rl

2rs

)
+ rl√

πrs

exp

(
− r 2

l

4r 2
s

)]

− Fs
i

(
xl

) xl, j rl

2
√

πr 3
s

exp

(
− r 2

l

4r 2
s

)}
,

where Fs is the softened point mass force, xl,i is defined as the

smallest distance of any of the periodic images of particle l to the

coordinate xi of x , and rl =
√

x2
l,x + x2

l,y + x2
l,z .

The time integration also needs modification in order to integrate

the GDE in parallel with the equations of motion. For this it is

desirable to write both the equations of motion and the GDE in a

time-symmetric way. This fits best into GADGET’s quasi-symplectic

integration scheme which is a second-order leapfrog. For the GDE

we need to integrate two differential equations of second order to

solve for D
i

with i = xx , xv. Let W
i

denote the first time derivative

of D
i
. We can then define the system state vector S̃ as

S̃ = (x, v, D
xx

, D
xv

, W
xx

, W
xv

)†. (41)
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The equations of motion and the GDE can now be written as one

equation for S̃:

¨̃S (t ; x0) = f
(

S̃ (t ; x0)
)

. (42)

The right-hand side does not depend on the time derivative of S̃.

This allows the use of a time-symmetric leapfrog scheme with the

following drift and kick operators:

Dt (�t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v → v

x → x + v�t

W
i

→ W
i

i = xx, xv

D
i

→ D
i
+ W

i
�t i = xx, xv

, (43)

Kt (�t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x → x

v → v + F�t

D
i

→ D
i

i = xx, xv

W
i

→ W
i
+ T �t i = xx, xv

, (44)

where T is the ordinary tidal tensor and F the gravitational force.

Although the time integration now needs to solve 18 additional non-

trivial coupled second-order differential equations, it turns out that

the loss in performance is not dramatic, even if we do the calculation

for all DM particles in the simulation box. From a computational

point of view, the strongest impact comes from the extra memory

that is needed to keep track of the distortion tensor. Every particle

needs the tidal tensor (six numbers due to symmetry) and the dis-

tortion tensor (36 numbers). Nevertheless, with current computer

capabilities this is not a major limitation.

In general the state of an N-body simulation is not stored fre-

quently enough to catch the caustics that occur along each particle’s

orbit. To avoid missing these we implemented a caustic finder that

examines every drift operation of the time integration. As described

above, sign changes in the determinant of the configuration-space

distortion tensor D indicate that a particle has passed though a caus-

tic. Whenever this happens the event is logged. We are then limited

only by the time-step of the simulation and this is normally small

enough to catch all large-scale caustics.

For flexibility in testing, we have also implemented the GDE for-

malism in a version of GADGET which allows certain static potentials,

in particular, NFW, Hernquist and cored ellipsoidal logarithmic po-

tentials, to be included in addition to the self-gravity of the particles.

As a first test of our implementation in GADGET, we have compared

the behaviour predicted for N-body realizations of a static Hernquist

sphere to that found for an integration in the corresponding smooth

potential. To get a system which resembles the Milky Way’s halo

we take M = 1.86 × 1012 M and a = 34.5 kpc in equation (37).

The N-body realization was constructed as described in Section 6.

In Fig. 14 we compare the evolution of stream-density for a spe-

cific orbit in an N = 105 live Hernquist halo to that found when in-

tegrating the same orbit in the corresponding smooth potential. The

Hernquist sphere had the parameters given above and the particular

orbit chosen here had pericentre and apocentre of 25 and 33 kpc,

respectively, giving a period of about 0.5 Gyr. It was integrated for

about 15 orbits or 7.5 Gyr. The N-body softening was taken to be ε =
1.5 kpc. The 6D phase-space density remained constant to better than

1 part in 108 in both integrations, but the stream-density evolution

still differs significantly between them, in particular in the timing

of the caustics and in the detailed behaviour of the lower envelope.

This is a consequence of the well-known divergence between nearby

orbits in N-body systems which is caused by the cumulative effect

of many small perturbations due to discreteness (Kandrup & Sideris
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Figure 14. The stream-density evolution found by integrating the GDE

along an orbit in a live N-body realization of a Hernquist sphere is compared

to that predicted for the same initial condition in the corresponding analytic

potential. The N-body halo was realized with N = 105 particles using a

softening length, ε = 1.5 kpc. The N-body evolution is very similar in shape

and caustic frequency to that in the smooth potential. The 6D phase-space

density remained constant to an accuracy of 10−8 over the full N-body

integration.

2003). The GDE is very sensitive to such noise. The features in the

two curves are, nevertheless very similar, in particular the number

and spacing of caustics and the overall shape.

Fig. 15 shows the normed stream-densities after 5 Gyr of inte-

gration for all particles in a live Hernquist halo with N = 105 and

the parameters assumed above. For this integration we adopted ε =
2.0 kpc. We divide the particles into nine radial bins containing

approximately equal numbers of particles and then histogram the

stream-densities, both for the N-body simulation and for integra-

tions from the same initial conditions in a smooth Hernquist poten-

tial. Typical stream-densities in Fig. 15 decrease towards the centre

of the sphere. This is because shorter dynamical times result in en-

hanced mixing in the inner regions. [Recall that stream-densities

decrease as (t/torbital)
−2 in a spherical potential, and so are smallest

where the orbital periods are the shortest.] The two outermost radial

shells are dominated by particles with long orbital periods which,

as a result, have stream-densities of the order of unity. The high

stream-density tails of the histograms are due to particles which are

close to caustic passage. They thus have the universal power-law

shape N(>ρ) ∝ ρ−1 expected near a caustic (see e.g. Mohayaee &

Shandarin 2006).

The two sets of histograms in Fig. 15 are very similar. Although

stream-densities evolve differently along orbits from a given initial

condition in the N-body and smooth potential cases (see Fig. 14)

the statistical results for ensembles of initial conditions are similar.

N-body discreteness effects do not cause substantial systematic
shifts in the stream-density distributions predicted for this test prob-

lem. A small systematic effect is visible at low stream-densities. The

N-body integration produces more very low-density streams than the

integration in the corresponding smooth potential. This is indeed due

to discreteness effects, as evidenced by the fact that we find the ex-

cess to depend on the N-body softening; smaller softenings result in

a larger tail of extremely low-density streams. On the other hand, too

large a softening leads to incorrect representation of the mean force

near the centre of the system. Thus a trade-off is needed to define the

optimal softening. This has been much discussed with reference to

conventional N-body simulations (Merritt 1996; Athanassoula et al.

2000; Dehnen 2001; Rodionov & Sotnikova 2005; Zhan 2006) but
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Figure 15. Stream-densities for an N = 105 spherical Hernquist N-body model of the Galactic halo after 5.0 Gyr of integration (blue hatching from bottom

left-hand side to top right-hand side) are compared to those found by integrating from the same initial conditions in the corresponding smooth potential (red

hatching from bottom right-hand side to top left-hand side). In each case the sphere was divided into nine spherical shells and the normed stream-densities of

all particles in each shell at the final time were histogrammed with bin width 0.5 in log (density). As expected, the lowest stream-densities are reached near the

centre of the sphere where the dynamical time-scale is the shortest. In the two outermost spherical shells most of the particles have not yet undergone many

caustics. The stream-density distribution there has a strong bias towards values >1. The agreement between the N-body live halo and the smooth potential is

good.

we note that the situation is worse for our current application, since

the evolution of our extended state vector equation (42) depends

on the tidal tensor. The additional spatial derivative relative to the

force makes our GDE integrations substantially more sensitive to

discreteness than a standard N-body integration. This suggests that

the optimal choice of softening will be larger for GDE integrations

than for conventional N-body integrations.

Fig. 15 shows that the high-density tails of the stream-density

distribution agree well between the N-body and smooth potential

integrations. This suggests that the number and the strength of the

caustics must be similar in the two cases. We can check this explicitly

by again dividing the sphere into radial shells and then calculating

the median number of caustic passages by the final time for the par-

ticles which end up in each shell. In Fig. 16 we compare the results

of this exercise for the N-body and smooth potential integrations us-

ing 50 shells. The level of agreement is striking. Only within about

3 kpc of the centre is there a significant difference between the two

curves. This is comparable to the softening used for the N-body

system, so it is not surprising that particles in this inner core pass

through fewer caustics in the N-body case.

The number of caustic passages depends very little on N-body

parameters. In Fig. 17 we plot median caustic count against radius

for two different mass resolutions and for a fixed softening length

of 0.5 kpc, four times smaller than in Fig. 16. After 5 Gyr, the

highest resolution simulation produces a median caustic count at

1 kpc which agrees with that for the smooth potential integration

in Fig. 16, confirming that that the disagreement in that figure was

due to the softening of the N-body simulation. It is remarkable that

particle number has no strong impact on the median caustic count.

The two simulations in Fig. 17 differ by a factor of 32 in particle
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Figure 16. Number of caustic passages after 5 Gyr as a function of final

distance from the centre for 105 orbits in a Hernquist sphere. The green

dashed curve gives the median number of caustic passages at each radius

for particles in an N-body realization of the system integrated with softening

parameter, ε = 2 kpc. The red solid curve shows the result when these same

initial conditions are integrated within the corresponding analytic Hernquist

potential. The results coincide except within about 1.5 softening lengths of

the centre. This demonstrates that caustic counting is very robust against

discreteness effects.
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Figure 17. Median caustic passage count against radius, as in Fig. 16, but

for different particle numbers and for a smaller softening (ε = 0.5 kpc).

The panels show results after 2.5 (top) and 5.0 (bottom) Gyr of evolution.

Clearly the caustic count goes up between the two times, so the curves are

higher in the lower panel. The radial dependence is very well represented

by equation (45). Increasing the number of particles by a factor of 32 has

very little effect on these curves, which also agree with those of Fig. 16. This

shows that the caustic count along an orbit is very insensitive to the N-body

parameters (particle number and softening) used to integrate the system.

mass, yet outside 4 kpc they agree very well both with each other

and with the more softened integration of Fig. 16. The reason for this

stability is that the caustic count is an integer which is augmented

only when the determinant of the distortion tensor changes sign. As

a result, it is much less sensitive to the exact values of the distortion

tensor elements than is the stream-density (which depends on the

value of the determinant).

We can estimate the median number of caustic passages for parti-

cles at radius r very simply asκt/T(r) where t is the age of the system,

T(r) the period of a circular orbit at radius r, and κ a proportionality

constant. Then T(r) = 2πr/Vc(r), where Vc(r ) = √
G M(r )/r is the

circular velocity at radius r. For a Hernquist sphere, the mass M(r)

within radius r is M(r) = Mr2/(r + a)2. Putting all this together we

get

c(r , t ; κ) = κ
t

T (r )
= κ

2π

t
√

G M/r

(r + a)
, (45)

where c(r, t; κ) is the predicted median caustic count at radius r. This

estimate works very well, with a best-fitting κ = 4.2. The deviation

at large radii where the caustic number is low can be accommodated

simply by adding a small constant offset, as indicated by the dashed

line in the figure. HW equation (37) already showed that caustics

occur in a spherical potential when pθ = 0 or pr = 0, thus at the

turning points in the θ and r coordinates. If pθ and pr go through

zero at different times we would expect four caustics per orbital

period. This is surprisingly close to the value of κ that we estimate

directly from the simulation, given that the particles seen at radius r
actually have a wide range of orbital periods, rather than all having

the circular orbit period T(r).

Rather than focusing on the median count of caustic passages as

a function of radius, one can examine the distribution of the number

of caustic passages, i.e. the number of particles that have passed

through a given number of caustics after some given time. Fig. 18

shows such distributions after 2.5, 5 and 10 Gyr for our highest

resolution (N = 2 048 000) simulation. With increasing time the

characteristic number of caustic passages increases and the number

of particles with a small number of caustic passages decreases.

We can make a simple analytic model for these distributions based

on equation (45). There are 4πρ(r)r2/m dr particles in the interval

(r, r + dr), where m is the mass of a simulation particle and ρ(r)

the (analytic) density profile of the Hernquist sphere. If we make

the approximation that all particles at radius r have a caustic count

equal to the median count predicted by equation (45), the number

of particles with caustic counts in the interval (c(r, t; κ), c(r, t; κ)

+ dc(r, t; κ)) will be the same as the number of particles in (r, r +
dr), so

f (c)dc ∼= 4πρ(r )
1

m
r 2dr (46)

10
1

10
2

10
3

10
4

10
5

10
6

 10  100  1000

N

caustics

2.5Gyr
5.0Gyr

10.0Gyr
2.5Gyr(ana)
5.0Gyr(ana)

10.0Gyr(ana)

Figure 18. The number of particles that have passed through a given number

of caustics is plotted against the number of caustics for our N = 2048 000

simulation after 2.5, 5 and 10 Gyr. The thin black lines are analytic estimates

based on equation (47).
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= 4π
M

2π
a

r (c, t ; κ)

[r (c, t ; κ) + a]3

1

m

∣∣∣∣dr (c, t ; κ)

dc

∣∣∣∣ dc, (47)

where r(c, t; κ) is the inverse function of c(r, t; κ). As Fig. 18 shows,

this formula represents the simulation results very well, suggesting

that the variation in caustic count with radius is more important

than the scatter in caustic count at given radius for determining the

overall shape of the count distribution.

From these first tests we conclude that our N-body implementa-

tion is working well, that caustic properties can be predicted very

robustly, at least when the caustics reflect large-scale structure in

the system, and that stream-densities can also be predicted reliably

provided care is taken to ensure that discreteness effects are under

control.

8 C O N C L U S I O N

Direct DM detection experiments operate on length-scales far be-

low the resolution of current structure formation simulations. The

fine-grained phase-space structure on these scales will determine the

signal they see. In addition, small-scale structure can substantially

enhance the annihilation signal that is the target of current indi-

rect detection experiments. A better understanding of such structure

within the current concordance �CDM cosmology is thus critical

for analysing and interpreting all current DM searches.

We propose a new route to tackle these issues. Rather than im-

proving simulations simply by increasing the number of particles,

we attach additional information to each particle, namely a phase-

space distortion tensor which allows us to follow the evolution of the

fine-grained phase-space distribution in the immediate neighbour-

hood of the particle. We introduce the GDE as a general tool for

calculating the evolution of this distortion along any particle trajec-

tory. The projection from phase-space to configuration-space yields

the density of the particular CDM stream that particle is embedded

in and can also identify when the particle passes through a caustic.

This technique makes the fine-grained phase-space structure ac-

cessible. It enables studies of the phase-space structure of gen-

eral non-integrable static potentials which reproduce all the results

previously obtained using frequency analysis methods, identifying

chaotic regions and finding substructure in regular regions in the

form of resonances. In addition, it can be used to quantify mix-

ing rates and to locate caustics. We demonstrate these capabilities

for the complex phase-space structure of the ellipsoidal logarith-

mic potential with a core. All relevant phase-space regions could

be identified by solving the GDE along the orbit. We have written

a code, DAMAFLOW, that allows us to carry out such stream-density

analyses for a wide variety of potentials in a very efficient way.

Stream-density evolution is very sensitive to the shape of the

underlying potential. We demonstrate this by comparing results for

a realistic CDM halo with radially varying shape to those for a

spherical halo with similar radial density profile. After 100 orbits

the predicted stream-densities in the inner regions differ by a factor

of 100. In general we expect the stream-densities to decrease as

(t/torbital)
−3 for regular orbits and even faster for chaotic orbits, rather

than as (t/torbital)
−2, the result found for orbits in a spherical potential.

Scaling to the Milky Way leads us to estimate that there should be

at least 105 streams passing through the Solar system.

The potentially revolutionary advantage of our approach, and our

main reason for pursuing it, is that it applies equally well to non-

symmetric, non-static situations of the kind that generically arise

in CDM cosmologies. Indeed, it can be implemented in a relatively

straightforward way in current state-of-the-art cosmological N-body

codes. We have carried out such an implementation in the GADGET

code and have presented some tests based on equilibrium Hernquist

models. The N-body implementation is able to conserve 6D phase-

space density to high accuracy along individual particle orbits. In

addition, it qualitatively reproduces the results found in the corre-

sponding smooth potential for the evolution of stream-density along

individual orbits, and it reproduces the statistical results found for

ensembles of orbits to impressive accuracy. The identification of

caustic passages is particularly robust, showing very little depen-

dence on N-body parameters such as particle number and softening.

Thus discreteness effects appear to be well under control, at least

for the large N systems studied here. The remarkably robust iden-

tification of caustic properties makes us optimistic that we will be

able to calculate annihilation boost factors due to caustics in fully

realistic �CDM dark haloes.

In future applications we will use these techniques to address

mixing and DM detection issues within fully general simulations of

the �CDM structure formation model.
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