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Abstract

Early life stress in humans enhances the risk for psychopathologies, including excessive aggression and violence. In rodents,
maternal separation is a potent early life stressor inducing long-lasting changes in emotional and neuroendocrine responsiveness to
stress, associated with depression- and anxiety-like symptoms. However, effects of maternal separation on adult male aggression
and underlying neurobiological mechanisms remain unknown. Therefore, we investigated the effects of maternal separation on adult
intermale aggression in Wistar rats and on hypothalamic arginine vasopressin (AVP) mRNA expression, and AVP and serotonin
(5-HT) immunoreactivity, as both AVP and 5-HT have been implicated in stress-coping and aggression. We showed that maternal
separation induced depression-like behaviour (increased immobility) and higher adrenocorticotropin hormone responses to an acute
stressor (forced swimming). Intermale aggression (lateral threat, offensive upright and keep down) was significantly higher in
maternally separated rats compared with control rats. AVP mRNA expression and AVP immunoreactivity were higher in the
hypothalamic paraventricular and supraoptic nuclei upon resident-intruder test exposure, whereas 5-HT immunoreactivity was
decreased in the anterior hypothalamus of maternally separated rats. Moreover, 5-HT immunoreactivity in the anterior hypothalamus
and supraoptic nucleus correlated negatively with aggression. These findings show that exposure to early life stress increases adult
male aggression in an animal model of maternal separation. Furthermore, the maternal separation-induced changes in hypothalamic
AVP and 5-HT systems may underlie these behavioural alterations.

Introduction

Individuals with a history of childhood maltreatment (child abuse,
physical and emotional neglect, parental loss) often show impulsive
aggression, violent and ⁄ or criminal behaviour, and antisocial person-
ality symptoms (Widom, 1989; Dodge et al., 1990; Patterson, 1995;
Loeber & Stouthamer-Loeber, 1998; Barnow, 2001; Barnow &
Freyberger, 2003; Barnow et al., 2004). Childhood maltreatment has
also been associated with other forms of adult psychopathologies, like
depression and anxiety disorders (Agid et al., 1999; Heim &
Nemeroff, 2001; Newport et al., 2002). An animal model for early
adverse experience is the separation of pups from their mother for 3 h
daily during the first 2 weeks of life (maternal separation, MS)
(Plotsky & Meaney, 1993; Newport et al., 2002). MS has been shown
to chronically impair emotional and neuroendocrine responses. For
example, MS rats are characterized by increased anxiety-related
behaviours (Wigger & Neumann, 1999; Huot et al., 2002; Kalinichev
et al., 2002; Romeo et al., 2003), increased corticotropin-releasing
hormone (CRH) mRNA expression in the hypothalamic paraventricu-
lar nucleus (PVN) (Plotsky & Meaney, 1993), and elevated plasma
adrenocorticotropin hormone (ACTH) concentrations in response to
an acute stressor (Plotsky & Meaney, 1993; Ladd et al., 1996; Wigger
& Neumann, 1999; Liu et al., 2000; Huot et al., 2002; Kalinichev
et al., 2002). Interestingly, hypothalamic–pituitary–adrenocortical

(HPA) axis abnormalities in humans and rodents have often been
associated with changes in male aggression (Lyons-Ruth, 1996;
McBurnett et al., 2000; de Kloet, 2003; Haller et al., 2004).
Although it is generally accepted that early life trauma is a universal

risk factor for excessive aggression in adult humans, animal models
studying developmental stress-induced changes in aggression and their
underlying neurobiological mechanisms are still lacking. The present
study investigated the consequences of MS on adult male aggression
in Wistar rats. Furthermore, human and animal studies have suggested
a role for arginine vasopressin (AVP) and serotonin (5-HT) in various
aspects of emotional behaviours, including anxiety (Baldwin &
Rudge, 1995; Landgraf et al., 1998; Lesch et al., 2003; Bielsky et al.,
2004; Gordon & Hen, 2004; Griebel et al., 2005; Veenema et al.,
2005) and aggression (Ferris, 1996; Coccaro et al., 1998; Koolhaas
et al., 1998; Nelson & Chiavegatto, 2001; Olivier, 2005). In particular
at the level of the hypothalamus, AVP was shown to increase anxiety
(Keck et al., 2003; Wigger et al., 2004) and aggression (Ferris, 1992;
Delville et al., 1996a). Hypothalamic 5-HT seems to diminish
aggression, likely via inhibiting local AVP actions (Delville et al.,
1996a; Ferris, 1996; Ferris et al., 1997). Therefore, MS-induced
changes in hypothalamic AVP and 5-HT systems were also investi-
gated. In the first experiment the application of the MS model in our
laboratory was validated by measuring in adult male rats MS-induced
changes in depression-like behaviour and neuroendocrine (plasma
ACTH, corticosterone and testosterone) responses to an acute stressor
(forced swimming). In the second experiment, MS-induced alterations
in AVP mRNA expression were investigated. In the third experiment,
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adult male rats were tested for MS-induced alterations in home-cage
aggression using the resident-intruder (RI) test and in AVP and 5-HT
immunoreactivity.

Materials and methods

Animals

After 1 week of habituation in our laboratory facility, female and male
Wistar rats (Charles River, Sulzfeld, Germany) were mated for 5 days.
During the last week of gestation, female rats were individually
housed in standard rat cages (42 · 27 · 18 cm), and maintained
under standard laboratory conditions (12 : 12 light : dark cycle, lights
on at 06.00 h, 22 �C, 60% humidity, food and water ad libitum). The
animal studies were conducted in accordance with the Guide for the
Care and Use of Laboratory Animals of the Government of Bavaria
and the guidelines of the NIH.

MS procedure

On the day after parturition, i.e. on postnatal day 1, each litter was
culled to eight)10 pups (in each nest two–four females). Pups were
separated daily between 09.00 h and 12.00 h (noon) from the mother
for 3 h from postnatal day 1 to 14. Dams were removed from the
home-cage and placed into a separate individual cage until the end of
the 3-h separation period. Pups were then removed as complete litters
from the nest, transferred to an adjacent room and put into a small box
filled with bedding, which was placed on a heating pad maintained at
30–33 �C. After the 3-h separation period, the pups were returned to
the home-cage followed by reunion with the dam. Non-separated
control litters were left undisturbed, except for change of bedding at
postnatal day 1, 7 and 14. Pups were weaned at postnatal day 21 and
housed in groups of four–five of the same gender and treatment until
the start of the experiments.

Experimental design

Three experiments were performed. In experiment 1, effects of MS on
adult behavioural and neuroendocrine reactivity to an acute stressor
(forced swimming) were investigated. Experiment 2 assessed the
effects of MS on AVP mRNA expression in the PVN and supraoptic
nucleus (SON) under basal conditions and after exposure to the RI
test. Experiment 3 assessed the effects of MS on adult male aggression
during the RI test, and on AVP and 5-HT immunoreactivity in several
hypothalamic regions under basal conditions and after RI exposure.
For experiments 1 and 3, male pups were taken from 13 litters (six
control and seven MS). For experiment 2, male pups were taken from
14 litters (seven control and seven MS). No more than two males per
litter were used for each experiment group.

Experiment 1: MS effects on behavioural and neuroendocrine
reactivity

Forced swim test

At the age of 11 weeks, active vs. passive stress-coping in MS
(n ¼ 10) and control (n ¼ 8) rats was tested during the forced swim
test carried out between 10.00 and 11.00 h. The procedure was a
modified version of the test described before (Porsolt et al., 1977).
Rats were forced to swim inside a Plexiglas cylinder (diameter, 30 cm;
height, 50 cm) filled with water (25 �C) for 7 min. As an indicator of
passive stress-coping, the duration of immobility (floating in the water

without struggling, making only those movements necessary to keep
its head above the water) and the latency time for immobility were
recorded. As an indicator of active stress-coping, the duration of
swimming (moving around in the cylinder, active swim movements)
and climbing (movements with the forepaws in and out of the water,
usually directed against the wall) were also recorded.

Jugular vein surgery and blood sampling

One week after the forced swim test, the sameMS and control rats were
implanted with chronic jugular vein catheters under isoflurane
anaesthesia and using sterile procedures as described before (Neumann
et al., 1998). Following surgery, rats were singly housed in
experimental cages (40 · 24 · 35 cm) and were handled each day to
reduce non-specific stress responses during the experiments. Five days
after surgery, at 09.00 h, the catheter of each rat was attached to an
extension tube connected to a 1-mL plastic syringe filled with sterilized
heparinized 0.9% saline (30 IU ⁄ mL, Heparin-Natrium, Ratiopharm,
Ulm, Germany). The rats were then left undisturbed for 2 h. Following
two basal blood samplings (30 min and 0 min prior to stress exposure),
rats were forced to swim for 5 min and were then returned to their
home-cage, and additional blood samples were taken 5, 15, 30, 60 and
90 min after the onset of the swim stressor. The 0.2-mL blood samples
were immediately replaced by sterile 0.9% saline. Blood samples were
collected from MS (n ¼ 8) and control (n ¼ 7) rats.

Radioimmunoassay for plasma ACTH, corticosterone and testosterone

All blood samples were collected in chilled EDTA-coated tubes
(Sarstedt, Nümbrecht, Germany) containing 10 lL aprotinin (Trasylol,
Bayer AG, Leverkusen, Germany) and centrifuged at 2600 g for
10 min at 4 �C. Plasma aliquots were stored at )20 �C until assayed.
Plasma ACTH (50 lL), corticosterone (10 lL) and testosterone
(50 lL) were determined using commercially available radioimmu-
noassays (ICN Biomedicals, Costa Mesa, CA, USA). Detection limits
for ACTH, corticosterone and testosterone were 4.0 pg ⁄ mL,
10 ng ⁄ mL and 0.6 ng ⁄ mL, respectively.

RI test

Two weeks before the start of experiments 2 and 3 (see below), the
12 : 12 h light : dark cycle was switched to lights off at 13.00 h. Rats
underwent the RI tests at the age of 14–16 weeks and weighed 350–
450 g. Each rat was housed in an experimental cage
(40 · 24 · 35 cm) either single for 2 days (experiment 2) or together
with a female Wistar rat for 2 weeks (experiment 3). RI tests were
carried out during the beginning of the dark cycle (between 14.00 and
16.00 h). During the RI test, the resident MS or control male was
exposed in its home-cage to a slightly smaller (20–50 g lighter)
unfamiliar male Wistar rat for 10 min. In experiment 2, rats were
exposed to a single RI test. In experiment 3, rats underwent three RI
tests carried out on consecutive days, and the full behavioural profile
was recorded. Thirty minutes before each RI test the female was
removed from the resident’s home-cage and was returned afterwards.
The tests were videotaped and the behavioural scoring was done using
Eventlog (version 1.0, October 1986, R. Hedersen) by a researcher
blinded to the treatment condition. The following parameters related to
male aggression were scored: attack latency time, number of attacks,
lateral threat, clinch, offensive upright and keep down. The latter four
behavioural parameters were summarized as total aggressive beha-
viour. Furthermore, social behaviour (consisting of investigating
opponent, anogenital sniffing, mount), exploration and self-grooming
were scored.
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Experiment 2: MS effects on AVP mRNA expression

At the age of 16 weeks, MS (n ¼ 8) and control (n ¼ 8) rats
underwent a RI test, and 1 h later rats were decapitated under CO2

anaesthesia, brains were rapidly removed, quickly frozen in ice-cold
isopenthane and stored at )80 �C for subsequent AVP in situ
hybridization. The 1 h time point for measuring changes in AVP
mRNA expression upon RI test exposure was chosen based on
previous studies showing alterations in AVP expression patterns 1 h
after exposure to several different stressors (Dent et al., 2000; Givalois
et al., 2004; Itoi et al., 2004; Kawasaki et al., 2005; McDougall et al.,
2005). Another group of MS (n ¼ 8) and control (n ¼ 8) rats were
decapitated under similar conditions, but without the preceding RI test
in order to measure AVP mRNA expression under basal conditions.

AVP in situ hybridization

Brains were sectioned coronally at 16 lm on a cryostat and thaw
mounted onto poly-l-lysine-coated slides and stored at )80 �C. Brain
sections were matched for level among the groups. The same number
of brain slices for each animal was used.

The hybridization protocol was adopted from De Vries et al. (1994).
Briefly, slides were fixed in 4% paraformaldehyde, acetylated in
0.25% triethanolamine ⁄ acetic anhydride and dehydrated through a
series of graded ethanols. Hybridization was performed using a
specific 48-mer, 35S-labelled oligonucleotide probe: 5¢-GCA-GAA-
GGC-CCC-GGC-CGG-CCC-GTC-CAG-CTG-CGT-GGC-GTT-GCT-
CCG-GTC-3¢ (Bosch et al., 2006). Sections were incubated in
hybridization solution [50% formamide, 10% dextran sulphate,
2 · standard sodium citrate (SSC), 2 mg ⁄ mL yeast tRNA, 10 mm

dithiothreitol, 5 · Denhardt’s]. The probe was applied to each section
at a concentration of 106 cpm ⁄ slide in 200 lL hybridization solution.
The sections were hybridized overnight at 50 �C in a humidified
chamber. Then, sections were washed three times in 1 · SSC at
50 �C, washed in 1 · SSC at room temperature, dehydrated in a
graded series of ethanol and air dried. Hybridized sections were
exposed to X-Omat film (Kodak, Rochester, NY, USA) along with 14C
autoradiographic standards for 3 days (PVN, SON) or for 7 days [bed
nucleus of the stria terminalis (BNST)]. All brain sections were
hybridized at the same time and were exposed to the same film to
avoid intrinsic variations between different in situ hybridizations and
different films. Furthermore, as the density of AVP mRNA expression
was much higher than the 14C standard scale, we used different
exposure times in order to verify that the optical density values were
within the linear range of the film. Using the NIH Image program
(ImageJ 1.31, National Institute of Health, http://rsb.info.nih.gov/ij/),
the optical density of AVP mRNA expression in the magnocellular
part of the PVN (mPVN), the SON and in the BNST was determined
bilaterally in the brain slices with the highest density of mRNA
expression. This resulted in bilateral measurements in two–four brain
sections per region of interest for each rat, which were pooled to
provide an average per brain area per rat. For tissue background, the
optical density of a non-hybridized region outside the mPVN, SON or
BNST was measured.

Experiment 3: MS effects on aggression and on AVP and 5-HT
immunoreactivity

Aggression

At the age of 14 weeks, MS (n ¼ 11) and control (n ¼ 8) male rats
were tested for intermale aggression during three 10-min RI tests
carried out on consecutive days.

AVP and 5-HT immunocytochemistry

To measure the effects of RI exposure on hypothalamic AVP and 5-HT
immunoreactivity, MS (n ¼ 11) and control (n ¼ 8) rats were
perfused 2 h after the start of the third RI test. Based on previous
studies (Aubry et al., 1999), it was assumed that changes in peptide
levels are likely to be more robust after repeated exposure to the RI
test. The 2 h time point was chosen based on other studies showing
alterations in AVP expression patterns within this time frame
following stress exposure (Dent et al., 2000; Givalois et al., 2004;
Itoi et al., 2004; Kawasaki et al., 2005; McDougall et al., 2005).
Another group of MS (n ¼ 10) and control (n ¼ 8) rats were perfused
under the same conditions without preceding RI tests, in order to
measure AVP and 5-HT immunoreactivity under basal conditions. All
rats received CO2 anaesthesia and were perfused transcardially with
150 mL ice-cold phosphate-buffered saline (PBS), followed by
300 mL 4% paraformaldehyde in ice-cold phosphate buffer
(pH 7.4). The brains were postfixed overnight, transferred into 30%
sucrose and stored at 4 �C. Forty-micrometre cryocut coronal sections
were stored at 4 �C in 0.1 m phosphate buffer. For immunocyto-
chemistry, brain sections were matched for level among the groups,
and the same number of brain slices for each animal was used.
AVP immunocytochemistry was adopted from Dai et al. (1997).

Briefly, free-floating sections were washed in TBS (50 mm

Tris ⁄ 150 mm NaCl, pH 7.6), following incubation overnight with
rabbit anti-AVP (Truus, 29-01-86, Netherlands Institute for Brain
Research, 1 : 2000) in supermix (TBS + 0.25% gelatine + 0.5%
Triton, pH 7.6). After rinsing in TBS, sections were incubated with
biotinylated goat-anti-rabbit IgG (Vector, 1 : 400) for 1 h, followed by
ABC complex (Vector, 1 : 800) and diaminobenzidine (DAB,
0.25 mg ⁄ mL, 0.01% H2O2).
5-HT immunocytochemistry was adopted from Nyakas et al.

(1994). Briefly, free-floating sections were washed in PBS (0.01 m,
pH 7.4), incubated in 0.3% H2O2 for 30 min, preincubated for 1 h in
5% normal horse serum, 0.4% TX-100 dissolved in PBS, following
incubation for 3 days with mouse anti-5-HT (1 : 100 000, kindly
donated by Dr L. Léger, Lyon, France). After rinsing in PBS, sections
were incubated with biotinylated horse-anti-mouse IgG (Vector,
1 : 500) overnight, followed by ABC complex (Vector, 1 : 500) and
DAB (0.25 mg ⁄ mL DAB, 0.01% H2O2).
Sections were mounted onto slides, air dried and coverslipped the

following day. The optical density of AVP- and 5-HT-immunoreactive
staining was quantified as grey density per area minus background in
digitized images using IMAGE software and obtained from a video
camera mounted on a microscope. The sections were obtained with a
10 · lens to maximize capture of the areas of interest. The images
were imported on a MacIntosh computer equipped with a frame
grabber. The following hypothalamic brain areas were analysed for
AVP: the mPVN, the posterior part of the PVN (PaPo), the SON, the
nucleus circularis and the lateral hypothalamus. The following brain
areas were analysed for 5-HT: the anterior hypothalamus, the SON,
the lateral hypothalamus, the dorsomedial hypothalamic nucleus and
the basolateral amygdala. Background measurements were taken from
tissue lateral to the analysed region that exhibited no evident signal.
The results are expressed as the optical density of immunoreactive
signal within the sample area with a diameter circle of 50 lm (nucleus
circularis), 200 lm (PVN, SON) or 250 lm (lateral, anterior and
dorsomedial hypothalamus, basolateral amygdala). Bilateral measure-
ments were taken for each rat in those brain slices with the highest
density of immunoreactive staining. This resulted in bilateral meas-
urements in two–four brain sections per region of interest for each rat,
which were averaged per brain area per rat.

Early life stress and adult male aggression 1713

ª The Authors (2006). Journal Compilation ª Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 24, 1711–1720



Statistical analysis

Behaviour in the forced swim test was analysed with a one-way
anova. An anova for repeated measures was used for analysing
plasma ACTH, corticosterone and testosterone concentrations (factor
MS · factor time) and behaviour during the RI tests (factor
MS · factor time). Two-way anova (factor MS · factor RI) was
used to analyse AVP mRNA expression and AVP and 5-HT
immunoreactivity. When appropriate, anova was followed by a
Bonferroni post hoc test. Correlation analysis of aggressive beha-
viour (including all scored parameters) with AVP or 5-HT immu-
noreactivity in the brain regions measured was carried out using
simple regression analysis, with a Bonferroni correction for multiple
comparisons. For all tests the software package SPSS (version 12)
was used. Data are presented as mean ± SEM. Significance was
accepted at P < 0.05.

Results

Experiment 1: MS effects on behavioural and neuroendocrine
reactivity

Forced swim behaviour

MS rats displayed less swimming (P < 0.05) and more immobility
(P < 0.01) and had a shorter latency time to show immobility
(P < 0.05) than control rats, indicating a more pronounced passive
stress-coping in MS rats (Table 1).

ACTH

anova indicated main effects for time (F6,78 ¼ 61.38, P < 0.001) and
treatment (F1,13 ¼ 4.85, P < 0.05). Exposure to 5 min forced
swimming elevated plasma ACTH concentrations compared with
basal ACTH concentrations in control and MS rats. MS rats, however,
showed significantly higher ACTH concentrations 5 min after the
onset of the swim stressor (P < 0.05) and a tendency toward higher
ACTH concentrations at 15 min (P ¼ 0.053) compared with control
rats (Fig. 1A). In MS rats, plasma ACTH concentrations remained
elevated until 60 min after the onset of the stressor compared with
basal ACTH concentrations (P < 0.05). In contrast, in control rats,
plasma ACTH concentrations declined already to baseline at 30 min.
Basal plasma ACTH concentrations did not differ between MS and
control rats.

Corticosterone

anova indicated a main effect only for time (F6,78 ¼ 27.56,
P < 0.001). Exposure to forced swimming elevated plasma corticos-
terone concentrations compared with basal corticosterone concentra-
tions in control and MS rats. In MS rats, plasma corticosterone
concentrations were elevated 5 min after the onset of the stressor
(P < 0.05), whereas in control rats corticosterone concentrations
were elevated 15 min after the onset of the stressor (P < 0.05;
Fig. 1B). Basal as well as stress-induced plasma corticosterone
concentrations were not significantly different between MS and
control rats.

Testosterone

anova indicated a main effect for time (F1,13 ¼ 12.65, P < 0.005).
Only MS rats showed a decrease in plasma testosterone concentrations
upon swim stress-exposure compared with basal testosterone con-
centrations (P < 0.005; Fig. 1C).

Experiment 2: MS effects on AVP mRNA expression

For both the PVN and SON, main effects were found for MS (PVN:
F1,28 ¼ 6.24, P < 0.05; SON: F1,28 ¼ 4.96, P < 0.05) and for

Table 1. Behavioural performance of adult control (n ¼ 8) and maternally
separated (MS, n ¼ 10) male rats during the forced swim test

Control MS

Immobility latency (s) 198.9 ± 36.5 112.7 ± 21.4*
Immobility (time, %) 3.4 ± 0.9 14.0 ± 2.7**
Swimming (time, %) 74.9 ± 1.7 63.4 ± 3.3*
Climbing (time, %) 21.7 ± 2.0 22.6 ± 1.5

Data are mean ± SEM, *P < 0.05 and **P < 0.005, vs. control, anova.

Fig. 1. Effects of maternal separation (MS) on basal and stress-induced plasma adrenocorticotropin hormone (ACTH) (A), corticosterone (B) and testosterone
(C) concentrations. For plasma ACTH and corticosterone concentrations, blood samples were taken from freely moving control and MS rats under basal conditions
()30 and 0 min), and at several time points after 5 min of forced swim stress (FS). Plasma testosterone concentrations were measured under basal conditions (0 min)
and 30 min after FS. Data are means ± SEM. *P < 0.01 vs. control rats, #P < 0.05, ##P < 0.005 vs. respective basal samples, anova for repeated measures
followed by Bonferroni post hoc test.
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MS · RI exposure (PVN: F1,28 ¼ 5.42, P < 0.05; SON:
F1,28 ¼ 5.61, P < 0.05). Basal AVP mRNA expression was not
affected by MS in either the PVN or SON (Figs 2A and 6). Control
rats showed a decrease in AVP mRNA expression in both the mPVN
and SON upon RI exposure (P < 0.05), whereas MS rats did not show
this RI-induced decline. As a result, a higher AVP mRNA expression
was found in both hypothalamic nuclei in MS compared with control
rats 1 h after RI exposure (P < 0.005). No effects of MS or RI test
exposure on AVP mRNA expression in the BNST were found (optical
density values: control basal, 21.2 ± 2.6; MS basal, 23.3 ± 2.1;
control RI, 22.1 ± 3.1; MS RI, 26.4 ± 2.8).

Experiment 3: MS effects on aggression and on AVP and 5-HT
immunoreactivity

Aggression

Using anova for repeated measures, no time effect was found for
any of the behavioural parameters recorded. Therefore, the mean
was calculated for each behavioural parameter per rat over the three
RI tests. One-way anova revealed that MS resident males
displayed more aggressive behaviour than control resident males
(P < 0.05, Fig. 3A). Among the behavioural elements of aggres-
sion, MS rats showed significantly more lateral threat (P < 0.05),
offensive upright (P < 0.01) and keep down (P < 0.05, Fig. 3B).
No differences were found for the attack latency time (Fig. 3A) or

for the number of attacks (Fig. 3A). Also, no differences were
found for the percentage time of social behaviour (control:
40.5 ± 6.0%; MS: 38.9 ± 3.5%), exploration (control: 43.1 ±
4.3%; MS: 35.9 ± 2.7%) or self grooming (control: 8.3 ± 1.5%;
MS: 7.2 ± 2.0%).

AVP immunoreactivity

Exposure to MS significantly increased the optical density of AVP-
immunoreactive staining in adult male rats in the PVN (mPVN and
PaPo, only after RI test exposure), the SON and the lateral
hypothalamus (Figs 2B and 6; for statistical details, see Table 2).
RI exposure was not accompanied by a significant change in AVP
immunoreactivity in any of the brain regions tested. Despite that, a
tendency toward a general decrease in AVP immunoreactivity in the
hypothalamic regions measured was seen in control rats, while MS
rats rather showed an increase (Table 2). No correlation was found
between any of the parameters of intermale aggression and the optical
density of AVP-immunoreactive staining in any of the hypothalamic
regions.

5-HT immunoreactivity

MS reduced the optical density of 5-HT-immunoreactive staining only
in the anterior hypothalamus of adult male rats, both under basal
conditions and after RI exposure (for statistical details, see Table 3).
No effect of MS or RI exposure was found for 5-HT immunoreactivity

Fig. 2. Effects of maternal separation (MS) on the optical density (arbitrary
units) of (A) arginine vasopressin (AVP) mRNA expression in the magnocel-
lular part of the paraventricular nucleus of the hypothalamus (mPVN) and
supraoptic nucleus (SON) under basal conditions and 1 h after the resident-
intruder (RI) test, and (B) AVP-immunoreactive cell bodies in the mPVN and
the SON under basal conditions and 2 h after the RI test. Data are
means + SEM. *P < 0.05, #P £ 0.05 vs. representative basal group, anova,
followed by Bonferroni post hoc test.

Fig. 3. Effect of maternal separation (MS) on (A) the percentage time of
total aggressive behaviour, the attack latency time, the number of attacks, and
(B) the percentage time of the detailed behavioural elements of aggressive
behaviour during exposure to the RI test. Data are means + SEM. *P < 0.05,
anova followed by Bonferroni post hoc test.
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in any of the other brain regions analysed (Figs 4–6; Table 3). A
negative correlation was found between the duration of lateral threat
and the optical density of 5-HT fibres in the anterior hypothalamus
(r2 ¼ 0.562, P ¼ 0.035) and the SON (r2 ¼ 0.502, P ¼ 0.035)
(Fig. 5). No correlations were found between any of the other
parameters of intermale aggression and 5-HT immunoreactivity in any
of the brain regions measured.

Discussion

Despite the fact that in existing human societies a link between early
life trauma and disturbances in adult aggression seems to be generally
accepted, animal models studying this phenomenon have been lacking
until now. In the present study, we show that exposure to early life
stress significantly increased adult aggression of male Wistar rats. The
MS-induced increase in male aggression was accompanied by a
significant higher AVP mRNA expression and AVP-immunoreactive
staining in the mPVN and SON upon RI test exposure compared with
control rats. In contrast, a significant decrease in 5-HT immunoreac-
tivity in the anterior hypothalamus was found after MS. Importantly,
there was a significant negative correlation between 5-HT-immuno-
reactive staining in the anterior hypothalamus as well as in the SON
and the duration of lateral threat.
We confirmed MS-induced long-term changes in behavioural stress-

coping and HPA axis responsiveness. Adult MS rats displayed a rather
passive stress-coping style, indicated by enhanced immobility, and
enhanced and prolonged plasma ACTH secretion in response to forced
swimming. These findings are in agreement with other rodent studies
demonstrating that repeated separation from the dam during the first
2 weeks of life resulted in increased passive behaviours, increased
anxiety- and depression-like behaviours, and in elevated ACTH
responses to an acute stressor (Plotsky & Meaney, 1993; Wigger &
Neumann, 1999; Caldji et al., 2000; Ladd et al., 2000; Huot et al.,
2002; Kalinichev et al., 2002; Gardner et al., 2005).
Despite the fact that MS rats displayed a rather passive coping style

during forced swimming, which is indicative of depression-like

Table 2. AVP-immunoreactive staining in hypothalamic areas of male adult controls and maternally separated male rats: basal and after the RI test

Hypothalamic areas

Optical density of AVP-immunoreactivity (arbitrary units)

Basal 2 h after exposure to RI test MS effects

Control (n ¼ 8) MS (n ¼ 8) Control (n ¼ 9) MS (n ¼ 11) F1,32 P-value

PaPo 12.3 ± 2.5 17.1 ± 2.9 8.0 ± 2.2 20.5 ± 3.1* 9.14 0.005
NC 13.0 ± 2.4 20.1 ± 6.9 10.4 ± 4.2 25.4 ± 6.4 3.67 0.064
LH 15.2 ± 1.3 19.7 ± 1.3* 13.7 ± 0.8 20.0 ± 1.4* 17.31 0.001

Data are mean ± SEM. LH, lateral hypothalamic area; NC, nucleus circularis; PaPo, posterior part of the PVN. F1,32, anova for MS effects, *P < 0.05 vs.
respective control, Bonferroni post hoc test.

Table 3. Optical density of 5-HT-immunoreactive fibres and varicosities in
several brain regions of adult control and maternally separated (MS) male rats
under basal conditions or 2 h after RI test exposure

Optical density of 5-HT -immunoreactivity (arbitrary units)

Basal RI test MS effects

Control MS Control MS F1,32 P-value

AH 44.2 ± 4.9 26.4 ± 6.9* 41.7 ± 3.3 15.5 ± 3.9* 21.7 0.001
SON 35.0 ± 4.1 32.7 ± 3.8 39.4 ± 2.6 34.2 ± 3.5 1.18 0.287
LH 32.6 ± 4.8 34.8 ± 4.0 32.2 ± 3.2 39.9 ± 4.3 1.35 0.254
DMH 45.7 ± 4.8 32.3 ± 4.5 36.6 ± 6.0 42.0 ± 4.6 0.62 0.439
BLA 91.0 ± 7.1 72.8 ± 7.7 75.3 ± 7.5 89.3 ± 8.1 0.07 0.080

Data are expressed as mean ± SEM. AH, anterior hypothalamus; BLA, baso-
lateral amygdala; DMH, dorsomedial hypothalamic nucleus; LH, lateral
hypothalamic area; SON, supraoptic nucleus. F1,32, anova for MS effects,
*P < 0.05 vs. respective control, Bonferroni post hoc test.

Fig. 4. Effect of maternal separation (MS) on the optical density (arbitrary
units) of serotonin (5-HT)-immunoreactive fibres in the anterior hypothalamus
and the supraoptic nucleus (SON) under basal conditions and 2 h after exposure
to the resident-intruder (RI) test. *P < 0.05.

Fig. 5. Correlation of the duration of lateral threat displayed by control and
maternally separated (MS) adult male rats during the RI tests with the optical
density of serotonin (5-HT)-immunoreactive fibres in the anterior hypothala-
mus and in the supraoptic nucleus (SON).
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behaviour (Porsolt, 1979; Cryan & Mombereau, 2004), they show
significantly more aggressive behaviour when confronted with a male
intruder in their home-cage than control rats. The elevated level of
aggression in MS rats was specifically reflected by the display of more
lateral threat, offensive upright and keep down. Interestingly, clinical
studies also have shown that psychopathologies such as depressed
mood, anxiety, impulsivity and aggression dysregulation are closely
related and may even be correlated (Van Praag, 1986; Apter et al.,
1990; Van Praag, 1998, 2001).

Underlying mechanisms accounting for the MS-induced increase in
adult male aggression may include changes in HPA responsiveness.
Activation of the HPA axis modulates aggressive behaviour (Haller
et al., 1998, 2001). An acute rise in plasma corticosterone concen-
trations promotes aggression (Mikics et al., 2004), and may contribute
to the escalation of violent behaviour under stressful conditions (Kruk
et al., 2004). ACTH was also found to stimulate aggressive behaviour,
via glucocorticoid effects on the brain or via direct effects on the brain
(Brain & Evans, 1977; Clarke & File, 1983). Although HPA axis
responsiveness to an aggressive encounter was not quantified, the
elevated ACTH response to forced swimming in MS rats indicates
changes in the HPA axis regulation, which may have contributed to
their higher level of aggression.

It should also be considered that the more pronounced ACTH
responsiveness in MS rats may indicate MS-induced changes in

relevant neuronal systems, which, in turn, might have played a role in
the behavioural changes observed in MS rats. Indeed, exposure to
postnatal stress was shown to increase CRH gene transcription in the
PVN (Plotsky & Meaney, 1993; Ladd et al., 1996), to decrease
glucocorticoid receptor mRNA levels in the hippocampus and medial
prefrontal cortex, and to increase mineralocorticoid receptor mRNA
levels in the hippocampus (Meaney et al., 1996; Ladd et al., 2004).
MS also increased basal and stress-induced norepinephrine release in
the PVN (Liu et al., 2000), and induced changes in c-aminobutyric
acid (GABA) ⁄ benzodiazepine receptor binding in several brain
regions (Caldji et al., 2000). In addition, the present study showed
long-lasting alterations in the regulation of AVP synthesis in different
hypothalamic regions after MS. Although basal AVP mRNA expres-
sion within the mPVN and SON did not differ between groups,
exposure to a single RI test was associated with a significant decrease
in AVP mRNA expression in control, but not in MS, rats.
Consequently, MS rats showed a significantly higher AVP mRNA
expression in these regions after a single RI test exposure compared
with control rats, which was also reflected by a higher AVP
immunoreactivity after repeated exposure to the RI test.
Previous studies have indicated an important role for AVP within

the brain regulating neuroendocrine and behavioural stress-coping
(Bielsky et al., 2004; Engelmann et al., 2004; Landgraf & Neumann,
2004; Griebel et al., 2005). At the level of the PVN and SON, locally
released AVP regulates ACTH release from the pituitary (Antoni,
1993; Wotjak et al., 1996, 2002). Infusion of an AVP V1-receptor
antagonist into the PVN of rats bred for high trait anxiety resulted in a
decrease in anxiety and in a switch from passive to active behavioural
coping in the forced swim test (Wigger et al., 2004). Furthermore,
after prenatal stress, an altered expression profile of AVP has also been
found within the hypothalamus (Bosch et al., 2006). In addition,
several human and animal studies suggest a positive relationship
between brain AVP and aggression (Ferris, 1992; Ferris et al., 1997;
Coccaro et al., 1998; Stribley & Carter, 1999). In patients with
personality disorders, cerebral spinal fluid concentrations of AVP were
found to be positively correlated with a life history of aggressive
behaviour (Coccaro et al., 1998). In aggressive male hamsters, AVP
neurons in the SON showed increased neuronal activity (Delville
et al., 2000), and have been identified as innervating the anterior
hypothalamus, which is also involved in offensive aggression (Ferris,
1992; Ferris et al., 1997). In addition, the decreased aggression in
highly aggressive California mice after cross-fostering with less
aggressive white-footed mice was associated with decreased SON
AVP immunoreactivity (Bester-Meredith & Marler, 2001). MS also
elevated the density of AVP-immunoreactive staining in the lateral
hypothalamus. This brain region contains AVP V1A-receptor binding
sites (Tribollet et al., 1998), and has been reported to be involved in
the modulation of aggression (Koolhaas, 1978; Kruk et al., 1983;
Gregg & Siegel, 2001; Gregg, 2003). In the rat, electrical stimulation
of the lateral hypothalamus induces intraspecific aggressive behaviour
in the presence of a subordinate rat (Koolhaas, 1978). Taken together,
the MS-induced alterations in AVP synthesis in the mPVN, SON and
lateral hypothalamus may have contributed, among other factors, to
changes in behavioural stress-coping, including aggressive behaviour.
It would be of further interest to study whether the general
responsiveness of the hypothalamic AVP system to stressful stimuli
is altered after MS, or whether the altered responsiveness is selectively
restricted to exposure to an aggressive encounter.
Besides MS-induced changes in AVP in hypothalamic nuclei, it is

likely that MS affected AVP in extrahypothalamic nuclei as well. In
particular, the AVP pathway originating in the BNST and medial
amygdala, and projecting to the lateral septum is of interest, as this

Fig. 6. Representative images of coronal sections of the hypothalamic region
representing AVP mRNA expression (A and B) and AVP-immunoreactive
staining (C and D) in the magnocellular part of the paraventricular nucleus, and
5-HT-immunoreactive staining in the anterior hypothalamus (E and F)
comparing control (A, C and E) and maternally separated (B, D, F) adult
male rats exposed to the RI test. Scale bar, 500 lm (A and C) or 200 lm (E).
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pathway has been associated with aggression (Koolhaas et al., 1998;
Bester-Meredith et al., 1999; Bester-Meredith & Marler, 2001; D’Eath
et al., 2005). In contrast to the mPVN and SON, exposure to MS or
exposure to the RI test did not modulate AVP mRNA expression in the
BNST. This may indicate site-specific effects of MS on central AVP
mRNA expression. Yet, other factors, like testosterone, might regulate
the central AVP system at the peptide level (Wang & De Vries, 1993;
De Vries et al., 1994; Delville et al., 1996b). Alterations in plasma
testosterone were found in MS rats after forced swimming. Future
studies will need to address whether MS modulated plasma testoster-
one responses to RI test exposure, and whether this affected the
activity of the AVP system.
In contrast to the AVP system, the density of 5-HT-immunoreactive

fibres in the anterior hypothalamus was found to be significantly
reduced after MS. Moreover, 5-HT immunoreactivity in the anterior
hypothalamus and in the SON correlated negatively with the duration
of lateral threat, which is an important element of aggressive
behaviour. The latter finding agrees with the general view that 5-HT
exerts an inhibitory control over impulsive aggression (Olivier & Mos,
1990; Ferris & Delville, 1994; Ferris, 1996; Ferris et al., 1997). In
humans, excessive aggression and impulsive violent behaviours are
associated with diminished central 5-HT function, as shown by low
cerebrospinal fluid levels of the 5-HT metabolite 5-hydroxyindolacetic
acid (Brown & Linnoila, 1990; Kruesi et al., 1990). Our finding is also
in accordance with studies in hamsters showing that 5-HT exerts an
inhibitory effect on intermale aggression at the level of the anterior
hypothalamus and the SON (Ferris, 1996; Ferris et al., 1997). This
effect is likely mediated through postsynaptic 5-HT1A receptors (Ferris
et al., 1999), and involves inhibition of the AVP system in the anterior
hypothalamus (Ferris et al., 1997). The MS-induced decrease in 5-HT-
immunoreactive fibres in the anterior hypothalamus suggests a
decrease in 5-HT release in this specific brain region. Interestingly,
in hamsters that show abnormal aggressive behaviour (increased
aggression towards smaller intruders, decreased aggression towards
equal size intruders) after being ‘abused’ during puberty, the number
of 5-HT terminals within the anterior hypothalamus was found to be
increased (Delville et al., 1998). Taken together, a balanced activity of
the 5-HT system within the anterior hypothalamus seems to be critical
for the regulation of appropriate aggressive behaviour.
It should be noted that it is difficult to conclude whether the changes

in hypothalamic AVP mRNA expression and in hypothalamic AVP
and 5-HT immunoreactivity observed after MS are associated with an
actual change in local AVP and 5-HT release, respectively. Future
studies will have to examine whether the increase in aggressive
behaviour observed after MS is associated with altered hypothalamic
AVP and ⁄ or 5-HT release with more delicate techniques such as
microdialysis.
In summary, our data provide the first evidence that exposure to

early life stress increased adult male aggression, which was associated
with changes in the activity of hypothalamic AVP and 5-HT systems.
Studying the mechanisms underlying MS-induced changes in aggres-
sive behaviour may contribute to understanding the complex interac-
tion between early rearing conditions and the neurobiological factors
regulating aggression. As aggression causes major public health and
social problems, these studies seem to be essential for the future
prevention and management of excessive aggression.
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