

University of Groningen

Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis

Smits, Wiep Klaas; Bongiorni, Cristina; Veening, Jan; Hamoen, Leendert W.; Kuipers, Oscar; Perego, Marta

Published in: Molecular Microbiology

DOI: 10.1111/j.1365-2958.2007.05776.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Smits, W. K., Bongiorni, C., Veening, J-W., Hamoen, L. W., Kuipers, O. P., & Perego, M. (2007). Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Molecular Microbiology, 65(1), 103-120. DOI: 10.1111/j.1365-2958.2007.05776.x

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in *Bacillus subtilis*

Wiep Klaas Smits, Cristina Bongiorni, Jan-Willem Veening, Leendert W. Hamoen, Oscar P. Kuipers and Marta Perego

Legends to Supplementary Figures

Fig. S1: ComK and RghR can bind simultaneously to the promoter of *rapH*. A. Sequence of the upstream region of *rapH* and the start codon (white box, start) are derived from SubtiList (http://genolist.pasteur.fr/SubtiList/). Putative binding sites for RghR (RghR, in yellow), as well as the core promoter elements (-35 and -10, in gray) and transcriptional start site (+1), were determined by Hayashi and coworkers (Hayashi et al., 2006). The putative ComK binding site (K), composed of two AT boxes (AT1 and AT2), is postulated on the basis of the published consensus sequence (Hamoen *et al.*, 1998) and the position compared to the core promoter elements (Hamoen *et al.*, 2002). It has to be noted that another ComK binding-site can be identified that overlaps the promoter elements (Berka *et al.*, 2002;Hamoen *et al.*, 2002). B. Electrophoretic mobility shift assays of a [γ -³²P]-ATP labeled *rapH* promoter fragment in the presence of purified ComK and/or RghR. Grey bars indicate shifted complexes of DNA and protein, small triangles indicate super-shifted complexes. A black bar indicates free probe. X marks the lane to which no protein was added. ComK was added to a final concentration of 300 nM.

Fig. S2: Analysis of the genome-wide transcriptional effect of RapH/PhrH overexpression in strains isogenic with 168 (*trpC2*) (Kunst *et al.*, 1997). Genes significantly affected in a CyberT analysis (see Experimental procedures) were analyzed using FIVA software (Blom *et al.*, 2007)
A. Effect of RapH/PhrH overproduction in Spizizen minimal medium. B. Effect of RapH/PhrH overproduction in Schaeffer's sporulation medium.

Fig. S3: Time course analysis of *abrB-gfp* reporter strains grown in MMF medium supplemented with 1% xylose as indicated in Experimental procedures. **A.** Wild type strain **B.** Strain XH, ectopically overexpressing RapH/PhrH from a xylose inducible promoter. Strains were grown in the presence (grey) or absence (red) of xylose. Colors are darker at later timepoints. Note the down-regulation of *abrB* transcription, as indicated by lower levels of fluorescence, in wild type or uninduced XH strains.

Fig. S4: *RapH interacts with ComA and inhibits its DNA-binding activity.* **A.** RapA does not interact with ComA in the native gel binding assay. Each protein was at 12μ M final concentration. **B.** RapA does not inhibit the DNA binding activity of ComA. X: labeled probe only; RapA (lane 2: 5 μ M, triangle: 5, 10 and 20 μ M); ComA (5 μ M). **C.** RapH does not interact with DegU in the native gel binding assay. H: RapH; U: DegU; each protein was at 10μ M final concentration. Native gel analysis was carried out on 10% native Tris-Tricine gels as described in Bongiorni *et al.* (Bongiorni *et al.*, 2005).

Fig. S5: Time course of β -galactosidase activity of a *srfA-lacZ* (**A**) and a *rapA-lacZ* (**B**) reporter constructs in the following background strains: wild type (-**I**-); *spo0A* (-**O**-); *spo0AabrB* (-**O**-). Strains were all isogenic to JH642 (*trpC2*, *phe*-1). Cells were grown in Schaeffer's sporulation medium. Samples were taken at hourly or half hourly intervals to represent the time of transition from exponential growth to stationary phase.

References

Berka,R.M., Hahn,J., Albano,M., Draskovic,I., Persuh,M., Cui,X. *et al.* (2002) Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. *Mol Microbiol* **43**: 1331-1345.

Blom, E.-J., Bosman, D.W.J., van Hijum, S.A.F.T., Breitling, R., Tijsma, L., Silvis, R. *et al.* (2007) FIVA: Functional Information Viewer and Analyzer - extracting biological knowledge from transcriptome data of prokaryotes. *Bioinformatics. Epub ahead of print.*

Bongiorni, C., Ishikawa, S., Stephenson, S., Ogasawara, N., and Perego, M. (2005) Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. *J Bacteriol* **187**: 4353-4361.

Hamoen,L.W., Smits,W.K., de Jong,A., Holsappel,S., and Kuipers,O.P. (2002) Improving the predictive value of the competence transcription factor (ComK) binding site in *Bacillus subtilis* using a genomic approach. *Nucleic Acids Res* **30**: 5517-5528.

Hamoen,L.W., Van-Werkhoven,A.F., Bijlsma,J.J., Dubnau,D., and Venema,G. (1998) The competence transcription factor of *Bacillus subtilis* recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. *Genes Dev* **12**: 1539-1550.

Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V. *et al.* (1997) The complete genome sequence of the gram-positive bacterium *Bacillus subtilis*. *Nature* **390**: 249-256.

Figure S1 Smits et al.

B

Figure S2 Smits et al

significant after Bonferroni correction significant after Benjamini / Yekutieli correction significant after Bonferroni correction for all categories

more significant

significant after Benjamini / HochBerg correction
 significant after Bonferroni Step-down correction
 significant after Bonferroni correction
 osignificant after Benjamini / Yekutieli correction
 significant after Bonferroni correction for all categories

more significant

Figure S3 Smits *et al*

Fig. S4 Smits et al.

U H U H

С

Figure S5 Smits et al.

Table S1: B. subtilis	strains used in this study		
Otras in	Description		Defenses
Strain	Description	Relevant Genotype	Reference
168	parental	trpC2	(Kunst <i>et al.</i> , 1997)
yvaN	deletion of yvaN	yvaN::tet	This study
Htet	deletion of rapH and phrH	rapH-phrH::tet	This study
HIC	pICFP- <i>rapH</i> →x ³ 168	PrapH-icfp, cat	This study
XH(Cm)	pX <i>rapHphrH →</i> xx ^₄ 168	amyE, rapH ^{n/} -phrH ⁿ , cat	This study
XH(Em)	pCm::Em →xx X <i>rapH</i> (Cm)	amyE, rapH ⁿ -phrH ⁿ , erm	This study
GAY(Cm)	pSG-comGAYFP →x 168	PcomGA-yfp, cat	This study
GAC(Cm)	pSG-comGACFP →x 168	PcomGA-cfp, cat	This study
GAY(Em)	pCm::Em →xx GAY(Cm)	PcomGA-yfp, erm	This study
GAC(Em)	pCm::Em →xx GAC(Cm)	PcomGA-cfp, erm	This study
abrB-gfp	pGFP-abrB →x 168	PabrB-gfp, cat	(Veening et al., 2006a)
abrB-gfp XH	$XH(Em) \rightarrow^{5} abrB-gfp$	PabrB-gfp, amyE, rapH ^{hi} -phrH ^{hi} , cat, erm	This study
iyfp-IIA	pIYFP-spollA →x 168	PspollA-iyfp, cat	(Veening et al., 2004)
IIA-IY(Sp)	pCm::Sp →xx iyfp-IIA	PspollA-iyfp, spc	This study
GAC IIA-IY	$GAC \rightarrow IIA-IY (Sp)$	PcomGA-cfp, PspolIA-iyfp, cat, spc	This study
		PcomGA-cfp, PspolIA-iyfp,rapH-phrH::tet, cat,	
GAC IIA-IY Htet	Htet → GAC IIA-IY	spc	This study
IIA-gfp	pGFP- <i>spolIA</i> →x 168	PspoIIA-gfp, cat	(Veening <i>et al.</i> , 2005)
IIA-gfp XH	$XH(Em) \rightarrow IIA$ -gfp	PspoIIA-gfp, amyE, rapH ^{hi} -phrH ^{hi} , cat, erm	This study
srfA-gfp	pGFP-srfA → x168	PsrfA-gfp, cat	This study
			This study; spo0A from
			SWV215 (Xu and
srfA-gfp 0A	SWV215 → srfA-gfp	PsrfA-gfp, spo0A::kan, cat	Strauch, 1996)
			This study; abrB (Smits
srfA-gfp abrB	$\Delta abrB \rightarrow srfA-gfp$	PsrfA-gfp, abrB::erm, cat	<i>et al.</i> , 2005)
			This study; Pspac-abrB
			from BD2238 (Hahn et
srfA-gfp Psp-abrB	Pspac-abrB →xx srfA-gfp	PsrfA-gfp, Pspac-abrB, amyE, cat, spc	<i>al.</i> , 1995)
srfA-gfp XH	$XH(Em) \rightarrow srfA-gfp$	PsrfA-gfp, amyE, rapH"-phrH", cat, erm	This study
GA-gfp	pSG- <i>comGA</i> →x 168	PcomGA-gfp, cat	(Veening <i>et al.</i> , 2006b)
			This study; pGA-GFP
GA-gfp(Km)	pGA-GFP →x 168	PcomGA-gfp, kan	(Smits <i>et al.</i> , 2005)

			This study; comK from BV2004 {Hamoen,
GA-gfp comK	BV2004 → GA-gfp	PcomGA-gfp, comK::spc, cat	2002 6 /id}
GA-gfp Htet	Htet \rightarrow GA-gfp	PcomGA-gfp, rapH-phrH::tet, cat	This study
GA-gfp(Km) XH(Cm)	$XH(Cm) \rightarrow GA-gfp(Km)$	PcomGA-gfp, amyE, rapH ⁿ -phrH ⁿ , cat, kan	This study
GA-gfp XH(Em)	$XH(Em) \rightarrow GA$ -gfp	PcomGA-gfp, amyE, rapH ^{hi} -phrH ^{hi} , cat, erm	This study
GAY HIC	HIC \rightarrow GAY(Em)	PcomGA-yfp, PrapH-icfp, erm, cat	This study
GAY HIC Phs-comK	BD3836 → GAY HIC	PcomGA-yfp, PrapH-icfp, amyE, Phyperspank- comK, erm, cat, spc	This study; <i>Phs-comK</i> from BD3836 (Maamar and Dubnau, 2005)
GAY HIC comK	8G32 → GAY HIC	PcomGA-yfp, PrapH-icfp, comK::kan, erm, cat	This study
GAY HIC yvaN	$yvaN \rightarrow GAY HIC$	PcomGA-vfp, PrapH-icfp, vvaN::tet, erm, cat	This study
GAY HIC yvaN comK	$GAY HIC \ comK \rightarrow GAY HIC \ yvaN$	PcomGA-yfp, PrapH-icfp, yvaN::tet, comK::kan, erm, cat	This study
JH642 ²	parental	trpC2, phe-1	
JH11028	<i>rapA-lacZ</i> in <i>amyE</i> in <i>spo0A/abrB</i> double mutant	rapA-lacZ, spo0A12, abrB::cat, kan	(Perego <i>et al.</i> , 1988;Stephenson <i>et al.</i> , 2003)
JH12981	rapA-lacZ in amyE	rapA-lacZ, amyE, kan	(Stephenson <i>et al.,</i> 2003)
JH11432	abrB-lacZ in amyE	abrB-lacZ, amyE, spc	(Strauch et al., 1989)
JH11205	comG-lacZ in amyE	comG-lacZ, amyE, kan	This study
JH11694	srfA-lacZ in amyE	srfA-lacZ, amyE, kan	This study
JH12546	spo0A abrB double mutant	spo0A12, abrB::Tn917erm	(Perego <i>et al.</i> , 1988)
JH27087	pBS19 → JH11205	comG-lacZ, amyE, kan, cat	This study
JH27088	pBS19-RapH2 → JH11205	comG-lacZ, amyE, kan, cat, rapH ^{hi 7}	This study
JH27089	pBS19-RapH3 → JH11205	comG-lacZ, amyE, kan, cat, rapH ^{hi} , phrH ^{hi}	This study
JH27090	pBS19 → JH12981	rapA-lacZ, amyE, kan, cat	This study
JH27091	pBS19-RapH2 → JH12981	rapA-lacZ, amyE, kan, cat, rapH ^{hi}	This study
JH27092	pBS19-RapH3 → JH12981	rapA-lacZ, amyE, kan,, cat, rapH ^{hi} , phrH ^{hi}	This study
JH27093	pBS19 → JH11432	abrB-lacZ, amyE, spc, cat	This study
JH27094	pBS19-RapH2 → JH11432	abrB-lacZ, amyE, spc, cat, rapH ^{hi}	This study
JH27095	pBS19-RapH3 → JH11432	abrB-lacZ, amyE, spc, cat, rapH ^{hi} , phrH ^{hi}	This study
JH19207	pHT315S → JH11028	rapA-lacZ, amyE, kan, spo0A12, abrB::cat, erm	This study

		rapA-lacZ, amyE, kan, spo0A12, abrB::cat, erm,	This study
JH19208	pH1315S-RapH2 → JH11028	rapH"	I his study
		rapA-lacZ, spo0A12, abrB::cat, erm, amyE, kan,	
JH19209	pHT315S-RapH3 → JH11028	rapH ^{hi} -phrH ^{hi}	This study
JH27096	pJM115-RapHlac → JH642	rapH-lacZ, amyE, kan	This study
			This study; QB4721
			from Msadek et al
JH27097	QB4721 → JH27096	rapH-lacZ, amyE, kan, comK::cat	(Msadek <i>et al.</i> , 1994)
		srfA-lacZ, spo0A12, abrB::Tn917erm, amyE,	
JH19239	JH11694 → JH12546	kan	This study
		srfA-lacZ, spo0A12, abrB::Tn917erm, amyE,	
JH27117	Htet → JH19239	kan, rapH::tet	This study

1) Following strains are all derivatives of strain 168 and therefore carry the *trpC2* auxotrophic marker.

2) Following strains are all derivatives of JH642 and therefore carry the *trpC2*, *phe-1* auxotrophic markers.

3) \rightarrow x: indicates construction by transformation with plasmid DNA followed by single cross over homologous recombination.

4) $\rightarrow xx$: indicates construction by transformation with plasmid DNA followed by double cross over integration.

5) \rightarrow : indicates construction by transformation using chromosomal DNA or a replicative plasmid as donor.

6) Antibiotic resistance genes: *cat*=chloramphenicol; *erm*=erythromycin; *kan*=kanamycin; *spc*=spectinomycin, *tet*=tetracyclin.

7) ^{hi} indicates overproduction due to presence of multiple copies of the locus on a replicative plasmid (pBS19 derivatives), or overexpression by xylose induction (pX derivatives) or *spac* promoter constitutive transcription (pHT315S derivatives).

References

Bongiorni,C., Ishikawa,S., Stephenson,S., Ogasawara,N., and Perego,M. (2005) Synergistic regulation of competence development in *Bacillus subtilis* by two Rap-Phr systems. *J Bacteriol* **187**: 4353-4361.

Hahn, J., Roggiani, M., and Dubnau, D. (1995) The major role of Spo0A in genetic competence is to downregulate *abrB*, an essential competence gene. *J Bacteriol* **177**: 3601-3605.

Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V. *et al.* (1997) The complete genome sequence of the Gram-positive bacterium *Bacillus subtilis*. *Nature* **390**: 249-256.

Maamar,H., and Dubnau,D. (2005) Bistability in the *Bacillus subtilis* K-state (competence) system requires a positive feedback loop. *Mol Microbiol* **56**: 615-624.

Msadek,T., Kunst,F., and Rapoport,G. (1994) MecB of *Bacillus subtilis*, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. *Proc Natl Acad Sci USA* **91**: 5788-5792.

Perego, M., Spiegelman, G.B., and Hoch, J.A. (1988) Structure of the gene for the transition state regulator, *abrB*: regulator synthesis is controlled by the *spo0A* sporulation gene in *Bacillus subtilis*. *Mol Microbiol* **2**: 689-699.

Smits,W.K., Eschevins,C.C., Susanna,K.A., Bron,S., Kuipers,O.P., and Hamoen,L.W. (2005) Stripping *Bacillus*: ComK auto-stimulation is responsible for the bistable response in competence development. *Mol Microbiol* **56**: 604-614.

Stephenson, S., Mueller, C., Jiang, M., and Perego, M. (2003) Molecular analysis of Phr peptide processing in *Bacillus subtilis*. *J Bacteriol* **185**: 4861-4871.

Strauch,M.A., Perego,M., Burbulys,D., and Hoch,J.A. (1989) The transition state transcription regulator AbrB of *Bacillus subtilis* is autoregulated during vegetative growth. *Mol Microbiol* **3**: 1203-1209.

Veening, J.W., Hamoen, L.W., and Kuipers, O.P. (2005) Phosphatases modulate the bistable sporulation gene expression pattern in *Bacillus subtilis*. *Mol Microbiol* **56**: 1481-1494.

Veening, J.W., Kuipers, O.P., Brul, S., Hellingwerf, K.J., and Kort, R. (2006a) Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of *Bacillus subtilis*. *J Bacteriol* **188**: 3099-3109.

Veening, J.W., Smits, W.K., Hamoen, L.W., Jongbloed, J.D., and Kuipers, O.P. (2004) Visualization of differential gene expression by improved cyan fluorescent protein and yellow fluorescent protein production in *Bacillus subtilis*. *Appl Environ Microbiol* **70**: 6809-6815.

Veening, J.W., Smits, W.K., Hamoen, L.W., and Kuipers, O.P. (2006b) Single cell analysis of gene expression patterns of competence development and initiation of sporulation in *Bacillus subtilis* grown on chemically defined media. *J Appl Microbiol* **101**: 531-541.

Xu,K., and Strauch,M.A. (1996) Identification, Sequence, and Expression of the Gene Encoding Gamma-Glutamyltranspeptidase in *Bacillus subtilis*. *J Bacteriol* **178**: 4319-4322.

Table S2: Plasmids used in this study		
Plasmid	Description	Reference
pGEM-T Easy	Cloning vector	Promega
	pGEM-T Easy derived vector containing a fragment of the <i>B</i> .	
pGT- <i>yvaN</i>	Subtilis chromosome encompassing the yvaN gene	This study
	pGT-yvaN derived vector where the yvaN ORF has been	
pGT- <i>yvaN</i> -1514	replaced with a tetracyclin resistance marker	This study
		(Veening et al.,
pICFP	Cloning vector for making C-terminal fusions with cfp variant	2005)
	pICFP derived vector containing the promoter region and part	
pICFP- <i>rapH</i>	of the ORF of <i>rapH</i>	This study
		(Lewis and
pSG1151	Cloning vector for GFP C-terminal fusions	Marston, 1999)
-001100	Classing visiting for CED C torminal fusions	(Feucht and
p5G1186	Cioning vector for GFP C-terminal fusions	Lewis, 2001)
nSC1197	Cloning vector for VEP C terminal fusions	
p301107	Integration vector containing a vulgas inducible promotor	(Kim at al. 1006)
μΛ pGEP_orfA	nSG1151-derived vector containing a Xylose inducible promoter fused	This study
nSG-comGACEP	pSG1186 derived vector containing the FSRA promoter rused	This study
nSG-comGAYEP	pSG1186 derived vector containing PcomGA fused to YEP	This study
nXranHnhrH	p2 derivative harboring the ranHnhrH locus	This study
prapriprint		obtained from
		BGSC,
	Plasmid for the exchange of a chloramphenicol marker with a	(Steinmetz and
pCm::Em (pECE72)	erythromycin marker	Richter, 1994)
		obtained from
		BGSC,
	Plasmid for the exchange of a chloramphenicol marker with a	(Steinmetz and
pCm::Sp (pECE74)	spectinomycin marker	Richter, 1994)
nCA afa	pLIC derived vector containing ReamCA fund to CER	
рөк-уір		(Band and
		(Banu anu Henner 1984)
		and unpublished
pBS19	Replicative shuttle vector derivative of pBS42	data
•		(Arantes and
pHT315	Replicative shuttle vector	Lereclus, 1991)
		(Worner et al.,
pHT315S	Replicative shuttle vector containing the spac promoter	2006)
pJM115	Transcriptional <i>lacZ</i> fusion vector Km ^r derivative of pDH32	(Perego, 1993)
pET28a	Vector for protein expression	Novagen
	pET28 carrying the <i>rapH</i> coding sequence as a BamHI	
pE128-RapH	Fragment	This study
рв519-карн2	pBS19 carrying the rapH gene and its promoter, 1350bp	I his study
nBS10-RanH3	ו פסט אין carrying the <i>raph-phrin</i> genes and their promoter,	This study
nHT315S-RanH2	nHT315S carrying the ranH gene and its promoter 1350bp	This study
prito 100-Mapriz	pHT315S carrying the rapH-phrH genes and their promoter	
pHT315S-RapH3	1560bp	This study
pJM115-RapHlac	rapH-lacZ transcriptional fusion	This study

References

Arantes, O., and Lereclus, D. (1991) Construction of cloning vectors for *Bacillus thuringiensis*. *Gene* **108**: 115-119.

Band,L., and Henner,D.J. (1984) *Bacillus subtilis* requires a "stringent" Shine-Delgarno region for gene expression. *DNA* **3**: 17-21.

Feucht, A., and Lewis, P.J. (2001) Improved plasmid vectors for the production of multiple fluorescent protein fusions in *Bacillus subtilis*. *Gene* **264**: 289-297.

Kim,L., Mogk,A., and Schumann,W. (1996) A xylose-inducible *Bacillus subtilis* integration vector and its application. *Gene* **181**: 71-76.

Lewis, P.J., and Marston, A.L. (1999) GFP vectors for controlled expression and dual labelling of protein fusions in *Bacillus subtilis*. *Gene* **227**: 101-110.

Perego,M. (1993) Integrational vectors for genetic manipulation in *Bacillus subtilis*. In *Bacillus subtilis* and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. Sonenshein,A.L., Hoch,J.A., and Losick,R. (eds). Washington, D.C.: American Society for Microbiology, pp. 615-624.

Smits,W.K., Eschevins,C.C., Susanna,K.A., Bron,S., Kuipers,O.P., and Hamoen,L.W. (2005) Stripping *Bacillus*: ComK auto-stimulation is responsible for the bistable response in competence development. *Mol Microbiol* **56**: 604-614.

Steinmetz, M., and Richter, R. (1994) Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in *Bacillus subtilis*, through *in vivo* recombination. *Gene* **142**: 79-83.

Veening, J.W., Hamoen, L.W., and Kuipers, O.P. (2005) Phosphatases modulate the bistable sporulation gene expression pattern in *Bacillus subtilis*. *Mol Microbiol* **56**: 1481-1494.

Worner,K., Szurmant,H., Chiang,C., and Hoch,J.A. (2006) Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from *Clostridium botulinum*. *Mol Microbiol* **59**: 1000-1012.

Table S3: Oligonucleotide primers used in this study		
Oligonucleotide	Sequence	
rapHup-F	GCGAACTTGCTGGAATATGG	
rapHup-R	CGGGATCCACGGTATGGCTTGACTCAAC	
rapHdown-F	GGGGTACCTTCCACATCGCGGCATTCCT	
rapHdown-R	TCGGCACGCTGTAAGTCTTC	
RNIacZfw	GGTTTTCCCAGTCACGACGTTGTAA	
RNlacZrv	GTGAGCGGATAACAATTTCACACAGG	
yvaNup-F	GGAAACTGCAGGGATTCGCTTGGCTACAACT	
yvaNdown-R	GGAAACTGCAGGAACTCTGCCGCTTAGAT	
yvaNdown-F	CGGGATCCCTGCTGATGACTGACTCTTG	
yvaNup-R	CGGAATTCGCAATGCCCGTAATTGTTCG	
rapHFP-F	GGGGTACCTAGTTGCCCAGGAAGAGCAT	
rapHFP-R	AAAACTGCAGGCTAAGGGCTTTCTTCTGATC	
PrapHFP-R	GGAATTCCGAAGACGGTATGGCTTGAC	
pXrapH-F	GCTCTAGAGAAGGAGGGAAGCCG	
pXrapH-R	CGGGATCCCTAGCTAAGGGCTTTCTTC	
srfA-F	CCCAAGCTTGCTGAGAGAGCGTGAGCAGGATATG	
srfA-R	CGGAATTCCATTTCCTCTCCTCCTCTAATCTTTATAAGCAGTGAACATGTGC	
RapH5'Kpn	TTTGAGGTACCTGAGGAACAGGTGAAGGTTC	
RapH3'Bam2	CATCAGGATCCTTCTTATATGGCATATAAACAC	
RapH3'Bam3	GAAGGGATCCGCGATGTGGAAAATGGAAC	
RapH5'Bam	GAAGGATCCTTGAGTCAAGCCATACC	
RapHprom3'Bam	TTATAGGATCCATTAATCTTAACACCAAC	
comG5'	CAGAAAGAATTCGTTTTTCAGCATATAACATC	
comG3'	CGTAAGGGATCCGTTTTGCGGCTTTCGCCTTTC	
DegU5'	GCGTGGCATATGACTAAAGTAAACATTGTTATTATC	
DegU3'	CTATTCTCGAGTCTCATTTCTACCCAGCCATTTTTAATG	
srfApromEco	TATGGAATTCATTGATATCGACAAAAATGTC	
srfApromBam	CTTACGGATCCCCGCAAGATTTGAAATG	