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Intrinsic optical bistability of thin films of linear molecular aggregates:
The one-exciton approximation

Joost A. Klugkist, Victor A. Malyshev, and Jasper Knoestera�

Center for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands

�Received 8 May 2007; accepted 29 August 2007; published online 24 October 2007�

We perform a theoretical study of the nonlinear optical response of an ultrathin film consisting of
oriented linear aggregates. A single aggregate is described by a Frenkel exciton Hamiltonian with
uncorrelated on-site disorder. The exciton wave functions and energies are found exactly by
numerically diagonalizing the Hamiltonian. The principal restriction we impose is that only the
optical transitions between the ground state and optically dominant states of the one-exciton
manifold are considered, whereas transitions to other states, including those of higher exciton
manifolds, are neglected. The optical dynamics of the system is treated within the framework of
truncated optical Maxwell-Bloch equations, in which the electric polarization is calculated by using
a joint distribution of the transition frequency and the transition dipole moment of the optically
dominant states. This function contains all the statistical information about these two quantities that
govern the optical response and is obtained numerically by sampling many disorder realizations. We
derive a steady-state equation that establishes a relationship between the output and input intensities
of the electric field and show that within a certain range of the parameter space this equation exhibits
a three-valued solution for the output field. A time-domain analysis is employed to investigate the
stability of different branches of the three-valued solutions and to get insight into switching times.
We discuss the possibility to experimentally verify the bistable behavior. © 2007 American Institute
of Physics. �DOI: 10.1063/1.2789416�

I. INTRODUCTION

Optical circuits make use of light to process information.
They operate at the speed of light with almost no energy
dissipation, unlike electronic analogs. Optical fibers1,2 and
photonic crystal fibers3 have already found important appli-
cations in optical communications and optoelectronic de-
vices. Implementing ultrafast optical sources and all-optical
switches based on novel �quantum-confined� materials, such
as organic thin films and quantum dots,4 as well as silicon-
based structures,5 is now in progress. The realizability of a
single-photon optical switch based on warm rubidium vapor
has recently been demonstrated.6

A key element of any optical logic device is the optical
switch, which either passes or reflects the incoming light,
depending on its intensity. One possibility to design an opti-
cal switch is to utilize the phenomenon of optical bistability.
Since the theoretical prediction of this effect by McCall7 and
its experimental demonstration by Gibbs et al.8 for a cavity
filled with potassium atoms, an extensive literature, both the-
oretical and experimental, has developed on this topic �see
Refs. 9–11 for historical overviews and Ref. 12 for recent
developments on optical instability in wide aperture laser
systems�. A generic optical bistable element exhibits two
stable stationary transmission states for the same input inten-
sity, a property which, in principle, opens the door to appli-
cations such as all-optical switches, optical transistors, and
optical memories.

Nonlinearity and feedback are the two necessary ingre-
dients in order to enable optical bistable response of an op-
tical system. The former can be provided, e.g., by a saturable
medium, while a cavity �mirrors� can serve to build up a
feedback. This arrangement has been used in the first dem-
onstration of controlling light with light.8 Sometimes, how-
ever, the nonlinearity itself plays the role of the feedback.
Here, bistability is an intrinsic property of the material; no
external feedback, such as a cavity, is needed. Thus, mirror-
less �or cavityless� optical bistability can be realized, which
is even more advantageous from the viewpoint of designing
all-optical devices. During the past decade, this type of bi-
stability has been observed in a variety of inorganic materials
heavily doped with rare-earth ions.13,18–20 In Ref. 13, a popu-
lation dependent dipole-dipole interaction in ion pairs has
been put forward as a nonlinearity and feedback mechanism
to explain the effect. This interpretation has been debated in
a number of papers.14–20

Another class of materials, promising from the view-
point of all-optical manipulation of light, are molecular ag-
gregates and conjugated polymers. These systems commonly
exhibit narrow absorption bands and suppression of exciton-
phonon coupling, superradiance and giant optical nonlineari-
ties, fast collective optical response, and efficient energy or
charge transport �see for an overview Refs. 23–29�, which
are ingredients necessary to design optoelectronics or all-
optical devices. Molecular aggregates and conjugated poly-
mers have already been used to fabricate light emitting
diodes21 and organic solid-state lasers.22a�Electronic mail: J.Knoester@rug.nl
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One particularly interesting effect, which has already re-
ceived a considerable amount of theoretical discussion, but
still awaits experimental realization, is the mirrorless optical
bistability of a single molecular aggregate30 or an assembly
of molecular aggregates.31–33 The bistable behavior of a
single linear aggregate consists of a sudden switching of the
aggregate’s excited state population from a low level to a
higher one upon a small change of the input intensity around
a critical point. The effect originates from a dynamic reso-
nance frequency shift, which depends on the number of ex-
cited monomers in the aggregate. The origin of this shift lies
in the quasifermionic nature of Frenkel excitons in one
dimension.34–36 This nonlinearity plays the role of intrinsic
feedback, necessary for bistability to occur. There exists,
however, a restriction on the aggregate length: an aggregate
exhibits bistable behavior only if its coherence length is
larger than the emission wavelength, which makes experi-
mental realization problematic.

An assembly of molecular aggregates arranged in an ul-
trathin film geometry �with the film thickness small com-
pared to the emission wavelength� may display intrinsic op-
tical bistability governed by another mechanism, where the
density of molecules becomes the driving parameter. The
same mechanism holds for an ultrathin film of homoge-
neously broadened two-level systems.37 When the density in
the film is high enough, the on-resonance refractive index
can get sufficiently large to totally reflect an incoming field
of low intensity. Then the incoming field is almost com-
pletely compensated by a secondary field of opposite phase,
which is generated by the aggregate dipoles. The dipole-
induced field is bounded in magnitude, meaning that this
picture only holds if the incoming field intensity is smaller
than a certain value, determined by the density of aggregates.
When this value is exceeded, the aggregates become satu-
rated, which suppresses the dipole-induced field and abruptly
changes the �nonlinear� refractive index and transmittivity of
the film. The field produced by the aggregate dipoles plays
the role of intrinsic feedback. The output field depends non-
linearly on the input field of the film.

In Refs. 31–33 a thin film arrangement of oriented linear
J aggregates was considered, where the localization seg-
ments of a single disordered aggregate were modeled as in-
dependent homogeneous chains of fluctuating size. Each seg-
ment was considered as a few-level system, with an
individual ground state and one or two excited states corre-
sponding to the dominant optical states of the segment.
Within this framework, both the ground state to
one-exciton31 and one-to-two33 exciton transitions were
taken into account, and bistable behavior was found in a
certain region in the parameter space.

The approach used in Refs. 31 and 33 assumed full cor-
relation of fluctuations of the lowest exciton energy and the
transition dipole moment, taking both magnitudes as solely
depending on the segment size. The real picture, however, is
quite different.38,39 In practice the optical response of J ag-
gregates is strongly affected by disorder in the molecular
transition energies. The band edge of the exciton energy
spectrum of such a disordered aggregate is formed by states
that are localized on segments with small overlap. The low-

est state of a segment is optically dominant, whereas the
other states have a much smaller oscillator strength. The en-
ergy of the lowest state is not correlated with the size of the
segment; it is determined by uncorrelated well-like fluctua-
tions of the site potential.40 Therefore, the optically dominant
states of nonoverlapping segments can be arbitrarily close in
energy, having at the same time completely different transi-
tion dipoles.41 In other words, the transition dipoles and en-
ergies of the relevant states turn out to be uncorrelated rather
than correlated.

In this paper, we exploit the two-level model, imple-
mented in Refs. 31 and 32, to describe the film’s optical
response. However, unlike Refs. 31 and 32, we will account
properly for the statistical fluctuations of the transition dipole
moment and the transition energy, as they appear after diago-
nalizing the Frenkel exciton Hamiltonian with uncorrelated
on-site disorder. We calculate the joint probability distribu-
tion of these quantities and use it to compute the electric
polarization of the film, which features in the Maxwell equa-
tion for the field. The aggregate segment dynamics is de-
scribed within the 2�2-density matrix formalism. We derive
a novel steady-state equation for the output field intensity as
a function of the input intensity in terms of the joint prob-
ability distribution of the energy and the transition dipole
moment. On this basis, the bistability phase diagram of the
film is calculated. The critical parameter for bistability to
occur turns out to be different �larger� than that found in Ref.
31. By numerically solving the truncated Maxwell-Bloch
equations in the time domain, we study the stability of the
different branches of the three-valued solution for the output
field intensity. The calculation of an optical hysteresis loop
�at adiabatic up-and-down scan of the field� demonstrates
that only two of them are stable. A new element in the paper
is that we also analyze switching time between both stable
branches and show that it slows down dramatically close to
the switching point.

The outline of this paper is as follows. In Sec. II we
present the model and mathematical formalism. Section III
deals with the linear regime of the transmission. The steady-
state equation for the output intensity in the nonlinear regime
is derived in Sec. IV. In Sec. V, the stability of different
branches is considered, together with a study of the switch-
ing time. In Sec. VI we discuss the possibility to achieve
optical bistability using J aggregates of polymethine dyes.
Section VII summarizes the paper. Finally, in the Appendix
we address the effect of interference of the ground state to
one-exciton transitions, originating from the fact that exci-
tons are born from the same ground state, with all monomers
being unexcited.

II. MODEL AND FORMALISM

We aim to study the transmittivity of an assembly of
linear J aggregates arranged in a thin film geometry �with the
film thickness L small compared to the emission wavelength
�� inside the film�. All aggregates are aligned in one direc-
tion, parallel to the film plane. Such an arrangement can be
achieved, e.g., by spin coating.42 The limit of L��� allows
one to neglect the inhomogeneity of the field inside the film.
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The aggregates in the film are assumed to be decoupled from
each other. This finds its justification in the strongly aniso-
tropic nature of the system we have in mind. As we will see
later �Sec. VI�, films of interest for bistability should have a
molecular density of the order of 1019 cm−3. With a typical
separation of 1 nm between molecules within a single aggre-
gate, this implies that neighboring aggregates are separated
by 10 nm. Thus, the dominant dipole-dipole interactions be-
tween molecules of different chains are a factor of 1000
weaker than those within chains. As a consequence, we ex-
pect that the former interactions will merely result in small
shifts of resonance energies, away from the single-chain ex-
citon energies considered below.

On the other hand, the effect of interactions of the ag-
gregate molecules with the surrounding host molecules is
important because as a consequence of the usually inhomo-
geneous nature of the host media, they lead to disorder in the
molecular transition energies and in the molecular transfer
integrals, both of which give rise to localization of the exci-
ton states on segments of the aggregates. Finally, thermal
fluctuations in the environment result in intraband scattering
of the excitons that causes two effects: equilibration of the
exciton population and homogeneous broadening of the ex-
citon levels. In this paper, we neglect the former effect. This
finds its justification in many experimental studies, which
have shown that the fluorescence Stokes shift of J aggregates
of cyanine dyes usually is very small.48,49,51

A. A single aggregate

We model a single aggregate as a linear array of N two-
level monomers with parallel transition dipoles. In this paper,
we restrict ourselves to optical transitions between the
ground state an the one-exciton manifold, described by the
Frenkel exciton Hamiltonian,

H0 = �
n=1

N

�n�n��n� + �
n,m

N

Jnm�n��m� , �1�

where �n� denotes the state in which the nth site is excited
and all the other sites are in the ground state and �n is the
excitation energy of site n. The �n are taken at random and
uncorrelated from each other from a Gaussian distribution
with mean �0 �the excitation energy of an isolated monomer�
and standard deviation �. The transfer interactions Jnm are
considered to be of dipolar origin and nonfluctuating: Jnm=
−J / �n−m�3�Jnn	0�. Here the parameter J represents the
nearest-neighbor transfer interaction, which will be chosen
positive �as is appropriate for J aggregates�. The exciton en-
ergies �� ��=1, . . . ,N� and wave functions ���=�n=1

N ��n�n�
are obtained as eigenvalues and eigenvectors of the N�N
Hamilton matrix Hnm= �n �H �m�.

From the set of exciton states ��� we only take into ac-
count the optically dominant states which, for J	0, reside in
the neighborhood of the low-energy bare band edge at �0

=�0−2.404J. These states are located at different segments
of the aggregate, which overlap weakly and have a wave
function with no node. Therefore, they are called s-like
states. To find all such states, we use the selection rule pro-
posed in Ref. 39. It reads ��n��n���n 
 	C0, where we set

C0=0.8. This rule selects states with a wave function con-
sisting of mainly one peak. From now on, the state index �
will count only such s-like states. The number of these states
is roughly equal to N /N*, where N* is their typical localiza-
tion size. We assume that the vibration-induced coherence
length of excitons is much larger than the disorder-induced
localization length, a condition that can be fulfilled at low
temperature.43 In this limit, the exciton eigenstates ��� form a
good basis.

The above picture implies that an aggregate may be
modeled as a set of independent segments, each of which has
its own ground state �0� and an s-like excited state ���. The
optical transition between these states is governed by the

segment dipole operator d̂�=d0��0��� � + ����0 � �, where d0 is
the transition dipole moment of a monomer. The correspond-
ing transition dipole moment of a segment is calculated as
d�=d0�n��n	d0
�, where 
�=�n��n is the dimensionless
transition dipole moment.

The optical dynamics of a segment is described in terms
of the 2�2-density matrix ���� ,��0 ,��0

* ,�00�, which obeys
the Bloch-type equations �see the Appendix�,

�̇�� = − ����� + id�E��0� − ��0� , �2a�

�̇�0 = − �i�� + 
����0 − id�E���� − �00� , �2b�

�00 + ��� = 1. �2c�

Here we set the Planck constant �=1 and introduced the
following notations: ��=�0�
��2 is the radiative rate of the
exciton state � ��0 being the monomer radiative rate� and

�= 1

2��+��0 is the dephasing rate of the state �, which in-
cludes a pure dephasing term ��0. Finally, E is the total elec-
tric field inside the film �see below�. Owing to the disorder,
the transition energy ��, the relaxation constant 
�, and the
transition dipole moment 
� are stochastic variables, which
differ from segment to segment. Because of the fluctuations
in ��, 
�, and d�, the density matrix elements ���, ��0, and
�00 fluctuate as well.

B. The Maxwell equation

In this section, we specify the field E which enters Eqs.
�2a�–�2c�. It consists of two contributions: the incoming field
Ei and a part produced by the aggregate dipoles. The incom-
ing field is considered to be a plane wave Ei

=Ei�x , t�cos�kix−�it� with a frequency �i and an amplitude
Ei�x , t�, normally incident and polarized along the aggregate
transition dipoles. Under these conditions, all the vectorial
variables �transition dipole moments, incoming and outgoing
fields, and the field inside the film� can be considered as
scalars. The amplitude Ei�x , t� is assumed to vary slowly on
the scale of the optical period 2� /�i and wavelength �i

=2� /ki.
We assume without loss of generality that the film is

located in the ZY plane �x=0�. Then the total field at x=0
�inside the film� is given by44,45
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E = Ei −
2�L

c
Ṗ , �3�

where P is the electric polarization of the film �electric di-
pole moment per unit volume�, the dot denotes the time de-
rivative, and c stands for speed of light. The second term in
the right hand side of Eq. �3� represents the field produced by
the dipoles in the film, emitted perpendicular to the film in
both directions. The part propagating to the left is the re-

flected �plane wave� field, given at x=0 by Er=−�2�L /c�Ṗ,
while the part propagating to the right is the emitted �also
plane wave� field, which forms, together with the incident
field Ei, the transmitted signal, determined at x=0 by Eq. �3�.

The electric polarization P is calculated as follows. First,
we introduce the expectation value of the dipole operator of
an aggregate, d=d0���s
����0+�0��, where the summation
is performed only over the s-like states of the aggregate.
Furthermore, this value is averaged over a physical volume
V, containing M aggregates, which, in fact, is equivalent to
obtaining the average �d� over disorder realizations. After
that, P is obtained by multiplying �d� with the number den-
sity M /V of the aggregates. The final formula for the electric
polarization reads

P = d0n0
Ns

N
� d�d
Gs��,
�
��10��,
,t� + c.c.� . �4�

Here, n0=NM /V is the number density of monomers, Ns

= ����s1� a normalization constant �having the meaning of
the average number of s-like states in an aggregate�, and
�10�� ,
 , t� is the off-diagonal density matrix element, where
the indices 0 and 1 label the ground and the excited s state of
the segment, respectively. In our present formulation this el-
ement, as well as �00 and �11, is an ordinary �not stochastic�
function of � and 
; which formally follows from solving
Eqs. �2a�–�2c�. All stochastic aspects of the segment’s prop-
erties are taken into account through the function Gs�� ,
�,
which represents the joint probability distribution of the tran-
sition energy � and the dimensionless transition dipole mo-
ment 
 of the segment. The latter is defined as

Gs��,
� =
1

Ns
��

��s

��� − �����
 − 
��
 . �5�

It is worth to notice that at a given disorder strength �, Ns

scales linearly with the aggregate size N. Hence, the ratio
Ns /N in Eq. �4� is N independent. From our simulations we
found that Ns /N=0.074�� /J�0.8, which nicely agrees with the
disorder scaling of the typical localization size N*.39

After the Gs distribution is obtained by straightforward
sampling of a sufficient number of disorder realizations, one
can easily calculate the two important quantities: As���
=Ns

−1����s
�
2���−����=�d

2Gs�� ,
�, which represents

the absorption spectrum, not accounting for homogeneous
broadening �i.e., close to the zero-temperature spectrum�,
and Ms�
�=Ns

−1����s��
−
���=�d�Gs�� ,
�, which repre-
sents the probability density of the transition dipole moment.
As we are mostly interested in the limit of dominating ingo-
mogeneous broadening, we will refer from now on to As���

as to the absorption spectrum, assuming that its half width at
half maximum �HWHM� �* is larger than the homogenous
HWHM �resulting from 
��.

An example of the distributions Gs�� ,
�, As���, and
Ms�
� computed for an ensemble of chains with N=500 and
a disorder strength �=0.1J is depicted in Fig. 1 �panels �a�–
�c�, respectively�. Because Gs�� ,
�=Gs�� ,−
�, only 
	0 is
considered in the plots.

Note that in our model, the absorption spectrum As��� is
almost symmetric with respect to the peak position, except
the tails, which show a small asymmetry. It can be fitted well
by a Gaussian, unlike the case when all the exciton states are
taken into account. The latter gives rise to a Lorentzian high-
energy tail of As���, reproducing the asymmetric line shape
commonly seen in experiments. The shape of the Ms distri-
bution can also be fitted by a Gaussian, but with a lesser
accuracy than the absorption spectrum. The distribution
Gs�� ,
� exhibits interesting scaling properties with regard to
the disorder strength �. A detailed study will be presented
elsewhere.

C. Truncated Maxwell-Bloch equations

To proceed we seek the solution of Eqs. �2a�–�2c� in the
standard manner: we set �10=−�i /2�R exp�−i�it� and E
= �1/2�E exp�−i�it�+c.c., where the complex amplitudes R
and E vary slowly on the time scale 2� /�i, and we use the
rotating wave approximation. It is straightforward to arrive at
a set of truncated equations for the populations �11 of the
one-exciton states, and the amplitudes R of the off-diagonal
density matrix elements, and the field �=d0E �in frequency
units�,

FIG. 1. �a� The joint probability distribution Gs�� ,
� of the transition energy
� and dimensionless transition dipole moment 
 for s-like states on local-
ization segements, obtained for a disorder strength �=0.1J according to Eq.
�5�. We used chains of length N=500 with the monomer transition energy
�0=0. The sampling was performed over 300 000 disorder realizations. Con-
tour lines correspond to 10% of the peak value of the distribution. �b� The
absorption spectrum As���=�d

2Gs�� ,
�. �c� The distribution Ms�
�
=�d�Gs�� ,
� of the transition dipole moment 
. The solid lines represent
the results of calculations, whereas the open circles are fits by a Gaussian.
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�̇11 = − ��11 − 1
4
��R* + �*R� , �6a�

Ṙ = − �i�� − �0� + 
�R + 
���11 − �00� , �6b�

� = �i + 
R
Ns

N
� d�d
Gs��,
�
R , �6c�

where �−�0=�−�i is the frequency detuning between the
exciton transition and the incoming field, which is decom-
posed into two parts: �=�−�0 and �0=�i−�0 indicating,
respectively, the frequency detuning of the exciton state and
the incoming field from the exciton band-edge frequency
�0=�0−2.404J.

The constant 
R=2�n0d0
2kL is an important parameter of

the model.31–33 The physical meaning of 
R can be explored
by rewriting it in the form 
R= �3/2���0n0L�� /2�2, where
�0=4d0

2�3 / �3c3� is the monomer spontaneous emission rate
and n0L is the surface density of monomers. The quantity
n0L�� /2�2 can be interpreted as the number of monomers in
a �� /2�2 square that oscillate in phase. In other words, 
R

can be considered as the radiative rate of a single monomer,
�0, enhanced by the number of monomers within a �� /2�2

square.46 
R governs the Dicke super-radiance of a thin
film,44,45 as well as the collective radiative damping in the
linear regime �see the next section�. Therefore it is usually
referred to as the super-radiant constant.

The set of equations �Eqs. �6a�–�6c�� together with the
normalization condition �Eq. �2c�� and definition �5� form the
basis of our analysis. In the remainder of this paper, we will
be particularly interested in the dependence of the transmit-
ted field intensity ���2 on the input field intensity ��i�2 fol-
lowing from these equations.

III. LINEAR REGIME

In order to get insight into the effect and interplay of the
parameters that govern the bistability, we first consider the
linear regime of the system. We assume that a weak input
field �i=const is switched on at t=0; weakness implying
that the depletion of the ground state population can be ne-
glected. Thus, we set �00�t�=1 and �11�t�=0, which linear-
izes Eqs. �6a�–�6c�,

Ṙ = − �i�� − �0� + 
�R − 
� , �7a�

� = �i + 
R
NS

N
� d�d
Gs��,
�
R . �7b�

These equations can be solved easily in the Laplace domain.
The solution for the Laplace transform of the transmitted

field �̃ reads

�̃ = �1 + 
R
Ns

N
� d�d
Gs��,
�
2

�
1

p + �i�� − �0� + 
��−1

�̃i, �8�

where p denotes the Laplace parameter. To evaluate this ex-
pression, we neglect the 
 dependence of 
. Then the inte-

gral over 
 gives, by definition, the absorption spectrum
As���. The latter is normalized now to Fs /Ns, where Fs

= ��
�s
�
2� is the average total oscillator strength of the

s-like states per aggregate. To perform the integration over �
explicitly, we replace As��� by a Lorentzian centered at �*

and with a width �*,

As��� =
Fs

Ns

�*

�

1

��� − �*�2 + �*2�
�9�

�in all our numerical results, we do not invoke this approxi-
mation and keep the exact form of the Gs distribution, i.e., of
the absorption spectrum�. With this substitution, the result of
the integration over � reads

�̃ = �̃i −

̃R

p + i��* − �0� + 
 + �* + 
̃R

�̃i, �10�

where we introduced the renormalized super-radiant constant


̃R= �Fs /N�
R. As the total oscillator strength of s-like states
Fs�N, the ratio Fs /N�1. We also note that 
+�* denotes
the total �homogeneous plus inhomogeneous� dephasing rate.

Finally, by assuming �i=const, which corresponds to

�̃i=�i /s in the Laplace domain, we obtain the following
time-domain behavior of the transmitted field:

� =
i��* − �0� + 
 + �*

i��* − �0� + 
 + �* + 
̃R

�i

+

̃R

i��* − �0� + 
 + �* + 
̃R

�i � exp�− i��* − �0�t

− �
 + �* + 
̃R�t� . �11�

As is seen from this equation, the field in the film, �,
reaches its steady-state value �given by the first term in the

right-hand side� after a time 1/ �
+�*+ 
̃R�. If the dephasing

dominates the relaxation of the dipoles, i.e., if 
+�*�
̃R,
the steady-state limit of the opposing dipole field, given by

−�i
̃R / �i��*−�0�+
+�*+
R�, is small in magnitude com-
pared to the incoming field �i. As a consequence, the field
inside the film ���i. In this limit, one finds a high film
transmittivity.

When 
̃R�
+�* the super-radiant damping drives the
relaxation. Now the film dipoles, having sufficient time to
respond collectively, can produce an opposing field

−�i
̃R / �i��*−�0�+
+�*+ 
̃R� of magnitude ��i. This field
almost totally compensates the incoming field and results in
a low magnitude of the field inside the film, �� � ��i � i��*

−�0�+
+�* � / 
̃R��i and, consequently, in a low film
transmittivity. Switching to a high transmission state now
requires a field intensity �i that saturates the system. In this
case we can see optical bistable switching �see the next sec-
tion�.

From the above, it is clear that the interplay of super-
radiance and dephasing determines the linear transmittivity

of the film. Hence, the ratio 
̃R / �
+�*� is an important pa-
rameter of the model. In the theory of bistability it is often
referred to as the cooperative number.10,11
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IV. STEADY-STATE ANALYSIS

A. Bistability equation

In this section, we consider the steady-state regime,

when we set �i=const and Ṙ= �̇11=0. It is a matter of simple
algebra to derive the following equation for the output inten-
sity ���2:

�i
2 = ���2�1 + 
R

Ns

N
� d�d

2Gs��,
�

�

 − i�� − �0�

�� − �0�2 + 
2 + ���2
/�0
�2

, �12�

Formally, Eq. �12� differs from the one found
previously31 by the small factor Ns /N. This smallness, how-
ever, is compensated by the Ns scaling of the integral in Eq.
�12�: the latter is proportional to Fs /Ns�1 �see the preceding
section�. Thus, the actual numerical factor in Eq. �12� is on
the order of Fs /N. Numerically, we found that Fs /N depends
only weakly on the disorder strength �, lying within an in-
terval 0.75�Fs�0.83 when the disorder strength � ranges
from 0 to 0.5J. This means that the linear optical response in
a system with static disorder is dominated by the s-like
states, independent of the disorder. We stress that, unlike
previous works,31 Eq. �12� properly accounts for the joint
statistics of the transition energy and the transition dipole
moment via the Gs distribution.

B. Phase diagram

Numerical analysis shows that Eq. �12� can have three
real roots in a certain region of the parameter space �
R ,�*�.
In other words, our model can exhibit bistable behavior. In
all simulations, we used linear chains of N=500 sites and
�0=2�10−5J �appropriate for monomers of polymethine
dyes�. The dephasing constant ��0 was considered not
fluctuating43 and was set to ��0=500�0.

Several examples of the S-shaped input-output character-
istics calculated for the disorder degree �=0.1J are shown in
Fig. 2 for an input field that is resonant with the absorption
maximum. We use the dimensionless intensities Iin

= ��i�2 / ��0�*� and Iout= ���2 / ��0�*�, which is convenient be-
cause the HWHM of the absorption spectrum �* is an ex-
perimentally measurable quantity. Panel �a� shows how the
input-output characteristics change when 
R is below, at, or
above its critical value. Panel �b� shows the input-output
characteristics when the field is tuned through the resonance.

At a given disorder strength �, the minimal value of the
super-radiant constant 
R needed for optical bistability �the
critical value 
R

c � depends on the detuning �0. Figure 3�a�
explicitly demonstrates this effect: 
R

c is almost constant
within the absorption band, whereas it clearly increases out-
side it. Panel �b� shows the �0 dependence of the critical
switching intensity Iin

c of the incoming field at the bistability
threshold. This is the lowest intensity at which the film can
switch, when the field is tuned at �0 and when the super-
radiance constant 
R=
R

c ��0�. The data presented here are
obtained for the disorder strength �=0.1J.

As is seen from Fig. 3�a�, there exists a detuning �0
opt,

referred to as the optimal detuning, at which 
R
c takes its

minimal value. The detuning is optimal if the imaginary term
in Eq. �12� vanishes: this term opposes a three-valued solu-
tion for the output field. For a symmetric absorption band,
the optimal detuning corresponds to the incoming field being
resonant with the absorption maximum. In our case, owing to

FIG. 2. Examples of the input-output characteristics, demonstrating the oc-
currence of three-valued solutions to Eq. �12�. In simulations, chains of N
=500 sites and a disorder strength �=0.1J were used, corresponding to a
HWHM �*=0.0156J. �a� The results obtained for different super-radiant
constants 
R at the optimal detuning �0

opt=−2.42J, which corresponds to an
incoming field which is resonant with the absorption maximum. The open
circles, dotted, and solid curves represent, respectively, the data calculated
for 
R=16.61�* �the bistability threshold for �=0.1J�, 
R=11.52�* �below
the bistability threshold�, and 27.12�* �above the bistability threshold�. �b�
The results obtained for 
R=16.61�* and various detunings �0. The dotted
and solid curves represent, respectively, the data calculated for �0=�0

opt

−�* and �0
opt+�*. The open circles show the same data as in panel �a�.

FIG. 3. �a� Dependence of the critical superradiant constant 
R
c on the de-

tuning �0 �solid line� calculated for the disorder strength �=0.1J. The
dashed line shows the absorption spectrum �absorption only due to s states�.
The dotted horizontal line indicates 
R

c calculated for the optimal detuning
�0

opt=−2.42J. �b� Dependence of the switching intensity Iin
c on the detuning

�0 calculated at the corresponding bistability threshold, i.e., with 
R
c given

in the panel �a�.
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a small asymmetry of the absorption band �see Fig. 1�b��,
�0

opt=−2.42J is shifted slightly to the blue from the position
of the absorption peak.

We calculated 
R
c as a function of the HWHM �* for the

optimal detuning. The result is shown in Fig. 4. The plot
represents, in fact, the phase diagram of the optical response:
below the curve, the output-input characteristic of the film is
always single valued �stable�, while—depending on the
detuning—it can become three valued �bistable� above it.
The nonmonotonic behavior of 
R

c at small magnitudes of �*,
presented in the panel a, is simply explained by the fact that
the disorder-induced �inhomogeneous� broadening becomes
smaller than the homogeneous one �*�
*, where 
* is de-
fined as 
*=�d
d�
Gs�� ,
�. The ratio 
R /
* is now the
relevant parameter, governing the occurrence of bistability.
The panel �b� shows the �* dependence of 
R

c replotted in
units of 
*, which is monotonic. When �→0, the ratio

R

c /
*→9.64. This value is deduced from Eq. �12�. Indeed,
in the limit of �→0 we can move the Lorenztian outside the
integral and use �d�d

2Gs�� ,
�=Fs /Ns. The resulting
equation is the same as for a thin film of homogeneously
broadened two-level systems, only with the renormalized co-

operative number 
̃R /
*= �
R /
*��Fs /N�, where Fs /N
=0.83. Bearing in mind that the critical value of the ratio


̃R /
* is equal to 8,37 we recover 
R
c /
*=9.64.

C. Spectral distribution of the exciton population

More insight into what occurs at the switching threshold
is obtained by studying the population distribution,

r11��� =� d
Gs��,
��11��,
� , �13�

with �11 the steady-state solution of Eqs. �6a�–�6c�. This dis-
tribution enables us to visualize the relevant spectral range
around the switching point.

In Fig. 5, we plotted r11��� calculated for the optimal
detuning �0

opt and 
R=27.12�* �above the critical value 
R
c �.

Panels �a� and �b� show the results obtained for the incoming
field intensities Iin=�i

2 / ��0�*� below and above the switch-
ing threshold, respectively. Below the switching threshold,
only a relatively narrow spectral region around �0

opt acquires
population. This is because, in spite of the intensities of the
incoming field Iin=3.33,64.34, and 81.78 being far above the
saturation value, the intensity of the field inside the film,
Iout=�i

2 / ��0�*�=0.025, 0.5, and 1.5, is below or on the order
of it. For these intensities, the one-exciton approximation,
with only one s-like excited state considered in each local-
ization segment, is reasonable.

Figure 5�b� represents the population distribution r11���
after switching, when the field inside the film Iout exceeds the
switching threshold and becomes much larger than the satu-
ration magnitude. In this limit, we can replace �11�� ,
� in
Eq. �13� by 0.5 and get r11���=0.5�d
Gs�� ,
�=0.5Ds���,
where Ds��� is the density of s-like states. The latter is plot-
ted in Fig. 5�b� by the solid line and appears to be wider than
the absorption band. For such field intensities, it is likely that
the two-level model should be corrected by including the
one-to-two exciton transitions. This work is now in progress.

FIG. 4. �a� Phase diagram of the bistable optical response of a thin film in
the �
R ,�*� space obtained by solving Eq. �12� for �=�0

opt. The open circles
represent the numerical data points, whereas the solid line is a guide to the
eye. Above �below� the solid line the film behaves in a bistable �stable�
fashion. The solid line itself represents the �* dependence of the critical
super-radiant constant 
R

c , calculated for the optimal detuning �0
opt, i.e.,

when the incoming field is tuned to the absorption band maximum. This
gives the minimal 
R

c for each �*. �b� The same data points as in the panel
�a�, only replotted as a function of 
*, where 
* is the mean value of the
relaxation constant 
.

FIG. 5. Population distributions r11��� �solid curves�, calculated according
to Eq. �13� for �=0.1J and 
R=27.12�*, with the optimal detuning �0

opt=
−2.42J indicated by the vertical dashed line. Open circles show the absorp-
tion spectrum As���. Panel �a� represents r11��� below the upper switching
threshold. The plotted distributions were calculated for the input intensities
Iin= ��i�2 / ��0�*�=3.33,64.34, and 81.78 �from bottom to top�. Panel �b�
shows r11��� above the upper switching threshold. In the inset, the depen-
dence of the full width at half maximum �FWHM� of r11��� on Iin is plotted
in units of the FWHM of the absorption spectrum.
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V. TIME-DOMAIN ANALYSIS

A. Hysteresis loop

It is well known that the S-shaped output-input depen-
dence and, as a consequence, the existence of two switching
thresholds result in optical hysteresis.10,11 To investigate this,
we numerically integrated Eqs. �6a�–�6c� while slowly
sweeping up and down the input intensity Iin above the bi-
stability threshold �
R	
R

c �. The result for the transmitted
intensity Iout is shown in Fig. 6 by the solid curve with ar-
rows. The parameters used in the calculations are specified in
the figure caption. The input field intensity was swept from
zero to 110 and back to zero. The open circles indicate the
steady-state solution obtained by solving Eq. �12� for the
same set of parameters.

As can be seen from Fig. 6, the solid curve almost per-
fectly follows the lower and upper branches of the steady-
state three-valued solution, nicely demonstrating the optical
hysteresis. The intermediate branch is not revealed, which is
clear evidence of its instability. Note also that switching from
the lower branch to the upper one occurs for an input field
intensity larger than the critical value. This indicates that
when the input field intensity is only slightly above the
switching intensity, the response of the film slows down. A
much less pronounced but similar effect can be observed at
the lower switching threshold, where the field switches from
the upper branch to the lower one. This is consistent with our
study of the relaxation time presented below.

B. Switching time

Of great importance from a practical point of view is the
relaxation time � which is required for the output intensity to
approach its steady-state value after the input intensity has
changed. If this time is much shorter than the characteristic
time of changing the input intensity, then the output signal
will adiabatically follow it, remaining all the time close to
the steady-state level. Only in the limit of short �, an abrupt
switching from low to high transmittivity can be realized.
This especially concerns the region in the vicinity of the

switching thresholds �see Fig. 6�. In other words, the relax-
ation time � limits the usage of the optical bistable element
as an instantaneous switcher.

Motivated by the above observations, we performed a
study of the relaxation time �. Figure 7 shows an example of
how the transmitted field intensity approaches its stationary
value when an input field intensity with a value of Iin=150 is
instantaneously switched on at t=0. This field is above the
upper switching threshold Iin

c =82.16. Calculations were car-
ried out for the set of parameters of Fig. 6. As is observed,
for the set of parameters used, the output intensity stays low
during a waiting time of about 20/�*, before it rapidly �on a
time scale much shorter than 20/�*� increases to its steady-
state value. This behavior allows one to define � as the time
which the output intensity takes to reach its first peak
�17.3/�* in the current example�.

Using the above definition, we calculated the relaxation
time � as a function of the excess input intensity Iin− Iin

c at the
upper switching threshold. The results are plotted in Fig. 8.
As is seen, � drastically increases when Iin gets closer to Iin

c .
The numerical data �open circles� are well fitted by the for-
mula

� = 870�Iin − Iin
c �−0.83, �14�

shown by the solid curve.

FIG. 6. An example of the stable optical hysteresis loop of the transmitted
intensity Iout= ���2 / ��0�*� �the solid curve with arrows� obtained by numeri-
cally solving Eqs. �6a�–�6c� for a linear sweeping up and down of the input
field intensity Iin= ��i�2 / ��0�*�. The sweeping time is 3000/�*. The open
circles represent the steady-state solution, Eq. �12�. The calculations were
performed for the following set of parameters: 
2=500�0, �=0.1J, 
R

=27.12�*, and �0=�0
opt=−2.42J.

FIG. 7. Kinetics of the transmitted field intensity Iout= ���2 / ��0�*� ap-
proaching its stationary value �dashed line� after the incident field with
intensity Iin= ��i�2 / ��0�*�=150 is turned on abruptly at t=0. The value Iin

=150 exceeds the upper switching threshold Iin
c =82.16. The other param-

eters were chosen as in Fig. 6.

FIG. 8. Relaxation time � as a function of the excess input intensity Iin

− Iin
c at the upper switching threshold �indicated by the vertical dotted line�.

� was calculated by turning on abruptly the incoming field at t=0 and
waiting until the transmitted field intensity Iout approaches its steady-state
value �for more details, see the text�. The open circles show the numerical
results, while the solid line represents a best power-law fit given by Eq. �14�.
The calculations were performed for the set of parameters of Fig. 6.
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VI. DISCUSSION OF DRIVING PARAMETERS

To get insight into the possibility to realize optical
bistable behavior for a film of J aggregates, we consider the
typical parameters for this type of systems. First, we estimate
the super-radiant constant 
R= �3/8���0n0�2L, considering
the low-temperature experimental data of J aggregates of
polymethine dyes. For these species, typically, �0

�1/3 ns−1 and ��600 nm.47–52 With this in mind and
choosing L=� /2� �or kL=1�, we obtain the following esti-
mate: 
R�10−18n0 cm3 ps−1. This value for L is easily acces-
sible with the spin-coating method42 and guarantees the ap-
plicability of the mean-field approach for the description of
the thin film optical response.32 The typical width of the J
band of polymethine dyes is on the order of several tens of
cm−1 or approximately 1 ps−1 �in frequency units�.47–52 Thus,
for the set of parameters we chose, the number density of
molecules n0 must be on the order of 1019 cm−3 to get the
ratio 
R /�* required for bistability to occur. This concentra-
tion is usually achieved in spin-coated films.

Another option to adjust the parameters favoring bista-
bility is to consider J aggregates composed of monomers
with higher radiative constant �0 and a larger emission wave-
length �. From this point of view, J aggregates of squarylium
dyes may be suitable candidates.53–55 This type of aggre-
gates, spin coated on a substrate, shows a sharp absorption
peak at ��800 nm with HWHM=20 nm at room tempera-
ture and a fast ��100 fs� optical response53,55 combined with
a giant cubic succeptibility,54 both attributed to the excitonic
nature of the optical excitations. The monomer decay time
has been reported to be �100 ps,53 although no information
about the quantum yield has been presented. If we assume
that this time is of radiative nature, the super-radiant constant

R can be adjusted to values above the bistability threshold
even for smaller concentration of monomers in the film. On
the other hand, for larger �0 also the intensity required for
switching increases, which is not desired because of the lim-
ited photostability of most J aggregates.

VII. SUMMARY AND CONCLUDING REMARKS

We theoretically studied the optical response of an ultra-
thin film of oriented J aggregates, with the goal to examine
the possibility of bistable behavior of the system. The stan-
dard Frenkel exciton model was used for a single aggregate:
an open linear chain of monomers coupled by delocalizing
dipole-dipole excitation transfer interactions, in combination
with uncorrelated on-site disorder, which tends to localize
the exciton states. We considered a single aggregate as a
mesoensemble of two-level systems, each one composed of
an s-like localized one-exciton state and its own ground
state. The one-to-two exciton transitions have been ne-
glected.

As a tool to describe the transmission properties of the
film, we employed the optical Maxwell-Bloch equations
adapted for a thin film. The electric polarization of the film
was calculated by making use of a joint probability distribu-
tion of exciton energies and transition dipole moments, prop-
erly taking into account the correlation properties of these
two stochastic variables. The joint distribution function was

calculated by numerically diagonalizing the Frenkel Hamil-
tonian and averaging over many disorder realizations.

We derived a novel steady-state equation for the trans-
mitted signal in terms of the joint distribution function and
demonstrated that three-valued solutions to this equation ex-
ist in a certain domain of the parameter space �
R ,�*�, where

R is the super-radiant constant and �* is the half width at
half maximum of the absorption band. Our approach allowed
us to generalize previous results31,32 to correctly account for
the stochastic nature of the exciton energy and transition di-
pole moment. Using the new steady-state equation, we have
found that the critical value of the so-called cooperative
number 
R /�*,10 which governs the occurrence of bistability
of the film, is higher than obtained before.31 Moreover, in
contrast to Refs. 31 and 32, we have analyzed the switching
time, which show a dramatic increase for input intensities
close to the switching point. We also found that the coopera-
tive number 
R /�* increases with �*, but only slightly, vary-
ing between 12 and approximately 25 within a wide range of
�*. Estimating the parameters of our model for aggregates of
polymethine dyes shows that these are a promising candidate
to measure the effect.

Finally, we note that also the microcavity arrangement of
molecular aggregates56–60 is of interest for applications. Dur-
ing the last decade, organic microcavities have received a
great deal of attention because of the strong coupling of the
excitons to cavity photons, leading to giant polariton splitting
in these devices.61 The recent observation of optical bistabil-
ity in planar inorganic microcavities62 in the strong coupling
regime suggests that organic microcavities can exhibit a
similar behavior.
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APPENDIX A: ESTIMATES OF QUANTUM
INTERFERENCE EFFECTS

Our approach to the optical dynamics of a single aggre-
gate was based on the representation of the aggregate as a
mesoensemble of two-level systems with their own ground
states. The model has its origin in the fact that the optically
dominant exciton states are localized on different segments
and overlap weakly. In reality, however, the ground state of
an aggregate �all the monomers are in their ground states� is
common for all �multi-� exciton states. This results in cross
interference of field induced coherences as well as spontane-
ous transitions. Below, we provide estimates of these addi-
tional terms and show that in the limit of dominant inhomo-
geneous broadening of the J band, the cross-interference
effects can be neglected. In our estimates, we will only con-
sider ground state–to–one-exciton transitions.

We start with the equation for the density operator �,
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�̇ = −
i

�
�H0 − d̂E,�� − Rbath� − Rrad� , �A1�

where H0 is the exciton Hamiltonian specified in Eq. �1� and

the term −d̂E describes the interaction of the aggregate with
the field E inside the film. Rbath represents the dephasing
operator, acting as follows:

���Rbath����� = �1 − ��������0 + ���0�����,

�A2�
���Rbath��0� = ��0��0.

Here, ��0 is the �pure� dephasing rate of the exciton transi-
tion ���→ �0�, excluding radiative decay. These constants will
be considered on a phenomenological basis.

The operator Rrad governs the exciton radiative relax-
ation. It is given by �see, e.g., Ref. 63�

Rrad� =
1

2�
���

������������� + �������� − 2�0����������0�� ,

�A3�

where ���=�0��n��n�2 is the radiative decay rate of the
population of the �th state. Furthermore, ����=���� ������
describes the quantum interference in the radiative relaxation
of the �th and ��th states, resulting from the cross coupling
of different decay channels. It reflects the fact that a state �,
when decaying, drives another state �� and vice versa. If the
transition dipoles of all the states are parallel, ����
= ����������

1/2.
Using Eqs. �A2� and �A3� in Eq. �A1�, we arrive at the

following set of equations for the density matrix elements:

�̇�� = − ������ −
1

2 �
����

��������� + ����� + id�E���0
* − ��0� ,

�A4a�

�̇��� = − �i���� + 
�������� −
1

2 �
����

���������

−
1

2 �
�����

��������� + i�d�E���0
* − ��0d��E�,

� � ��, �A4b�

�̇�0 = − �i�� + 
�0���0 −
1

2 �
����

�������0 − i �
����

����d��E

− id�E���� − �00� , �A4c�

�00 + �
�

��� = 1. �A4d�

Here we introduced the notations ����=��−���, 
���= 1
2 ����

+������+��0+���0, and 
�0= 1
2���+��0.

Equations �A4a�–�A4d� differ from those used in the
two-level model, Eq. �2�, by several terms. Because all the
exciton states have the same ground state, which is reflected
in the normalization condition �A4d�, the low-frequency co-
herences are now involved in the aggregate optical dynam-

ics. They are coupled to the populations �Eq. �A4a�� as well
as to the high-frequency �optical� coherences ��0 �Eqs. �A4b�
and �A4c�� via both the cross coupling of the transitions and
the field. In addition, the cross coupling also couples the
optical coherences ��0 �Eq. �A4c��.

In quantum optics of atomic gases, the cross coupling of
transitions has been found to be the origin of many fascinat-
ing effects, such as narrow resonances, transparency, and
gain without population inversion �see, for an overview,
Refs. 64–67�, as well as bistability at a low threshold.68–70

All these effects, however, require specific conditions: iden-
tical magnitudes of all the ��� and the absence of dephasing
and inhomogeneous broadening. Any deviation from these
requirements washes out those effects. In particular, this hap-
pens for J aggregates; below we argue why all the cross
terms in Eqs. �A4a�–�A4d� can be neglected for these sys-
tems.

The contribution of the cross terms to a given state �
always comes in the form of a summation over all other
states ��. The optical dynamics of the system is determined
by only several dominant states. If N* is the typical localiza-
tion length, there will be N /N* of such states. They are
spread over the width of the absorption band, given by 2�*.
Therefore we can estimate the sum under consideration by
��* /2�*��N /N*���0N /2�*, where �*=�0N* is the typical
radiative rate of optically dominant states. The materials we
consider typically have �0�108 s−1�10−2 cm−1 and 2�* on
the order of several tens of cm−1. Then, for an aggregate of
length N=500 the ratio �0N /2�*�0.1. On this basis, we
neglect all the cross-coupling terms in Eqs. �A4a�–�A4d� and
replace the normalization condition �Eq. �A4d�� for the
whole aggregate by the one for a single segment, �00+���

=1.
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