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How do induced brightness and darkness signals from local and remote surfaces interact to determine the final achromatic
color percept of a target surface? An emerging theory of achromatic color perception posits that brightness and darkness
percepts are computed by weighting and summing the induction signals generated at edges in a scene. This theory also
characterizes how neighboring edges interact to modulate the gain of brightness and darkness signals induced from one
another. Here we assess evidence for this edge integration theory by means of computational modeling and a psychophysical
experiment. We quantitatively show how local and remote edge induction signals in disk-ring displays give rise to either
contrast or assimilation effects. Spatial integration of same-polarity edge signals supports a contrast effect, whereas
integration of opposite-polarity signals supports an assimilation effect, particularly when the remote induction signal is much
stronger than the local induction signal. The results confirm a key prediction of edge integration theory, namely, that strong
assimilation effects can lead subjects to ignore the polarity of local edge information when setting achromatic color matches.
The conditions necessary for strong assimilation effects are also associated with greater difficulty in setting matches,
suggesting that caution is required when interpreting matching data in terms of gain control. We describe several avenues for
further study of contrast, assimilation, and gain control.

Keywords: contrast, assimilation, brightness, darkness, integration, edge

Introduction

The achromatic color (perceived luminance) of a surface
depends both on its own luminance and that of nearby
surfaces. An adjacent surface of lower luminance than the
surface of interest will induce brightness, whereas one with
a higher luminance than the target will induce darkness.
Here, our goal is to understand how such induction signals
from local and remote surfaces interact to determine a final
achromatic color percept. Land and McCann (1971)
introduced retinex theory in an attempt to quantitatively
model properties of human chromatic and achromatic
color constancy. Applied to brightness and darkness
perception, their theory posits that the brain discounts
global illumination changes by summing induction signals
computed at edges in a scene. Shapley and Reid (1985)
studied the spatial integration of edge induction signals in
psychophysical matching experiments involving displays
containing a central disk surrounded by rings of identical

luminance placed on different backgrounds. The authors
discussed evidence for two induction processes: a strong
contrast processVacting to reduce the similarity between
target and ringVand a weaker assimilation process
(Helson, 1963)Vacting to increase the similarity between
target and ring.
Rudd et al. (Rudd & Arrington, 2001; Rudd & Zemach,

2004, 2005) have recently developed a systematic quanti-
tative approach to understanding the relationship between
contrast and assimilation in achromatic color perception
(Bindman & Chubb, 2004; Blakeslee & McCourt, 2004;
Blakeslee, Pasieka, & McCourt, 2005; De Weert &
Spillmann, 1995; Güçlü & Farell, 2005; Hong & Shevell,
2004a, 2004b; Howe, 2005; Rudd & Arrington, 2001;
Rudd & Zemach, 2004, 2005; Shapley & Reid, 1985;
Vladusich, Lucassen, & Cornelissen, 2006). The theory
interprets contrast and assimilation as complementary
effects rather than distinct processes. On the one hand,
the theory predicts that a pure contrast effect arises when
the local and remote inducers share the same contrast
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polarity. On the other hand, the theory predicts that a
remote edge manifesting the opposite polarity to the local
edge induces a partial assimilation effect. The assimilation
effect is only partial because the local edge generates a
competing contrast effect. The balance between these
contrast and assimilation effects depends on the relative
strengths of the local and remote induction signals. Aside
from the distance between local and remote edges (Rudd
& Arrington, 2001; Rudd & Zemach, 2004; Zaidi,
Yoshimi, Flanigan, & Canova, 1992), one important factor
in determining the balance between contrast and assim-
ilation effects is the physical contrast of the remote edge
relative to the physical contrast of the local edge. We
show here empirically that when the contrast of the remote
edge is high and the contrast of the local edge low, a
remote assimilation effect can completely overwhelm any
local contrast effect.
The edge integration theory also posits the existence of a

gain control process, whereby the influence of remote
induction signals is modulated by the strength of local
edge signals (Rudd & Arrington, 2001). In a disk-ring
configuration, for example, the local edge of the display is
posited to partially block induction signals originating at
the remote edge. The strength of the blocking is propor-
tional to the contrast of the local edge: high contrast
implies less contribution of the remote edge to the
brightness or darkness of the target surface. Although we
refer to this process in a general way as gain control, it is
important to keep in mind that evidence specifically
favoring the blocking interpretation must necessarily
involve a reduction in the magnitude of the induction
signal.
Here we study the interactions among contrast, assim-

ilation, and gain control effects through computational
modeling and psychophysical experiments. The first part of
this paper aims to characterize how the strength of gain
control effects varies with the conditions supporting either
contrast or assimilation effects. We conduct a modeling
study on published data (Hong & Shevell, 2004a, 2004b) to
examine the polarity specificity of gain control between
edges and to quantify evidence for the blocking interpre-
tation (Figure 1). These results set the stage for the second
part of the paper, in which we employ both psychophys-
ical and modeling methods to test specific predictions of
the edge integration theory concerning contrast, assimila-
tion, and gain control.

Modeling of published data

A previous study in which local and remote edges shared
the same polarity provided strong evidence in favor of
blocking (Rudd & Arrington, 2001), whereas a study using
opposite-polarity edges produced mixed results (Rudd &
Zemach, 2004). In the first part of the paper, we aim to
characterize evidence for the polarity specificity of block-

ing effects under conditions which support either a pure
contrast effectVwhen local and remote edges share the
same polarityVor an assimilation effectVwhen local and
remote edges manifest the opposite polarity (Hong &
Shevell, 2004a, 2004b).
Hong and Shevell (2004b) demonstrated that the range

of spatial integration is broader when remote induction
edges are luminance decrements than when they are in-
crements (the local edge was always a darkness-inducing
decrement). This observation suggests that different

Figure 1. Illustration of the interactions among contrast, assim-
ilation, and gain control (blocking) effects. The figure is based on
stimuli used in the study of Hong and Shevell (2004b). The local
edge, formed by the reference ring (R) and contiguous ring (C),
induces darkness (thick black arrows) signals into the reference
ring in the middle of the concentric-ring configuration. The remote
edge, formed by the contiguous and noncontiguous rings (NC),
induces either darkness (thin black arrows) or brightness (thin
white arrows) depending on the polarity of the remote edge. The
arrows emanating from the remote edge have different thick-
nesses to illustrate that they can, in principle, be weighted by
different factors. Both types of induction signal are modulated by
the putative blocking (more generally, gain control) signals
generated at the local edge. Blocking decreases the strength of
the induction signal, as indicated by the thinning of the arrows
representing induction signals from the remote edge as they pass
through the local edge. The gain control signals can, in principle,
be weighted differently for different polarities of the remote edge.
This fact is illustrated by the white and black arrows used in the
upper and lower panels, where remote-edge polarities differ. A
range of simpler models can be derived from this general model
by simply constraining the model parameters in various ways
(Figure 2). It is important to note that a contrast effect will always
arise when local and remote inducers share the same polarity
(Rudd & Arrington, 2001), whereas either a contrast effect or an
assimilation effect can emerge when the remote signal is opposite
in polarity to the local edge (Rudd & Zemach, 2004; Shapley &
Reid, 1985).
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distance-dependent weighting functions underlie the
integration of brightness and darkness. Here we model
these differential weighting functions in terms of half-
wave rectified (HWR) channels (Beer & MacLeod, 2000;
Bindman & Chubb, 2004; Elder & Sachs, 2004; Rudd &
Zemach, 2004, 2005; Sankeralli & Mullen, 2001;
Vladusich et al., 2006). Edge signals are first encoded
as log luminance ratios (Land & McCann, 1971; Rudd &
Arrington, 2001) before being differentially weighted
according to edge polarity. Half-wave rectification
ensures that induction signals associated with only one
polarity may be active at any given location. Similarly,
the blocking signal itself can be made polarity specific or
nonspecific by setting the values of the gain parameters
associated with opposite-polarity induction signals in an
appropriate way.
In another report, Hong and Shevell (2004a) studied

how the darkness of a target surface is related to the
luminance of a contiguous region. They found an
inverted-U (or nonmonotonic) relationship between lu-
minance and darkness when the local and remote
borders of the display shared the same polarity (i.e.,
both were darkness-inducing decrements). The relation-
ship between perceived darkness and the luminance of
the contiguous region was, in comparison, found to be
linear when the local and remote edges manifested
opposite polarities (i.e., the local edge was a decrement
and the remote edge an increment). Hong and Shevell
(2004a) thereby provided qualitative evidence that the
inverted-U function is specifically associated with con-
ditions necessary for a pure contrast effect. The authors
proved mathematically that the inverted-U function can
be explained as a blocking effect in edge integration
theory, although no computational analyses were
presented.
To examine the nature of any putative blocking

effects in these data sets, we construct a suite of models
(Figure 2) in which induction and gain control signals
(i.e., gain control can either block or enhance the
induction signal, depending on the estimated parameter
values) are defined by HWR brightness and darkness
channels (Bindman & Chubb, 2004; Rudd & Zemach,
2005; Vladusich et al., 2006). All the models are
derived by placing specific constraints on the weighting
parameters associated with induction and gain control
signals (see Methods).
These models are individually fit to the published

data. Model performance is computed using statistical
techniques, known as Akaike’s information criterion
and the Bayesian information criterion (Burnham &
Anderson, 2002), which quantify the trade-off between
the number of fitted parameters in each model and the
quality of the fits. A wide variety of models are tested to
exclude the possibility of incorrectly concluding that
gain control is absent due to the use of an unnecessarily
complex gain control model. We additionally imple-
ment an alternative model that incorporates gain control

but cannot be conceptualized in terms of a blocking
process.

New psychophysical data and
further modeling

We conducted an achromatic color-matching experi-
ment, using a disk-ring configuration, to provide additional
information about the nature of contrast, assimilation, and
blocking effects. Unlike previous studies (Hong & Shevell,
2004a, 2004b; Rudd & Arrington, 2001; Rudd & Zemach,
2004), we systematically varied the polarity of both local-
and remote-inducing edges in a single experiment. The
main aim of the experiment was to test a key prediction of
the edge integration theory. Specifically, the theory
predicts that an assimilation effect induced by a remote
edge of appropriate polarity can completely overwhelm
the contrast effect of a local edge. Under such conditions,
subjects should adjust the luminance of a matching disk

Figure 2. A suite of models derived from the general theory of
HWR brightness and darkness channels (Figure 1) by constrain-
ing the model parameters in various ways. (A) The NOG model.
The white and black pathways from the remote edge are weighted
by different functions (denoted by having different thicknesses) but
are not gain controlled by the local edge. (B) The single-polarity
gain (SIG) model. The remote-edge induction pathways are both
gain controlled by the same signal from the local edge. (C) The
OPP model. Gain control is restricted to remote edges with the
opposite polarity to the local edge. (D) The SAP model. Gain
control is restricted to remote edges with the same polarity as the
local edge.
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on a uniform background to match the polarity of the
remote inducer rather than the local inducer. Because
the local contrast effect is substantially weaker than
the remote assimilation effect, subjects should ignore the
polarity of the local reference edge when setting the
polarity of the matching disk with respect to its immediate
surround. Because subjects usually avoid making such
increment–decrement and decrement–increment matches
(Whittle, 1994), the prediction is somewhat counter-
intuitive.
In our experiment, subjects also rated the difficulty of

making each match on a 1–10 scale. The rating task allows
us to examine whether matches in which subjects ignore
local edge polarity are more difficult to set than increment–
increment and decrement–decrement matches. We expect
that the former matches are more difficult to make because
ignoring local polarity information is tantamount to mak-
ing a setting in which the matching disk may Bnot look
quite right[ (Whittle, 1994). The issue of whether ach-
romatic color matches are always possible (Logvinenko
& Maloney, 2006)Vparticularly when local and remote
edges have the opposite polarity (Faul, Ekroll, & Vladusich,
2006)Vmay help to resolve conflicting reports concern-
ing the conditions under which blocking does and does
not occur (Rudd & Arrington, 2001; Rudd & Zemach,
2004).

Methods

Description of Hong–Shevell experiments

We provide here sufficient details of the experimental
set up used by Hong and Shevell, (2004a, 2004b) to
motivate the modeling study. The interested reader is
referred to the original publications for further details.
Subjects in Hong and Shevell (2004b) adjusted the
luminance of a matching ring to appear the same
brightness as a reference ring. The matching ring was
surrounded by a contiguous ring whose luminance values
stayed constant throughout the experiment (24 cd/m2).
The reference ring was surrounded by two concentric
rings and a background of identical luminance to that
surrounding the matching rings. The luminance of the
reference ring was kept constant whereas the luminance
of the ring directly adjacent to the reference ringVthe
contiguous ringVwas varied. The width of the contig-
uous ring was also varied in eight steps such that it
occupied a variable amount of space between the
reference ring and the noncontiguous ring (the ring
surrounding the contiguous ring).
The stimuli used in Hong and Shevell (2004a) were

similar to those in Hong and Shevell (2004b), with the

caveat that the former study made use of four rings
surrounding the reference ring rather than two (contiguous
and noncontiguous rings were interleaved in the former).
To simplify our modeling, we shall assume that the stimuli
were identical in the two psychophysical studies. In Hong
and Shevell (2004a), the width of the contiguous ring
remained fixed (at 8- visual angle). The luminance of the
noncontiguous ring remained fixed at either 16 or 24 cd/m2,
whereas the luminance of the contiguous ring varied over
a range from 18 to 24 cd/m2 in steps of 2 cd/m2. We also
model two control conditions in Hong and Shevell
(2004a). In one condition, the contiguous and noncontig-
uous rings were replaced by a single (solid) ring varying
from 18 to 24 cd/m2. In the other, the luminance of the
contiguous ring remained constant at 24 cd/m2 whereas
the luminance of the noncontiguous ring varied from 18 to
24 cd/m2.

General theory

We first write the most general form of the modeling
equation, then simplify the equation to describe our
modeling of the Hong–Shevell studies. For simplicity,
we assume that the edge formed by the contiguous and
background surfaces does not contribute significantly to
the achromatic color of the matching ring. This
assumption is justified by the data of Hong and Shevell,
(2004a, 2004b), who reported only a minor effect of the
remote edge in the reference display at the distance used
in the matching display. For the matching display, we
have

xm ¼ wL
B log

Tm
Cm

� �þ
jwL

D log
Cm

Tm

� �þ
þ c; ð1Þ

where xm is the neural activity associated with the target
surface in the matching display (ring in Hong–Shevell,
disk in the current experiments), and Tm and Cm represent
the luminance values of the target and contiguous regions
of the matching display. As indicated previously, the
edge signals are computed as log luminance ratios, which
are HWR to mimic the neural constraint that negative
spike rates are impossible. The HWR notation, [y]+ =
max(z, 0), implies a physical mechanism that substitutes
for the inversion of log luminance ratios with opposite-
polarity combinations of local and remote edges (Rudd &
Zemach, 2004). The constant, c, is assumed to be large
and positive, ensuring that xm 9 0, whereas wB

L and wD
L

correspond to real positive weights applied to opposite-
polarity edges of the matching display. The superscript (L)
indicates that the position of the edge corresponds to the
position of the local edge in the reference display, whereas
the subscripts (B, D) denote whether the target is matched
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as an increment (B for bright) or decrement (D for dark).
We adopt the arbitrary convention of denoting decrements
as negative.
Because subjects in Hong and Shevell, (2004a, 2004b)

always made matches that satisfy the constraint Tm G Cm,
we may implement only the darkness term, removing the
half-wave rectification brackets, and inverting the log
luminance ratio and the sign of the term

xm ¼ wL
D log

Tm
Cm

þ c: ð2Þ

For the reference display we have a more complex
expression

xr ¼ wB
L
log

Tr
Cr

� �þ
j wL

D log
Cr

Tr

� �þ
þ wR

B log
Cr

NCr

� �þ

� 1 j gB
B

log
Tr
Cr

� �þ� �
1 j gD

B
log

Cr

Tr

� �þ� �

j wD
R log

NCr

Cr

� �þ
1 j gD

B
log

Tr
Cr

� �þ� �

� 1 j gD
D

log
Cr

Tr

� �þ� �
þ c;

where xr is the neural activity associated with the target
surface, and Tr, Cr, and NCr represent the luminance
values of the reference target, contiguous region, and
noncontiguous region, respectively. Equation 3 says that
the local edge induction signals and the gain-controlled
remote induction signals additively interact to determine
achromatic surface color. The superscripts and subscripts
associated with the gain control parameters, g = {gB

B, gD
B,

gD
D, gB

D}, denote the polarity of the remote and local edges,
respectively. Each gain control parameter therefore speci-
fies a unique polarity relationship between local and
remote induction signals. Half-wave rectification ensures
that only certain terms are simultaneously active. Con-
sider, for example, the Hong–Shevell display, in which the
local edge induces darkness and the remote edge induces
either brightness or darkness. Equation 3 then reduces to

xr ¼ jwD
L
log

Cr

Tr

� �þ

þwB
R log

Cr

NCr

� �þ
1j gD

B
log

Cr

Tr

� �þ� �

jwR
D log

NCr

Cr

� �þ
1j gD

D
log

Cr

Tr

� �þ� �

ð4Þ

because the local brightness term becomes equal to zero
and because all irrelevant gain control terms become
equal to one. Equation 4 can be rewritten as

xr ¼ wD
L
log

Tr
C r

þ wR
B log

Cr

NCr

� �þ
1jgD

B log
Tr
C r

� �

jwR
D log

NCr

Cr

� �þ
1jgD

D log
Tr
C r

� �
:

ð5Þ

The terms, log Cr

NCr

h iþ
and log NCr

C r

h iþ
represent the

brightness and darkness induction signals associated with
the remote inducer. The term 1jgD

Blog Cr

Tr

� �
represents the

signal, originating from the local edge, that controls the
gain of brightness induction from the remote edge,
whereas the term 1jgD

Dlog Cr

Tr

� �
gain controls the darkness

signal from the remote edge. The gain control parameters
must be positive to be consistent with an interpretation in
terms of the partial blockage of induction signals (Rudd &
Zemach, 2004). In other words, the products of the
weighted gain control and induction terms must always
be less than the weighted induction signals themselves
to be interpreted in terms of blocking. In the Hong–
Shevell experiments, subjects set the matching lumi-
nance by satisfying the identity xm = xr. Thus, by setting
Equation 2 equal to Equation 5, we derive the following
expression

log Tm ¼ log
TrCm

Cr
þ wB

R

wD
L
log

Cr

NCr

� �þ
1jgD

B log
Tr
C r

� �

j
wD

R

wD
L

log
NCr

C r

� �þ
1jgD

D log
Tr
C r

� �
;

which can be rewritten as

log Tm ¼ log
TrCm

Cr
þ wB

D log
Cr

NCr

� �þ
1jgD

B log
Tr
C r

� �

jwD
D log

NCr

Cr

� �þ
1jgD

D log
Tr
C r

� �
; ð7Þ

adopting the same subscript–superscript notation as
used for the gain parameters. For modeling of the Hong
and Shevell (2004b) data, the weighting parameters are
defined by the following generalized exponential distance-
dependent weighting function (Zaidi et al., 1992)

w ¼ kejmd: ð8Þ

Here d is the distance between the local and remote
edges in degrees of visual angle (we obtained the same
results with angular or Cartesian distance), k controls the

(5)

(6)

(4)

(3)
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height of the exponential function, whereas m controls
the rate of decrease of the function with distance.
From Equation 7, the matching luminance, Tm, is equal to
10logTm .
We separately tested another gain control model on the

Hong–Shevell data. This model is defined as

log Tm ¼ logCm þ log
Tr
C r

1jgD
B

log
Cr

NCr

� �þ� �

� 1jgD
D

log
NCr

C r

� �þ� �

þ wB
D log

Cr

NCr

� �þ
jwD

D log
NCr

C r

� �þ
ð9Þ

and cannot be interpreted in terms of blocking because the
remote induction signal controls the gain of the local
induction signal, rather than vice versa.

Polarity-constrained models of the
Hong–Shevell experiments

The theory above was used to generate a suite of five
models (Figure 2). Each model represents a different
constraint on the way edges of different polarities interact.
The most general model (Figure 1), the unconstrained
polarity gain (UP) model, represents the hypothesis that
remote induction signals of either polarity are gain con-
trolled by the local edge with potentially different
strengths (wD

D and wD
B vary freely). This model has either

4 or 6 parameters, depending on which Hong–Shevell
study we model. Another model corresponds to the sim-
plest possible constraint: that there is no gain control
(wD

D = wD
B = 0). We refer to this model as the no-gain

(NOG) model (Figure 2A). This model has the fewest
free parameters (2 or 4). The single-gain (SIG) model
(Figure 2B) tests the hypothesis of a single-gain signal
associated with both polarities of the remote induction
signal (wD

D = wD
B) (3 or 5 parameters). The opposite-

polarity gain (OPP) model (Figure 2C) represents
the hypothesis of opposite-polarity gain control (wD

D = 0)
(3 or 5 parameters). In the same-polarity gain (SAP)
model (Figure 2D), the incremental gain parameter is
constrained to zero (wD

B = 0). This model represents the
hypothesis that gain control occurs only for same-polarity
edges (3 or 5 parameters).

Fitting

We fit the models and produce confidence intervals on
fitted data points and parameters by means of a nonlinear
least squares optimization procedure. This fitting procedure

made use of the nlnfit and lsqcurvefit functions of Matlab
(Version 7.0.4, The MathWorks Inc.), whereas 95%
confidence intervals on estimated parameters and data
points were computed with the nlpredci and nlparci func-
tions. All models usually converged well, often generating
extremely high values for the variance explained (R2 9
95%), where

R2 ¼ 100 1j
SSfit

SStotal

� �
ð10Þ

where SSfit is the sum-of-squares derived from the fit, and
SStotal is the sum-of-squares derived from a flat line
determined by the mean of the residuals. We attempted to
obtain better fits by randomly toggling the starting
parameter values, but we could not obtain better fits than
those obtained with starting values of zero. We therefore
conclude that the convergence solutions are likely to
represent global, rather than local, minima. For modeling
of the Hong–Shevell data, the few cases where a model
did not converge within 50 iterations are indicated in the
data tables. Increasing the number of iterations to 250
only improved the fit at a level of two decimals points of
the R2 value in one case (see Table 2).
The R2 values derived for each subject in our study were

always close to 100%. Because R2 is asymptotic, large
improvement in the sum-of-squares fit may only result in a
modest improvement in R2 when the latter value
approaches 100%. Thus, small differences in R2 values
across models should not be taken to mean that those
models perform equally well, as performance analysis
trades-off the sum-of-square residuals, not R2, against
number of model parameters.

Performance analysis using Akaike’s
information criterion

We analyzed the performance of each model, that is, the
goodness-of-fit relative to the number of parameters, using
Akaike’s information criterion (AIC) with sample-size
correction (AICC). Although the AIC approach is certainly
not new (Burnham & Anderson, 2002), only in relatively
recent times has the method begun to be applied in certain
scientific contexts, including visual neuroscience (e.g.,
Cornelissen, Wade, Vladusich, Dougherty, & Wandell,
2006; Elder & Sachs, 2004; Vladusich et al., 2006) and
phylogenetics (Posada & Buckley, 2004). The core idea of
the approach is to estimate the Bloss of information[ that
occurs when one attempts to construct a model of reality.
The measure of information loss consists of a mathemat-
ical term estimating the goodness-of-fit to a data set (e.g.,
sum-of-squares) and a term estimating the effect of the
number of estimated parameters (i.e., complexity). In this
sense, AIC embodies a statistical principle of parsimony.
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Formally, we have

AICC ¼ N ln
SSfit

N

� �
þ 2K þ 2KðK þ 1Þ

NjKj1
; ð11Þ

where N is the number of data points, SSfit is the fitted
sum-of-squares, and K is the number of fitted model
parameters plus one (because the sum-of-squares is a
Bfitted parameter[). Generally speaking, the smaller the
value of AICC the better the model has performed. By
comparing AICC values for ith model to a comparison
model (superscript C)

$AICi
c ¼ AICi

c jAICC
c ; ð12Þ

we are able to rank the models (r) in the set (R). These
$AICC values are then exponentially transformed to
compute the relative probabilities pi of each model being
correct

pi ¼
ej0:5ð$AICi

cÞ

~R
r e

j0:5ð$AICr
cÞ
: ð13Þ

For comparison, we also compute a second criterion,
known as the Bayesian information criterion (BIC),

BIC ¼ N ln
SSfit

N

� �
þ ln Nð Þ: ð14Þ

An analogous computation underlies the calculation of
relative probabilities associated with the BIC method. A
detailed discussion and comparison of the AIC and BIC
approaches is provided in Burnham and Anderson (2002).
The general AIC approach has several advantages over

tests conventionally used to compare models with different
numbers of parameters (Burnham & Anderson, 2002). Of
particular interest here, the AIC approach does not depend
on arbitrary critical values for accepting or rejecting
hypotheses and so does not require adjustments for
multiple comparisons of the sort common to conventional
statistical inference (e.g., Bonferroni correction). The AIC
approach also allows one to compute evidence ratios with
selected models (ratios of relative probabilities of each
model being correct) or to add together the relative
probabilities associated with specific models to examine
the importance of parameters common to the selected
models. We make particular use of these properties in our
analysis. General discussions of the problems associated
with conventional methods of statistical inference are
provided elsewhere (Goodman, 1999a, 1999b; Sterne &
Davey Smith, 2001). In common with conventional
methods, the AIC approach depends on the assumption
that model residuals are Gaussian-distributed with zero
mean. We tested this assumption for all model fits using
the D’Agostino–Pearson test for skewness and kurtosis,
and the Students t test for differences of the mean

residuals from zero, respectively. We then considered
whether the associated R2 value and p value together
warranted strong evidence to exclude a given model from
further analysis (see Table 1). In all cases where we
excluded a model from the AIC hierarchy, had we allowed
the model to be ranked, it would have been ranked last.

Subjects

Eight subjects, four males and four females, with ages
ranging from 21 to 41 and normal or corrected-to-normal
vision, participated in the psychophysical experiment. Two
subjects were experienced psychophysical observers who
were aware of the experimental hypotheses, the others were
naive observers, unaware of the hypotheses. None of the
subjects reported having difficulty seeing in the dark, which
might have indicated an increased sensitivity to ocular light
scattering (stray light).

Apparatus

Experiments were conducted in a darkened room
on a calibrated computer monitor, an Eizo ColorEdge
CG18 LCD (Eizo, Belgium) with 1,280 � 1,024 pixels
native resolution and a 0.28-mm pixel dot. Using a
GretagMacbeth Eye-One calibrator (GretagMacbeth,
Switzerland), the maximum luminance of the LCD was
set at 120 cd/m2, the white point was set at 6,500 K and
gamma for each primary channel was set at 2.2. Full
colorimetric characterization of the display at these
settings was performed using a Photo Research PR-650
spectrophotometer (Photo Research, Chatsworth, USA).
We followed the characterization procedure as described
by Cazes et al. (1999). Custom software for generating
the stimuli ran on an Intel Pentium 4 computer with a
2.40-GHz processor and a graphics card with 8-bit color
resolution per channel/gun. Our subjects were satisfied
with the size of the luminance steps this set up allowed
during achromatic color matching.

Stimuli and tasks

Subjects dark adapted to the experimental room for
several minutes. They then viewed stimuli at a distance of
0.72 m from the monitor. Stimuli consisted of a uniform
background, which could have one of four luminance
values (10, 40, 60, and 90 cd/m2). To the left of the center
of the screen (at 2.5- visual angle), the reference
configuration consisted of a ring (subtending 2- visual
angle) of constant luminance (50 cd/m2) surrounding a 2-
reference disk. The luminance of the reference disk varied
between 29.9 and 83.3 cd/m2 to produce 10 increments
and 10 decrements relative to the ring. Ring-to-disk
luminance ratios were evenly spaced on a log scale. An
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adjustable matching disk with the same angular size as the
reference disk was placed to the right of the center of the
screen (at 2.5- visual angle). The centers of the reference
and matching disks were thus 5- apart. We used 2- disks
and ring sizes to ensure maximum compatibility with the
2- luminosity function.
Subjects performed two tasks. They first set the lumi-

nance of the matching disk (initially 50 cd/m2) such that
the achromatic color of the matching disk appeared as
similar as possible to the reference disk. We were very
explicit in our instructions that subjects should match the
achromatic color that they saw rather than the estimated
albedo or lightness of the reference disk. After setting the
match, subjects then rated (on a scale from 1 to 10) the
relative ease with which the match was obtained. Subjects
practiced these tasks on a trial set of stimuli before the
experiment began. The experimental session lasted ap-
proximately 1 h, during which subjects could pause be-
tween trials. The entire experiment consisted of 80 unique
combinations of background and reference disk luminance
values. The order in which the four background conditions
were presented to each subject was varied using a Latin
square design to average out sequential effects. Within
each background condition, trials were randomized, but
decrements and increments were alternated to prevent
possible effects of long-term contrast adaptation.

Models of the new experimental data

For the psychophysical experiment performed here, we
modeled the data with the following expression, based on
Equation 3

logTm ¼ log
TrCm
Cr

þ wB
DB log

Cr

NCr

� �þ
1jgB

B
log

Tr
C r

� �þ� �

� 1jgD
B

log
Cr

Tr

� �þ� �
jwD

DB log
NCr

C r

� �þ

� 1jgD
B

log
Tr
C r

� �þ� �
1jgD

D
log

Cr

Tr

� �þ� �
;

ð15Þ

where the weights wDB
D

Z{wD
D, wB

D} and wDB
B
Z{wD

B, wB
B}.

The weights therefore depend on whether subjects make
increment or decrement matches on the matching side of
the display. This model is conceptually identical to the UP
model used in the simulations of the Hong–Shevell data,
expanded to include all possible polarity interactions

Model
AIC – BIC
ranks R2 N K

AIC relative
probability

BIC relative
probability

Subject SWH
NOG 4–4 97.01 40 5 G.01 G.01
SAP 2–2 98.68 40 6 .4 .41
OPP 5–5 97.03 40 6 G.01 G.01
SIG 1–1 98.70 40 6 .49 .51
UP 3–3 98.70 40 7 .11 .08

Subject YIO
NOG* 4–4 98.56 40 5 G.01 G.01
SAP 1–1 99.42 40 6 .60 .68
OPP 5–5 98.59 40 6 G.01 G.01
SIG 3–3 99.19 40 6 G.01 G.01
UP 2–2 99.45 40 7 .40 .31

Subject LY
NOG 4–4 97.83 40 5 .09 .14
SAP 1–1 98.12 40 6 .41 .36
OPP** 5–5 97.83 40 6 .03 .02
SIG 2–2 98.11 40 6 .37 .40
UP** 3–3 98.12 40 7 .10 .07

(15)

Table 1. Summary statistics for all models and subjects in Hong and Shevell (2004b). For subject SWH, the best-performing model was
the SIG model followed by the SAP model. For subject YIO, the SAP model performed best, followed by the UP model. For subject LY, the
evidence does not strongly favor any model. All relative probabilities are rounded up and so may not add exactly to 1. *Model residuals
Gaussian-distributed but with nonzero mean (p = .043). We included the model fit in the analysis because the mean was only just
significantly different from zero. **Model did not converge within 250 iterations but R2 value remained stable to two decimals points above
50 iterations. Note: K = number of model parameters plus one (i.e., the sum-of-squares is an estimated parameter).
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between local and remote increments and decrements in
the reference display (8 free parameters). Strictly speak-
ing, cross-polarity matches (matching local increments to
decrements and vice versa) require a slight modification to
the model because the local edge signals in matching and
reference displays are no longer of the same polarity. This
modification expands the total set of free parameters by
four, but we found no improvements in performance. We
therefore present the results obtained with the form of the
UP model defined above.
We also implemented a more complex version of the UP

model in which gain parameters were free to vary with the
contrast of the remote edge

log Tm ¼ log
TrCm

Cr
þwDB

B log
Cr

NCr

� �þ

� 1jgB
BC

log
Tr
Cr

� �þ� �
1jgD

BC
log

Cr

Tr

� �þ� �

jwDB
D log

NCr

Cr

� �þ
1jgD

BC
log

Tr
C r

� �þ� �

� 1jgD
DC

log
Cr

Tr

� �þ� �
;

where the scripting of the gain parameters is generically
defined as gj

iC
Z {gj

iH, gj
iL}, meaning that gain varied

with the contrast (H = high, L = low) of the remote
edge.

Results

Modeling of Hong–Shevell distance-
dependent matching data

We first conducted simulations of the Hong and Shevell
(2004b) experiments, wherein the position and polarity of
the remote edge were manipulated. As indicated previ-
ously, Hong and Shevell (2004b) showed that the spatial
extent of edge integration was greater for decrements of
the remote edge than for increments. The present analysis
focuses on evidence for gain control and as such forms a
complementary line of inquiry to that undertaken in Hong
and Shevell (2004b). We present only the data and fits for
the condition in which the remote edge induced darkness
into the target ring because this condition most clearly
illustrates the contribution of gain control to matching
behavior. One should keep in mind, however, that the UP
model always generated the best fit because it had the
largest number of parameters.

Figure 3 displays the fits obtained using the NOG,
SIG, and SAP models for all subjects in that study.
Although the fits associated with the three selected
models appear quite similar at first glance, closer
inspection reveals important differences. In particular,
the blue lines (model predictions) do not coincide with
the row of circular data points for the NOG model
(Figure 3A), but the SIG and SAP models provide good
fits for these points. The difference between the model
fits illustrates the influence of gain control in the
experiment. Although the effect is relatively robust, it
is apparent that only detailed quantitative analysis could
reveal gain control in this instance. Gain control is most
obvious in the case of the blue curve because the local
edge contrast is higher in this condition than in the
others, meaning that blocking of the remote edge signal
by the local edge has a greater influence.
Table 1 displays the information associated with each

model for each subject. The table also ranks the models
according to their calculated AIC and BIC scores and
gives the relative probabilities of each ranked model being
correct relative to the other ranked models. The results of
the AIC and BIC methods agreed closely, providing strong
evidence against the hypothesis of the NOG and the OPP
models. The latter model always performed the worst,
being ranked last for all subjects. Furthermore, the relative
probabilities of this model being correct were always very
low. In no case did unequivocal and unanimous evidence
emerge to exclude any of the three remaining models,
however.
Fitted parameter values for all simulations below are

reported in Appendix. Here we discuss only the results
obtained with the UP model because these parameter
values are fairly representative. Inspection of the param-
eters for subject TG reveals that the fitted brightness gain
parameter, with 95% confidence intervals (gD

B = 2.55 T
0.11), is close to the value of the fitted darkness gain
parameter (gD

D = 2.26 T 0.28). This finding implies that
gain control occurred equally for brightness and darkness,
explaining why the SIG model was ranked first: the data
do not strongly demand that brightness and darkness gain
parameters be very different. For subject YIO, the
evidence was more strongly in favor of the SAP and UP
models (total relative AIC probability = 0.999). The
poorer performance of the SIG model is evident from
the fact that brightness and darkness gain parameters in
the UP model were fit to very different values (gD

D = 4.72 T
0.19, gD

B = 2.18 T 0.17). In the case of subject LY, where
the evidence does not strongly favor any one model of the
three top-ranked models, inspection of the gain parameters
associated with the UP model reveals a major discrepancy
(gD

D = 1.71 T 0.33, gD
B = j54.58 T 0). Namely, the

brightness gain parameter is negative. This observation is
inconsistent with the blocking interpretation because it
implies that the postgain induction signal must be larger
than the pregain signal (see Methods). Given the relatively
good performance of the competing models with positive

(16)
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Figure 3. (A–C) Fits and 95% confidence intervals derived using the NOG, SIG, and SAP models for all subjects in Hong and Shevell
(2004b). Hong and Shevell showed that the influence of the remote edge declines more slowly for increments than for decrements. For
simplicity, here we plot the fits associated with decrements only. Differently colored lines and differently shaped symbols represent the
different combinations of contiguous (C) and noncontiguous edges (NC) used in Hong and Shevell (2004b). For all subjects, the two gain
control models shown above (as well as the UP model, fits not shown) provide better fits than the NOG model. Although these models
contain one more parameter than the NOG model, the extra variance explained by the addition of the gain control parameters is justified in
terms of the AIC and BIC performance analyses (see Table 1). (D) Schematic illustrations of the models.
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or zero gain parameters, however, it would seem prema-
ture to conclude that the blocking interpretation is
incorrect.
In summary, the present simulations reveal a previously

hidden gain control effect in the data of Hong and Shevell
(2004b). Our analysis also suggests a good deal of inter-
subject variability with respect to the polarity specificity
of this effect.

Modeling of Hong–Shevell inverted-U function

We further studied the gain control models in simulations
of the Hong and Shevell (2004a) experiments. These
experiments demonstrated that darkness is related to the
magnitude of the non-contiguous-inducing edge by an
inverted-U-shaped function, provided that the local edge
and remote edges both induce darkness. No such non-
monotonicity arose when the local edge induced darkness
and the remote edge induced brightness, or in control
conditions where the contiguous and noncontiguous rings
were replaced by a single solid ring. As shown in Figure 4,
model fits were not as impressive as with the previous
simulations: the R2 value was higher than 95% for only
one of the three subjects (TG), in the case of the best-
fitting (UP) model. One of the remaining subjects (BS)
generated a reasonable fit (È90%), whereas the fit for
subject SWH was relatively poor (È70%). Table 2
displays all the statistics for this simulation.
Perhaps the most striking feature of Figure 4 is the

failure of the NOG model to predict the inverted-U
function for decrement–decrement edge combinations.
The gain control (SIG and SAP) models, by comparison,
are successful in various degrees in generating the
inverted-U shape (Figure 4). In the following explanation,
we adopt the expediency of dropping HWR brackets,
inverting all negatively signed terms, and referring to the
local darkness induction term as log TrCm

Cr
.

Three factors determine the shape of the matching function
for these data points (assuming the SAP model). First, the
local darkness induction term decreases as the luminance of
the contiguous ring (18 – 22 cd/m2) increases above the
luminance of the target ring (16 cd/m2). Alone, this would
predict that subjects set matching luminance as a decreasing
function of contiguous ring luminance (Figure 5A).
Second, the unblocked remote edge signal (Figure 5B),

wD
D log Cr

NCr
, increases as contiguous ring luminance

approaches noncontiguous ring luminance (24 cd/m2).
Third, the gain factor, 1 j gD

D log Tr
Cr
, decreases with in-

creasing contiguous ring luminance. The multiplication of
gain and remote induction signals with opposite slope
thereby generates a nonlinearity (Figure 5B). The blocked
remote induction signal then subtracts from the local
induction term to generate the final matching function.
As with the previous simulations, individual subjects

displayed some diversity in the best-performing models
(Table 2). For subjects TG and BS, the SAP model was
ranked first by the AIC method, closely followed by the UP

model. The other models performed much worse. Interest-
ingly, the story was a little different for subject SWH: the
SIG model was ranked first, although the advantage over
the other models was marginal. It is of interest to note that
the SIG model was also AIC-ranked first for this subject in
our simulations of the Hong and Shevell (2004b) study. We
therefore have converging evidence that the SIG model may
be the best model for this subject. Another interesting
outcome is that, for subject SWH, the brightness weighting
parameter in the UP model was negative (wD

B = j0.91 T
0.73). This result agrees with our modeling of the Hong and
Shevell (2004b) study above, suggesting that, in the special
case of this subject, increments and decrements of the remote
edge both trigger induction of surface darkness. For the other
subjects, the values of the weighting parameters were
consistent with the expected relationship between edge
polarity and brightness or darkness (see Appendix).
Examination of the fitted values of the gain parameters

for the remaining subjects reveals one important aberration.
For subject BS, the brightness gain parameter in the UP
model was negative (gD

B = j259.4 T 0.7) although the dark-
ness parameter was positive (gD

D = 8.4 T 0.2). The negative
value for the brightness parameter is inconsistent with the
blocking interpretation. We found no parameter discrep-
ancies for the remaining subjects.
To summarize, the present simulations quantify the gain

control effects described qualitatively in Hong and Shevell
(2004a), confirming that these data are consistent with a
blocking interpretation. As with our simulations of the
Hong and Shevell (2004b) data, the results provide strong
evidence in favor of blocking between same-polarity
edges and weaker evidence for blocking between
opposite-polarity edges.

An alternative gain control model

We studied a number of models in the course of our
research. We do not present the complete set of results here
because this would detract from the main themes of our
study. One should keep in mind, however, that the non-
monotonic-matching functions reported by Hong and
Shevell (2004a) would be difficult to explain without
recourse to some form of nonlinear gain control. We have
been unable to generate nonmonotonicity, for instance, in
a model in which monotonic responses to local and mean
luminance form the basis of achromatic color percepts
(Vladusich et al., 2006). Indeed, we have yet to find a
situation in which nonmonotonicity arises in a model that
is not based on edge integration theory.
We have, however, implemented a useful gain control

model, based on edge integration theory, which cannot be
conceptualized in terms of a blocking process (Equation 9).
In this model, the remote edge controls the gain of the
local edge, rather than the other way around. We found
that the unconstrained version of this model performed
comparably to the unconstrained (UP) blocking model.
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Figure 4. (A–C) Fits and 95% confidence intervals derived using the NOG, SIG, and SAP models for all three subjects in Hong and
Shevell (2004b). Panels correspond to conditions where the local edge varied in luminance whereas the remote edge was kept constant
at either 16 cd/m2 (green lines and square data points) or 24 cd/m2 (green lines and diamond data points). For simplicity, we do not show
the results for conditions in which the local edge was kept constant and the remote edge varied or when the contiguous surface formed a
solid region (without rings) extending to the edge of the background. The nonmonotonic functions (green) represent the psychophysical
signature of the gain control process. For the subjects TG and BS, the SAP model performed the best (see Table 2 for performance
indices). For subject SWH, the SIG model performed the best. We therefore find strong evidence for gain control in all subjects, albeit with
no consensus concerning the specific form of the best-performing gain model. (D) Schematic illustrations of the models.
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The alternative model failed on a crucial test of validity,
however, because the brightness weighting parameter was
found to be positive for most subjects in the Hong–Shevell
studies, implying that increments of the remote edge in-
duce darkness, not brightness. Constraining the brightness

weighting parameter to zero produced poor results.
Because the alternative model did not produce realistic
parameter values, we conclude that the blocking class of
models provide a better account of the available data. In
summary, we have not yet found an alternative model

Figure 5. Illustration of how local and remote edge signals combine during blocking to generate an inverted-U-matching function with
increasing contiguous ring luminance (note the different ordinate scales). The figure is based on the SAP model of subject TG’s data. The
luminance values for each model component are shown in log space on the ordinate. Local (A, dark yellow) and unblocked remote
induction signals (B, dark yellow), as well as the gain or blocking signal (red), all change approximately linearly with increasing ring
luminance. The multiplication of gain and unblocked remote-induction signals generates a nonlinearity in the blocked remote-induction
signal. This signal is subtracted from the local induction signal, which is equivalent to division in linear space followed by a log
transformation. The net effect is an inverted-U-shaped matching function.

Model
AIC – BIC

ranks R2 N K

AIC relative
probability

BIC relative
probability

Subject BS
NOG 3–3 76.87 16 3 .02 G.01
SAP 1–2 87.86 16 4 .49 .32
OPP 4–4 79.75 16 4 G.01 G.01
SIG 5–5 78.17 16 4 G.01 G.01
UP* 2–1 90.73 16 5 .48 .66

Subject TG
NOG 4–4 92.75 16 3 G.01 G.01
SAP 1–1 98.83 16 4 .86 .74
OPP 3–5 92.80 16 4 G.01 G.01
SIG 5–3 96.59 16 4 G.01 G.01
UP 2–2 98.88 16 5 .14 .26

Subject SWH
NOG 3–4 58.34 16 3 .17 .11
SAP 5–5 61.61 16 4 .05 .05
OPP 2–2 68.17 16 4 .24 .23
SIG 1–1 70.77 16 4 .47 .46
UP 4–2 71.45 16 5 .06 .14

Table 2. Summary statistics for all models and subjects in Hong and Shevell (2004a). For subjects BS and TG, the best-performing model
was the SAP model closely followed by the UP model. For subject SWH, the SIG model performed best, as it did for this subject in our
simulation of the Hong and Shevell (2004b) experiment. *Model did not converge within 250 iterations: R2 value improved by È.05 relative
to 50 iterations.
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which fits the Hong–Shevell data well and produces
physically meaningful parameter values.

An experimental test of edge
integration theory

We conducted an achromatic color-matching experiment
to test the prediction of edge integration theory that subjects
should match local increments to decrements and vice versa
in cases where the remote edge has high contrast and the
opposite polarity relative to the local edge. Subjects set the
luminance of a matching disk on a common background
such that its achromatic color matched the achromatic color

of a reference disk surrounded by a ring. We systematically
varied the luminance of both the background and the
reference disk, while keeping the luminance of the ring
constant. Subjects also rated the difficulty of making each
match to test the assumption that matches involving
opposite-polarity edge combinations are as easy to make
as matches involving same-polarity edge combinations.
The matching data support the prediction of edge

integration theory (Figure 6). That is, subjects matched
local increments to decrements and vice versa when the
remote edge was of opposite polarity and high contrast
relative to the local edge (Figure 6A). Subjects were far
less inclined to set such cross-polarity matches when
remote contrast was relatively low (Figure 6B). Moreover,

Figure 6. Results of the experimental test of edge integration theory, plotted on a log-log scale. The theory predicts that subjects should
match local increments to decrements and vice versa when remote edge contrast is high. The two lower panels show the means and
standard error of eight subjects, each making one setting per condition. As predicted, when the background luminance was very high or
low (A), generating a high contrast at the remote edge, subjects made matches in accord with the polarity of the remote edge rather than
the local edge. Subjects were far less inclined to set such increment–decrement (decrement–increment) matches when the background
luminance values were less extreme and so remote edge contrast was relatively low (B). Subjects had more difficulty (C and D) making
settings for opposite-polarity parings of local and remote edges than for same-polarity pairings when matches approached the luminance
of the background.
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subjects never set cross-polarity matches when local and
remote edges shared the same polarity. One might argue
that subjects set cross-polarity matches because they had
no alternative, given that the background luminance was
so extreme in these instances. Such an explanation would
not, however, take into account the linear relationship
between matching and reference disk luminance. If
subjects simply could not generate the appropriate
achromatic colors in the matching disk, one would expect
them to always set the luminance of the matching disk to
the background luminance (because that is the closest
option to the correct polarity relationship between local
matching and reference edges). The linear relationship
between matching and reference luminance shows that,
although local edge contrast had a strong effect on
achromatic color, the effect of the remote edge was more
powerful, as predicted by edge integration theory.
The largest effects on matching luminance occurred in

the case of decrement–increment combinations with the
background luminance at 10 cd/m2 (blue squares in
the lower left quadrant of Figure 6A). These points
showed the largest deviations from the grey line indicating
the luminance of the reference disk and the greatest
between-subject variance. Subjects also adopted a wide
range of strategies in setting these cross-polarity matches
(Supplementary material).
The rating data partially support the supposition that

cross-polarity matches are more difficult to set than same-
polarity matches, particularly when luminance settings
approached the background luminance (Figures 6C
and D). On top of this effect, subjects generally found
matches difficult to make at low local edge contrasts. We
speculate that this latter effect is due to the impression of
transparency and fogginess in the reference disk at low
contrasts (Ekroll, Faul, & Niederee, 2004). Our main
interest here concerns whether opposite polarity combina-
tions are more difficult to match than same-polarity
combinations. We conducted paired t tests on opposite-
and same-polarity matches (pooled across background
luminance values) separately for increments and decre-
ments of the local edge. For decrements of the local edge,
opposite-polarity combinations (mean difficulty rating =
5.14) were significantly harder (p ¡ .001) to match than
same-polarity combinations (mean difficulty rating = 3.47).
We found no such difference for increments of the local
edge (p = .58). This discrepancy may have arisen because the
remote edge contrast associated with decrement–increment
combinations of local and remote edges (50/10 cd/m2) was
higher than that associated with increment–decrement com-
binations (50/90 cd/m2), leading to greater conflict between
contrast and assimilation effects.

Modeling the new matching data

Wefit our data using theUPmodel defined in Equation 15
to investigate the nature of gain control in this experiment.

To be consistent with blocking, model-matching functions
should have slopes less than one. Visually, this implies
that model-matching functions should be flatter than the
grey line representing the luminance of the reference disk.
We find that the fit of the model (SSfit = 258) is reasonable
for extreme values of the background luminance, or
equivalently, high remote edge contrasts, but is far from
perfect for the lower remote edge contrasts (Figure 7). In
these cases, the model underestimates the amount of gain
control evident in the data (the model-matching functions
being close to unity).
To investigate gain control with greater fidelity, we

modified the UP model to allow gain parameters to vary
freely with remote edge contrast (Equation 16). This
modification improved the fit by a factor of two (SSfit =
125). According to both the AIC and BIC methods, the
modified model outperformed the standard UP model
substantially (relative p = 1 in favor of the modified
model). The improvement is visually evident for both
same and opposite-polarity combinations of local and
remote edges, indicating that the failure of the standard
UP model is not specifically related to the cross-polarity-
matching issue.
We also found that gain control was often quantitatively

different for same- and opposite-polarity pairings. In the
case of same-polarity combinations, gain control parameters
were always positive (gB

BH = 0.40 T 0.13, gB
BL = 1.18 T

0.42, gD
DL = 4.35 T 1.26, gD

DH = 0.92 T 059), consistent with
blocking. With opposite-polarity combinations, gain con-
trol parameters were generally negative (gB

DL = j2.22 T 1.4,
gD
BL = j1.21 T 1.1, gD

DL = j2.73 T 0.78), consistent with
Bantiblocking[ (Rudd & Popa, 2004a, 2004b). One excep-
tion occurred for decrement–increment combinations involv-
ing low remote edge contrast, where gain control was
consistent with blocking (gB

DH = 0.86 T 0.55).
We also modeled the data of individual subjects using the

modified UP model (see Supplementary material for fits
and performance indices). These findings confirm and
extend the conclusions drawn above. We find strong
effects of remote edge contrast on gain control parameters
for various combinations of local and remote edge polarity
(Figure 8). Decrement–increment combinations, on the
one hand, are associated with antiblocking when remote
edge contrast is low, consistent with our modeling of the
mean data. Increment–decrement combinations, on the
other hand, are associated with stronger antiblocking when
remote edge contrast is high, again consistent with the
mean data. Decrement–decrement and increment–
increment combinations are both associated with stronger
blocking when remote edge contrast is high. Although the
prevalence of antiblocking at low contrast may be partly
explained by problems setting satisfactory matches for
opposite-polarity combinations, such an explanation can-
not account for the stronger blocking effects at high
contrast with same-polarity combinations.
We recognize that our modification of the standard UP

model is ad hoc. We therefore applied a range of physically
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motivated modifications to the UP model, with little
success. Additional study is clearly required to fully
understand the nature of gain control in disk-ring displays.

Discussion

Our work builds on several previous modeling studies
aimed at understanding brightness and darkness perception
(Land&McCann, 1971; Rudd & Arrington, 2001; Rudd &
Zemach, 2004, 2005; Zaidi et al., 1992). Our modeling of
the Hong and Shevell, (2004a, 2004b) data reveals robust
gain control effects that can be interpreted as evidence for
blocking in most cases (Rudd & Arrington, 2001). This
conclusion is further reinforced by our modeling of
achromatic color matching in the displays of Bressan
and Actis-Grosso (2001), which appears as Supplementary
material to this paper.
Our psychophysical and modeling results also suggest

that claims concerning the polarity specificity of blocking
need to be interpreted with caution (Rudd & Zemach,
2004). Displays containing local and remote edges of

opposite polarity are sometimes associated with an
apparent conflict between contrast and assimilation
effects. This conflict may manifest itself in antiblocking.
It also leads subjects to rate matches associated with
opposite-polarity inducers as more difficult to set than
those associated with inducers sharing the same polarity.
A growing body of evidence indicates that perfect matches
are not possible in situations where contrast and assimila-
tion effects compete (Ekroll et al., 2004; Faul et al., 2006;
Logvinenko & Maloney, 2006; Whittle, 1994). Precisely
why subjects cannot always make satisfactory matches is
an issue of ongoing research. Our discussion here focuses
instead on clarifying the relationships among contrast,
assimilation, and gain control effects.

Relevance to understanding contrast
and assimilation

To reiterate, edge integration theory predicts that the
presence and magnitude of contrast and assimilation effects
depends on the relative polarities and strengths of local and
remote edge signals. One important factor in generating net
assimilation effectsVdefined as cases in which subjects

Figure 7. Modeling of the experimental test of edge integration theory (note different scales on left and right). The theory predicts that
matching data can be fit with a single set of gain and weight factors for all background luminance values. (A–B) Fits generating under the
assumption of a single set of gain parameters (UP model with parameters constrained for background luminance). (C–D) Fits generated
under the assumption that gain parameters vary with background luminance (UP model with parameters unconstrained for background
luminance). We find that the unconstrained model fits the data better and considerably outperforms the constrained model.
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match local increments to decrements and vice versaVis the
physical polarity and contrast of the remote edge relative to
the physical contrast of the local edge. When the two edges
have opposite polarities and remote contrast is high and the
local contrast low, assimilation may completely overshadow
any perceptual contrast effect associated with the local edge.
The magnitude of the assimilation effect will also depend on
the value of the putative gain parameter.
Hong and Shevell (2004a) made the distinction

among contrast, assimilation, and blocking effects in
their matching data. Here we modeled these data
within the context of edge integration theory. Although
we find that the edge integration theory provides a
good quantitative account of the data in most cases, we
could not identify a single best blocking model for all
subjects. This may mean that either the parameters
underlying edge integration vary widely across sub-
jects, that our simplifications of the stimulus conditions
were more important than we had assumed, or that the
theory is wrong or incomplete. All our attempts to find
a better set of models to account for these data have
failed, however. Our results therefore concur with the
conclusions of Hong and Shevell (2004a) that achro-

matic color perception in circularly symmetric displays
is well described by edge integration theory.
Our explanation of the nonmonotonic relation between

darkness perception and contiguous ring luminance,
however, differs from the interpretation of Hong and
Shevell (2004a). These authors remarked on the role of
assimilation in generating nonmonotonicity but did not
state specifically how assimilation might relate to block-
ing. We instead claim that nonmonotonicity is due to
blocking of a contrast effect induced from the remote
edge, which shared the polarity of the local edge. This
hypothesis can be tested by having subjects rate the
difficulty of making matches made under conditions
supporting either monotonic and nonmonotonic func-
tions. We predict no difference in difficulty ratings
when both types of functions are associated with (same-
polarity) contrast effects.
Bindman and Chubb (2004) studied contrast and

assimilation effects in bull’s-eye patterns, which are
essentially complicated versions of the stimuli studied
here (see also Güçlü & Farell, 2005, pp. 1175–76). The
authors reported dramatic differences between the
strength of the assimilation effect with different tasks.

Figure 8. Fitted gain control parameters with 95% confidence intervals from modeling of individual subject’s data using the unconstrained
UP model (Supplementary material). Color coding corresponds to that used in earlier figures. (A) Fitted gain control parameters for low
and high contrast values of the remote edge, with decrement–increment combinations of local-remote edges. Gain values at the low
contrast are negative for most subjects, consistent with antiblocking. (B) Contrast had less effect for increment–increment combinations
for most subjects. (C) For decrement–decrement combinations, however, the low contrast of the remote edge is associated with large
positive gain control values, consistent with blocking. (D) The effect of contrast on gain is less clear for increment–decrement combinations.
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They measured a stronger assimilation effect using a
two-alternative forced choice task than that obtained with
an achromatic color-matching task. This discrepancy
might be related to our findings that the conditions
supporting assimilationVsituations in which local and
remote edges are of opposite polarityVare associated
with a range of behaviors that one does not observe with
stimuli evoking only contrast effects. In the mixed
polarity case, our subjects showed greater variability in
their settings, matched local increments to decrements
and vice versa, and had greater difficulty in setting
matches. The present findings therefore imply that the
achromatic color-matching method is not a satisfactory
means of assessing the strength of assimilation. Whether
the forced choice paradigm veridically measures the
strength of assimilation remains unclear.

The nature of gain control

Rudd and Zemach (2004) rejected the blocking inter-
pretation on the grounds that the data did not consistently
favor a blocking interpretation in the four subjects tested.
Data from two subjects supported the blocking interpre-
tation, whereas the remaining subjects showed either no
evidence for gain control or an antiblocking effect. Since
Rudd and Zemach (2004) used stimuli in which local and
remote edges had opposite polarities, their data are
particularly relevant for our study.
Our analyses of the Hong–Shevell data generally support

the conclusions of Rudd and Zemach (2004), suggesting
that gain control interactions between edges of opposite
polarity are associated with a great amount of variability
across subjects. Our psychophysical data may shed light
on this issue. We found large between-subject variability
in matches made under conditions similar to those studied
in Rudd and Zemach (2004): namely, when local and
remote edges had opposite polarities and the local edge
was a decrement. One important difference is that subjects
in Rudd and Zemach (2004) never set increment–
decrement matches. It is interesting to note, from this
perspective, that the subject (JL) whose data were
consistent with antiblocking came the closest to making
increment–decrement matches. In our data, subjects often
tended to set the luminance of the matching disk close to
the background luminance when confronted with diffi-
culty, thereby flattening out the matching function in the
direction of antiblocking. Our modeling of individual
subject’s data (Supplementary material) reveals that
antiblocking is most prominent when matches approach
the background luminance. We are therefore unable to
determine whether antiblocking is a genuine effect or a
by-product of the inability of subjects to set satisfactory
matches under these conditions.
It is interesting to note that the strongest assimilation

effects reported in the forced choice task of Bindman and
Chubb (2004) occurred when the local edge had the

highest physical contrast. This finding is consistent with
much of our matching data and with an antiblocking
effect. Nevertheless, we suggest that future empirical
studies of assimilation and gain control would benefit
from avoiding the use of matching tasks. It seems likely
that in such situations subjects are simply making the best
of a bad situation (Ekroll et al., 2004).
We describe here an additional effect of gain control. We

found that regardless of the polarity relationship between
local and remote inducers, our matching data were better
described by a model in which gain varied with the
luminance of the background. We cannot distinguish on
the basis of our results whether the effect arises from
changes in the luminance of the background itself or from
the accompanying changes in the contrast of the remote
edge. Rudd and Popa (2004a, 2004b) have reported a
similar change in the effect of gain control with the
distance between local and remote inducers, suggesting
the involvement of a feedback gain control process
between nearby edges. Our results agree with their
conclusions, suggesting that the direction and magnitude
of feedback gain control (positive or negative) depends on
the polarity and contrast of remote edges.

Relevance to achromatic color filling-in

Edge integration theory (Rudd&Arrington, 2001) derives
partly from retinex theory (Land & McCann, 1971) and
partly from the filling-in theory of brightness and darkness
perception (Cohen & Grossberg, 1984; Grossberg &
Todorovic, 1988). According to the model of Grossberg
and Todorovic (1988), the filling-in of brightness and
darkness is blocked by edge signals that are not sensitive to
polarity. Arrington (1996) modified this model, incorporat-
ing a directional filling-in mechanism that allows bright-
ness (darkness) to flow across borders of the same polarity
but not the opposite polarity. In the present context,
Arrington’s model predicts that blocking should occur only
between edges of opposite polarity. The available evidence
does not support this prediction.
In considering blocking in terms offilling-in, it is important

to note that recent functional magnetic resonance imaging
(fMRI) studies provide conflicting evidence concerning the
existence of brightness and color filling-in in early visual
cortex. On the one hand, the studies of Meng, Remus, and
Tong (2005) and Sasaki and Watanabe (2004) provide evi-
dence in favor of filling-in. On the other hand, Boucard,
van Es, Maguire, and Cornelissen (2005), Cornelissen
et al. (2006), and Perna, Tosetti, Montanaro, and Morrone
(2005) report evidence against filling-in in V1 and V2. It
is likely, however, that reports in favor of filling-in (Meng
et al., 2005; Sasaki & Watanabe, 2004) may have con-
tained real or illusory edge signals within the region of
interest (Cornelissen et al., 2006; Cornelissen & Vladusich,
in press). Modeling of neuronal V1 responses to stimuli
similar to those studied here (Kinoshita & Komatsu, 2001)
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also fails to support the filling-in hypothesis in most neu-
rons (Vladusich et al., 2006). Filling-in may occur in higher
cortical areas (Perna et al., 2005), or may not occur at all,
with the latter possibility being consistent with the notion
that surface brightness is coded by the activity of edge-
sensitive neurons (Bindman & Chubb, 2004; Blakeslee &
McCourt, 1999, 2004; Blakeslee et al., 2005; Friedman,
Zhou, & von der Heydt, 2003; Rudd & Zemach, 2004;
Zhou, Friedman, & von der Heydt, 2000).

The neural basis of edge integration

The framework developed here generalizes the edge
integration theory introduced in Rudd and Arrington (2001)
to incorporate a neural mechanism for defining polarity-
specific edge interactions. We should note, however, that
Rudd and Zemach (2004) implicitly joined together the
concepts of log luminance ratio processing and HWR
processing in their discussion of how cortical simple cells
might implement edge integration. The explicit union of
HWR notation with log luminance ratios (Vladusich et al.,
2006) provides a compact and physically motivated means
of associating different weights and gains with edge
signals of opposite polarity.
Parallel processing of local luminance increments and

decrements occurs within ON and OFF channels of the
retina and lateral geniculate nucleus (Bowen, 1997;
Schiller, 1992). In the cortex, polarity-sensitive neurons,
such as simple cells, are routinely modeled as HWR
mechanisms that combine ON and OFF signals (Grossberg
& Mingolla, 1985; Heeger, 1993). Simple cells may
provide a neural basis for psychophysical effects related
to edge detection (Elder & Sachs, 2004; Grossberg &
Mingolla, 1985; Sankeralli & Mullen, 2001) and bright-
ness coding (Bindman & Chubb, 2004; Blakeslee &
McCourt, 1999, 2004; Blakeslee et al., 2005). Thus,
simple cells are the most likely candidates to provide
inputs to the putative edge integration process.

Possible relevance to White’s effect

Howe (2005) introduced a simplified variant of White’s
effect (White, 1979) using circularly symmetric displays,
similar to those studied by Bindman and Chubb (2004) and
Hong and Shevell (2004a, 2004b), containing multiple
black and white rings, some of which were replaced by
grey test rings. Howe (2005) employed a matching task to
measure the strength of the illusion in conventional and
simplified displays. He found that the illusion was not
diminished in the simplification, implying that figural
factors are not essential to the production of the effect.
Here we present a simpler displayVbased on our exper-
imental data and modeling work with edge integration
theoryVwhichmay have important implications forWhite’s
effect (Figure 9). Our goal is to theoretically motivate

further empirical study on the roles of contrast and
assimilation in White’s effect (Blakeslee et al., 2005; De
Weert & Spillmann, 1995; Ripamonti & Gerbino, 2001;
Spehar & Zaidi, 1997), rather than to provide an account of
the phenomenon per se.
The displays in Figure 9 were designed to elicit

competing contrast and assimilation effects. This was
done by ensuring that local and remote edges have
opposite polaritiesVa property necessary for the induc-
tion of White’s effect (Spehar & Zaidi, 1997)Vand that
the remote edge has higher contrast than the local edge.
These are precisely the conditions under which subjects
set cross-polarity matches in our experiment. The local
edge in Figures 9A and B induces a contrast effect into the
grey central ring. The high physical contrast associated with
the remote edge, however, ensures that assimilation is also
induced into the target ring. Thus, although the local edge is
weighted more highly than the remote edge by virtue of its
proximity to the target region, the high contrast of the remote
inducer partially overrides the contrast effect. In other
words, it may be that a simple assimilation effect (Blakeslee
et al., 2005; De Weert & Spillmann, 1995) can explain the
circular variantVand perhaps at least a part of the effect
observed in the conventional variantVof White’s display
(Ripamonti & Gerbino, 2001). Consistent with our match-
ing data, the circular variant illustrated in Figure 9C shows
that lowering the contrast associated with the remote edge
largely eliminates any assimilation effect.

Figure 9. Displays based on our study of contrast and assim-
ilation. (A) Display similar to the Howe (2005) version of White’s
effect. (B) Display which is further simplified from (A) suggests a
link between the assimilation effects studied here, bull’s-eye
displays (Bindman & Chubb, 2004), and White’s effect. The local
edge formed by the grey ring and the contiguous ring induces a
contrast effect directly into the grey ring, whereas the remote edge
formed by the contiguous and noncontiguous rings induces an
assimilation effect (we neglect the influence of the outermost edge
for simplicity). (C) The assimilation effect is largely eliminated by
reducing the contrast associated with the remote edge. (D) Con-
ventional simultaneous contrast illusion. The display in (B) does
not manifest strong figural grouping, making it potentially useful
for isolating the role of assimilation in White’s effect.
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Concluding remarks

We have shown that edge integration theory accounts for
a wide variety of achromatic color-matching data. The
theory also suggests a number of avenues for further

empirical work. Of particular importance is to identify
how conflict between contrast and assimilation effects may
give rise to the difficulty subjects experience in setting
achromatic color matches under certain conditions (Faul
et al., 2006; Logvinenko & Maloney, 2006).

Appendix A

Model (rank) gD
B gD

D wD
B wD

D

Subject BS
NOG (3) – 0.13 T 0.13 0.56 T 0.23
SAP (1) – 8.37 T 0.43 0.13 T 0.1 1.31 T 0.35
OPP (4) j259.4 T 0.1 – G0.01 T 0 0.56 T 0.23
SIG (5) 3.02 T 0.39 0.18 T 0.23 0.73 T 0.3
UP (2) j259.4 T 0.7 8.37 T 0.2 G0.01 T 0 1.31 T 0.33

Subject TG
NOG (4) – 0.14 T 0.1 0.85 T 0.2
SAP (1) – 7.15 T 0.19 0.14 T 0.04 1.67 T 0.15
OPP (5) 2.01 T 0.22 – 0.2 T 0.14 0.85 T 0.2
SIG (3) 4.65 T 0.48 0.37 T 0.21 1.28 T 0.21
UP (2) 2.01 T 0.37 7.15 T 0.13 0.2 T 0.06 1.67 T 0.15

Subject SWH
NOG (3) – j0.2 T 0.2 1.35 T 0.4
SAP (5) – 3.97 T 0.7 j0.2 T 0.2 1.87 T 0.55
OPP (2) 5.2 T 1.16 – j0.91 T 0.72 1.35 T 0.37
SIG (1) 5.04 T 1.1 j0.86 T 0.66 2.07 T 0.57
UP (4) 5.2 T 1.24 3.97 T 0.59 j0.91 T 0.73 1.87 T 0.5

Table A2. Fitted parameters and 95% confidence intervals for simulations of Hong and Shevell (2004a).

Model (rank) gD
B gD

D mD
B mD

D kD
B kD

D

Subject SWH
NOB (4) – j0.03 T 0.09 0.06 T 0.01 j0.06 T 0.14 1.93 T 0.21
SAP (2) 0 2.26 T 0.28 j0.03 T 0.06 0.06 T 0.01 j0.06 T 0.09 2.36 T 0.17
OPP (5) 2.55 T 0.16 0 j0.03 T 0.07 0.06 T 0.01 j0.19 T 0.34 1.93 T 0.21
SIB (1) 2.27 T 0.28 j0.03 T 0.05 0.06 T 0.1 j0.15 T 0.2 2.36 T 0.17
UP (3) 2.55 T 0.11 2.26 T 0.28 j0.03 T 0.05 0.06 T 0.01 j0.19 T 0.23 2.36 T 0.18

Subject YIO
NOB (4) – 0.07 T 0.04 0.13 T 0.04 0.75 T 0.27 0.97 T 0.29
SAP (1) 0 4.72 T 0.19 0.07 T 0.02 0.13 T 0.02 0.75 T 0.18 1.46 T 0.25
OPP (5) 2.18 T 0.27 0 0.07 T 0.03 0.13 T 0.04 1.75 T 0.24 0.97 T 0.29
SIB (3) 2.82 T 0.22 0.07 T 0.03 0.13 T 0.03 2.78 T 0.14 1.25 T 0.26
UP (2) 2.18 T 0.17 4.72 T 0.19 0.07 T 0.02 0.13 T 0.02 1.75 T 0.15 1.46 T 0.25

Subject LY
NOB (4) – 0.23 T 0.18 0.04 T 0.01 0.56 T 0.25 0.86 T 0.13
SAP (1) 0 1.71 T 0.32 0.23 T 0.17 0.04 T 0.01 0.56 T 0.24 0.98 T 0.14
OPP (5) j54.58 T 0 0 0.22 T 0.35 0.04 T 0.01 0.04 T 0.07 0.86 T 0.13
SIB (2) 1.67 T 0.32 0.23 T 0.17 0.04 T 0.01 1.01 T 0.15 0.98 T 0.14
UP (3) j54.58 T 0 1.71 T 0.33 0.22 T 0.33 0.04 T 0.01 0.04 T 0.07 0.98 T 0.15

Table A1. Fitted parameters and 95% confidence intervals for simulations of Hong and Shevell (2004b).
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