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SUMMARY

We present a Generalized Finite Element Method for the analysis of polycrystals with explicit treatment
of grain boundaries. Grain boundaries and junctions, understood as loci of possible displacement
discontinuity, are inserted into finite elements by exploiting the partition of unity property of finite
element shape functions. Consequently, the finite element mesh does not need to conform to the
polycrystal topology. The formulation is outlined and a numerical example is presented to demonstrate
the potential and accuracy of the approach. The proposed methodology can also be used for branched
and intersecting cohesive cracks, and comparisons are made to a related approach (Int. J. Numer.
Meth. Engng. 2000; 48:1741). Copyright � 2006 John Wiley & Sons, Ltd.

KEY WORDS: Generalized Finite Element Method; eXtended Finite Element Method; partition of unity;
grain boundary sliding; polycrystals

1. INTRODUCTION

Finite element method analyses of polycrystals rely on the use of generators to design the mesh
around the polycrystal topology [1–3], as shown for example in Figure 1. Sometimes the result
is far from optimal, very difficult to improve and time consuming. The situation gets worse

∗Correspondence to: A. Simone, Delft University of Technology, Faculty of Civil Engineering and Geosciences,
P.O. Box 5048, 2600 GA Delft, The Netherlands.

†E-mail: a.simone@tudelft.nl
‡E-mail: caduarte@uiuc.edu
�E-mail: E.van.der.Giessen@rug.nl

Contract/grant sponsor: Netherlands Institute for Metals Research; contract/grant number: MC4.02128
Contract/grant sponsor: University of Illinois at Urbana-Champaign

Received 27 August 2005
Revised 4 January 2006

Copyright � 2006 John Wiley & Sons, Ltd. Accepted 4 January 2006



A GFEM FOR POLYCRYSTALS 1123

polycrystal topology FEM for polycrystals

Figure 1. FEM approximation of a polycrystal sample.
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Figure 2. Proposed GFEM approximation of a polycrystal sample.

in a three-dimensional configuration, and there are cases, e.g. when grains are shaped like a
wedge (very flat and long), in which it is not even possible to achieve the desired quality.

The method that we propose does not need a mesh generator to mimic the polycrystal.
It requires a simple background mesh on which the polycrystal topology is superimposed,
as schematically depicted in Figure 2, and a simple key assumption on the form of the
displacement field [4]. As described in Sections 2 and 3, our approach hinges on the concept
of local approximations for Generalized Finite Element Methods (GFEM’s) [5, 6], and relies
on novel developments in the description of displacement discontinuities [4] (the construction
of a GFEM discrete space parallels that of the eXtended Finite Element Method [7] and is
described in Section 4).

In the GFEM for polycrystals, the grain boundaries and junctions are represented by means of
elements with embedded cohesive displacement discontinuities [4, 8, 9]. There are no limitations
on grain shape and the number of grain boundaries meeting at a junction, and any grain
boundary behaviour can be handled [10–12]. There is however a range of situations where the
boundaries of grains in polycrystals have a significant influence on the overall deformation and
fracture behaviour. One example is grain boundary sliding [13, 14]; in Section 7, we consider
a simple application on the effect of grain boundary sliding on anelasticity of polycrystals
[14]. In terms of topological representations, our model capabilities are similar to those of the
Voronoi cell finite element model by Ghosh and Moorthy [15] and the conforming polygonal
finite element method by Sukumar and Tabarraei [16].

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145



1124 A. SIMONE, C. A. DUARTE, AND E. VAN DER GIESSEN

Our GFEM approximation for polycrystals, whose formulation and implementation are de-
scribed in Sections 5 and 6, can also be used for branched and intersecting cohesive cracks in
two or three dimensions. In Section 4, we show that our approach in 2-D produces the same
approximation spaces as a technique making use of the XFEM [7]. However, the choice of
enrichment functions is simplified, thus making it an appealing alternative to the XFEM.

2. PARTITIONS OF UNITY AND FINITE ELEMENTS

In this section, we recall some basic notions on the partition of unity paradigm and its relation to
finite element methods. The construction of a partition of unity can be based on the definition
of clouds [5], which are overlapping open sets �� of arbitrary shape, centred at node x�,
covering the solution domain �̄ of a boundary value problem (�̄ ⊂ ⋃N

�=1 �̄�, where N is the
number of nodes of the discretization; an overbar indicates the closure of a set). A partition
of unity is defined as a collection of global functions ��(x) whose support is contained in a
cloud and whose value sums up to unity at each point x in the solution domain

N∑
�=1

��(x) = 1 ∀x ∈ �̄ (1)

The FEM can be used as a framework for the construction of clouds since the support of a
node can be understood as a cloud [17, 18] and (1) holds by construction for any Lagrangian
FEM global basis (i.e. shape function). Using linear partitions of unity �� as basis functions
in a FEM framework [19], a scalar field q(x) can be approximated by

qh(x) =
N∑

�=1
��(x)q̂�︸ ︷︷ ︸

regular interpolation

+
N∑

�=1
��(x)

m∑
j=1

Ej(x)q̃�j︸ ︷︷ ︸
enrichment

(2)

where the subscript ‘h’ denotes the approximate field, q̂� (termed ‘regular’ or ‘standard’ degrees
of freedom (dofs)) are nodal values related to the basis ��, and q̃�j (termed ‘enrichment’ or
‘extra’ degrees of freedom) are the global nodal parameters connected to the basis Ej pertinent
to the enrichment (m is the number of terms in Ej ). The terms ‘regular’ and ‘enrichment’
make reference to the fact that the ‘regular’ interpolation field is considered as the background
field upon which the ‘enrichment’ is added. To avoid linear dependency, the order of any
polynomial terms in the enrichment basis must be greater than the order of the partitions of
unity ��. This is, however, not a sufficient condition [20]; algorithms to deal with the linear
dependent case are described in Reference [20].

Shape functions associated with (2) are termed GFEM shape functions. These shape functions
are built from the product of a partition of unity �� and enrichment functions Ej

�� × {1, Ej } (3)

In the GFEM, the partition of unity is in general provided by linear Lagrangian FEM shape
functions. The partition of unity property of the functions �� implies that

N∑
�=1

��(x)Ej (x) = Ej(x) (4)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145
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Consequently, any enrichment function Ej can be represented exactly through linear combi-
nations of GFEM shape functions, and, if the enrichment functions Ej can approximate the
solution of a boundary value problem, the corresponding GFEM shape functions also will.

In finite element notation, with an underlined symbol denoting a set of nodal quantities, the
approximation for a vector field q(x) of order l over an a n-node enriched element, with all
the nodes enriched, can be written as

qh(x) = N(x)q̂ + N(x)NE(x)q̃ (5)

where N is a l × (l × n) matrix containing the standard finite element shape functions, NE

is a (l × n) × (l × m × n) matrix containing the extra basis terms for the enrichment, q̂ is a
(l × n) × 1 vector containing standard degrees of freedom and q̃ is a (l × m × n) × 1 vector
containing the extra degrees of freedom. The number of extra degrees of freedom per node
is equal to the number of terms in the basis for the enrichment multiplied by the number of
nodal unknowns. In standard finite elements, the matrix NE is empty. In the rest of the paper,
we consider a two-dimensional configuration with nodal displacements as unknowns.

As noted in References [18, 19], the approach of Equation (5) allows the enrichment to
be performed from node to node in a mesh by activating the extra degrees of freedom q̃
when needed (a hierarchical finite element formulation based on the partition of unity method).
For instance, in describing a displacement discontinuity, if the standard displacement field
is interpolated by the regular interpolation N q̂, the displacement jump, described by means
of a difference in displacements in conventional interface finite elements, can be described
through the enrichment N NE q̃ =HN Hq̃ [4], where H is the scalar valued Heaviside function
(m = 1) and H is a diagonal matrix identifying through a 1/0 switch which degrees of freedom
to enrich (H is the identity matrix if all the degrees of freedom of the element are enriched).
This results in the (l × n) × 1 vector of extra degrees of freedom q̃ (same dimensions as
the vector of standard degrees of freedom q̂) and in the (l × n) × (l × n) matrix HH. The
enrichment concerns only nodes whose support is crossed by a discontinuity. For nodes whose
support is not crossed by a discontinuity, the basis responsible for the enrichment is empty
since the Heaviside function is a constant function over their supports and can be neglected.
Since element stiffness matrices for elements with extra degrees of freedom are assembled only
for active extra degrees of freedom, the standard matrix N can be used in place of N H.

3. GFEM APPROXIMATION FOR POLYCRYSTALS

Consider a polycrystalline aggregate like the one shown in Figure 3. Let {Gi}NG
i=1 denote the

set of all NG grains (non-overlapping open sets) covering an open domain � ∈ Rd, d = 2 or 3.
Therefore,

�̄ =
NG⋃
i=1

Ḡi (6)

Suppose now that the solution u of a boundary value problem defined on � is of the form

u = û +
NG∑
i=1

Hi ũi (7)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145
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Figure 3. Polycrystalline aggregate.

where Hi (x) denotes a discontinuous function defined by

Hi (x) =
{

1 if x ∈Gi

0 otherwise
(8)

while û and ũi , i = 1, . . . , NG, are continuous functions defined on � and Gi , respectively.
A piecewise linear approximation of u can be written using linear finite element shape

functions, ��, defined on a background mesh as illustrated in Figure 2

uh(x) = ûh(x) +
NG∑
i=1

Hi (x)ũhi(x)

=
N∑

�=1
��(x)û� +

NG∑
i=1

N∑
�=1

Hi (x)��(x)ũ�i (9)

where N is the number of nodes in the finite element mesh and û�, ũ�i , � = 1, . . . , N,

i = 1, . . . , NG, are nodal degrees of freedom. The last equation can also be written as

uh(x) =
N∑

�=1
��(x)

[
û� +

NG∑
i=1

ũ�iHi (x)

]

=
N∑

�=1
��(x)uh�(x) (10)

Here, uh� represents a local approximation of u defined on the cloud ��, the support of the
partition of unity function ��, [5, 6, 20–23]. The local approximations are linear combinations
of enrichment functions

{1,H1,H2, . . . ,HNG} (11)

Comparing the above with (2), we have that

Ej(x) =Hj (x), j = 1, . . . , m = NG (12)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145
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(a) (b) (c)

Figure 4. A triple junction with: (a) grain boundaries not conforming to the mesh topology;
(b) its corresponding GFEM discretization; and (c) standard FEM discretization with explicit

discontinuities along the grain boundaries.

Equation (10) shows that the global approximation uh(x) is built by pasting together local
approximations uh�, � = 1, . . . , N , using a partition of unity. This is a fundamental concept
common to all partition of unity methods like the GFEM [5, 6, 17, 18, 21–23].

From (9) to (11), we have that at each node x� the following generalized FE shape functions
are defined

��(x) × {1,H1,H2, . . . ,HNG} (13)

which are built from the product of the finite element partition of unity and enrichment
functions (11). However, in general, several step functions Hi are constant over the support
�� of a given partition of unity function ��. In actual computations, only the enrichment
functions that are non-constant over �� are used at node x�.

Linear dependences of the enrichment functions must also be avoided. Let us consider,
for example, the two-dimensional case illustrated in Figure 4(a) where, for the sake of the
following considerations, the triple junction coincides with a node of the mesh, and examine
the enrichment functions that must be used at each node of the mesh. The support �1 intersects
�Gb and �Gc. Therefore, the following shape functions could be used at node x1:

�1 × {1,Hb,Hc} (14)

However, this set is linearly dependent since

Hc = 1 − Hb (15)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145
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Therefore, either

�1 × {1,Hb} or �1 × {1,Hc} (16)

should be used as shape functions at node x1.
Nodes x2, x6, x7, x9 can be treated using the same arguments. The support �3 of node x3

does not intersect any grain boundary and the only shape function associated with this node
is the partition of unity �3. Consider now the case of node x4. The support �4 intersects
�Ga, �Gb and �Gc. Therefore, the following shape functions could be used at node x4:

�4 × {1,Ha,Hb,Hc} (17)

But again, this set is linearly dependent since

Hc = 1 − Ha − Hb (18)

Therefore, at node x4, the following shape functions should be used instead:

�4 × {1,Ha,Hb} or �4 × {1,Ha,Hc} or �4 × {1,Hb,Hc} (19)

The nodes x5 and x8 can be treated in a similar manner as node x4.
Figure 4(b) shows the resulting degrees of freedom at each node of the mesh. The dis-

cretization has a total of 40 degrees of freedom and can be written as

uh(x) = �1{û1 + ũ1bHb} + �2{û2 + ũ2bHb} + �3{û3}
+ �4{û4 + ũ4aHa + ũ4bHb} + �5{û5 + ũ5aHa + ũ5bHb}
+ �6{û6 + ũ6aHa} + �7{û7 + ũ7aHa}
+ �8{û8 + ũ8aHa + ũ8bHb} + �9{û9 + ũ9aHa}

=
9∑

�=1
��û�

+Ha(�4ũ4a + �5ũ5a + �6ũ6a + �7ũ7a + �8ũ8a + �9ũ9a)

+Hb(�1ũ1b + �2ũ2b + �4ũ4b + �5ũ5b + �8ũ8b) (20)

Other choices of enrichment functions are possible as discussed above.
Consider now the standard finite element discretization shown in Figure 4(c) composed of

quadrilateral and triangular elements. It has a total of 34 degrees of freedom. However, if we
consider the triangular elements as degenerated quadrilateral elements, the FE discretization
would also have 40 degrees of freedom. The formulation presented here and a standard finite
element mesh, in general, do not lead to the same discretization space. The same holds for the
XFEM.

The choice of enrichment functions described above can be summarized as follows. Inside
each local domain or cloud �� we take as enrichment functions the discontinuous functions
H that are not identically constant over ��. If we have more than one enrichment function,
one of them can be eliminated since it is a linear combination of the others and the constant
function. This simple rule is valid for any grain topology and in any spatial dimension.

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145
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Higher order local enrichment functions can also be defined using this same approach.
Extensions to three dimensions are conceptually identical but the computational implementation
is, of course, more involved. The formulation described here can also be used for cases in
which the junctions do not coincide with mesh nodes as illustrated in Section 6.2. In addition,
the number of grain boundaries meeting at a point can be arbitrary.

4. GFEM EQUIVALENT DISCRETE SPACE

In what follows, we shall construct a discrete space for the mesh in Figure 5(b) by using
discontinuous functions and show its equivalence to the discrete space related to the mesh in
Figure 5(a). In doing so, we parallel the derivations reported in Reference [17]. To begin with,
the finite element approximation associated with the mesh in Figure 5(a) reads

uh(x) = ∑
i∈I

�iui (21)

where I = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16, 17}. The relation between the two meshes in
Figures 5(a) and (b) can be established by defining nodal variables �, � and � as

�8 = u6, �8 = u7 − u6

�12 = u9, �12 = u11 − u9, �12 = u10 − u9

�15 = u13, �15 = u14 − u13

�18 = u16, �18 = u17 − u16

(22)

With these definitions, we can express ui for i = {6, 7, 9, 10, 11, 13, 14, 16, 17} as

u6 = �8, u7 = �8 + �8

u9 = �12, u10 = �12 + �12, u11 = �12 + �12

u13 = �15, u14 = �15 + �15

u16 = �18, u17 = �18 + �18

(23)

Figure 5. A triple junction can be modelled by: (a) truly accounting for the three discontinuity
lines or (b) by enriching nodes 8, 12, 15 and 18 with discontinuous functions (the black circles
represent standard degrees of freedom while the white circles represent extra degrees of freedom).

(c) XFEM enrichment functions [7].

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145



1130 A. SIMONE, C. A. DUARTE, AND E. VAN DER GIESSEN

By replacing these ui in (21) we find

uh(x) = ∑
i∈I ′′

�iui + �6�8 + �7(�8 + �8) + �9�12 + �10(�12 + �12) + �11(�12 + �12)

+ �13�15 + �14(�15 + �15) + �16�18 + �17(�18 + �18)

= ∑
i∈I ′′

�iui + (�6 + �7)�8 + �7�8 + (�9 + �10 + �11)�12 + �11�12

+ �10�12 + (�13 + �14)�15 + �14�15 + (�16 + �17)�18 + �17�18 (24)

with I ′′ = {1, 2, 3, 4, 5}. Considering Figure 5(b) and the linear combination of shape functions,
we can replace �6 + �7, �9 + �10 + �11, �13 + �14 and �16 + �17 by �8, �12, �15 and �18,
respectively and �8, �12, �15 and �18 by u8, u12, u15 and u18, respectively. Equation (24) can
be now written as

uh(x) = ∑
i∈I ′

�iui + Ha(�12�12 + �15�15 + �18�18) + Hc(�8�8 + �12�12) (25)

with I ′ = {1, 2, 3, 4, 5, 8, 12, 15, 18} the set of nodes in Figure 5(b). The enrichment functions
H are defined in Figure 5(a) by the junction topology (Ha/c = 1 in Ga/c). Equation (25)
represents the discretized displacement field related to the choice of the nodal vectorial variables
in (22) for the mesh depicted in Figure 5(b). In the above derivations we made use of the
notion of ‘linear combination of shape functions’ which is valid only away from the grain
boundary since H is not defined on �G.

Enrichment schemes different from the one given by (25) are of course possible, as long as
the generated discrete spaces are equivalent to the reference discrete space related to the mesh
depicted in Figure 5(a). Indeed, using a different definition of the nodal vectorial variables in
(22), Daux et al. [7] obtained (cf. Equation (14) in Reference [7])

uh(x) = ∑
i∈I ′

�iui + HI(�12�12 + �15�15 + �18�18) + HII�8�8 + J�12�12 (26)

with the enrichments HI, HII and J defined in Figure 5(c).
With reference to Figure 5(b), the counting of degrees of freedom equals 28 for both XFEM

[7] and GFEM approximations. The standard FEM discretization shown in Figure 5(a) yields
the same figure. Also, it is worth noting that the number of nodal enrichments is the same for
XFEM and GFEM. Of course, this is not a proof of equivalence between discrete spaces spanned
by the three approaches (FEM, XFEM and GFEM), but it shows, following Reference [7],
that the discrete spaces obtained by FEM, XFEM and GFEM are equivalent for a branched
crack aligned with the mesh.

There is an important distinction with XFEM though. The approach devised in Reference [7]
defines a triple junction as the intersection of a main and a secondary discontinuity line. In our
approach there is no need for such a distinction and all the enrichment functions are defined
through the polycrystalline aggregate topology. There is no need for ‘preprocessing’ to define
extra enrichment functions, a difficult task in a three-dimensional domain.

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145



A GFEM FOR POLYCRYSTALS 1131

5. GFEM EQUATIONS

In this section, we summarize the governing equations and our assumptions. For the benefit of
the reader, some of the definitions given in Section 3 are repeated. In the following, the range
of the subscript i (i = 1, . . . , NG) in Gi and related quantities is omitted when it is clear from
the context.

5.1. Kinematics

Consider the polycrystalline aggregate �̄ = � ∪ �� comprising NG grains shown in Figure 6(a)
(� is the set of all points inside the domain and �� is the set of boundary points which is
decomposed into the part ��u where displacements are prescribed and the complement ���
which has prescribed tractions). Denote with {Gi} the set of all grains covering the open domain
� and let, for simplicity, a grain be defined as a set of connected straight-line grain boundary
segments. Define �Ga as the boundary of grain Ga and, for a given adjacent grain Gb, �Gab

is the boundary, belonging to grain Ga , between grains Ga and Gb, i.e.

�Gab = Ḡa ∩ Ḡb (27)

The union of all grain faces of Ga shared with adjacent grains is denoted by Fa

Fa =
NG⋃

i=1, i �=a

�Gai (28)

The set Fa is depicted with a solid black line in Figure 6(c). The union of the faces of grain
Ga on the boundary �� is denoted by �Ga�. This set may be empty. It is not difficult to
verify that

�Ga =Fa ∪ �Ga� (29)

(c)

Figure 6. Nomenclature for the polycrystal sample.

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145



1132 A. SIMONE, C. A. DUARTE, AND E. VAN DER GIESSEN

and that

Fa ∩ �Ga� = ∅ (30)

Let na be the set of inward unit normal vectors to the boundary Fa of grain Ga . Further,
grain boundary segments are given in a counter-clockwise sense such that the normals na to
grain boundary Fa point inward to the grain domain.

Here, for simplicity we consider small strains and displacements. The extension to large
deformation problems will be the subject of a subsequent paper. Following the derivations of
Section 3, the displacement field u is defined by

u(x) = û(x) +
NG∑
i=1

Hi (x)ũi (x) (31)

where û and ũi are continuous functions and the discontinuous function Hi is defined in (8).
Consequently, the strain field � within the grains, away from grain boundaries and junctions,
is defined by

�(x) = ∇sû(x) +
NG∑
i=1

Hi∇sũi (x) = �̂(x) +
NG∑
i=1

Hi (x)�̃i (x) (32)

where ∇s is the symmetric part of the gradient operator.
The only relevant kinematic quantity at a grain boundary is the displacement jump. With

reference to Figures 6(b) and (c), the displacement jump across the boundary between grains
a and b is defined as

�u�ab(x) = u(xa) − u(xb) = ũa(x) − ũb(x) (33)

where a point x on the grain boundary is denoted xa (or xb) if the grain boundary belongs to
grain a (or b). It is also convenient to define �u�a as the set of the displacement jumps across
the grain boundaries Fa .

5.2. Strong form of the governing equations

Our objective is to define the governing equations for small displacement linear elasticity with
linear cohesive discontinuities.

The point of departure is the strong form of the equilibrium equations without body forces

∇ · � = 0 in � (34)

and Hooke’s law

� = C : � (35)

with C the elasticity tensor. To complete the set of governing equations, we impose the boundary
conditions

u = u0 on ��u and �n = t0 on ��� (36)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1122–1145
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where n is the outward unit normal vector to �� and t0 and u0 are prescribed tractions and
displacements, respectively. Further, we require

�ni = ti on Fi (37)

at grain boundaries of each grain i. We consider a traction–separation constitutive law of
the type

ti = Ti�u�i (38)

where the definition of ti and Ti parallels that of �u�i . With reference to Figures 6(b) and (c)
and considering grains a and b, the traction at the boundary �Gab is defined by tba( = − tab)

and, in a local frame of reference aligned with �Gab, the second-order constitutive tensor Tab

is assumed to be defined as

[Tab]ns = [Tba]ns =
[

dnn dns

dsn dss

]
(39)

where the subscripts n and s stand for normal and tangential direction, respectively.

5.3. Weak form of the governing equations

The weak form of the governing equations is obtained after multiplication of the equilibrium
equations (34) by the virtual displacement field w which has the same form as the displacement
field (31) ∫

�
ŵ · (∇ · �) dv +

NG∑
i=1

∫
Gi

w̃i · (∇ · �) dv = 0 (40)

From the decomposition of the displacement field, it follows that any admissible variation w of
u can be regarded as admissible variations ŵ and w̃i thus leading to NG + 1 weak variational
statements, namely ∫

�
ŵ · (∇ · �) dv = 0 (41a)

∫
Gi

w̃i · (∇ · �) dv = 0 (41b)

Using standard algebraic relationships, the divergence theorem, the strain definition (32) and
the stress–strain relationship (35), the NG + 1 variational statements (41) become∫

�
�̂ : C : � dv =

∫
��

�ŵ · n ds (42a)

∫
Gi

�̃i : C : � dv +
∫
Fi

�w̃i · ni ds =
∫

�Gi�

�w̃i · n ds (42b)

The second integral in the LHS of (42b) is the sum of all contributions from grain bound-
aries belonging to grain Gi that are not on the boundary ��, i.e. internal grain boundaries.
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Considering relation (37) for the tractions across grain boundaries and definition (33) of the
displacement jump, it can be expressed as∫

Fi

�w̃i · ni ds =
∫
Fi

w̃i · �ni ds =
∫
Fi

w̃i · ti ds

= ∑
j

∫
�Gij

w̃i · Tij �u�ij ds = ∑
j

∫
�Gij

w̃i · Tij (ũi − ũj ) ds (43)

The last term of (43) can be simplified by considering that �Gi� = �Gi�u ∪ �Gi�� with
�Gi�u ∩ �Gi�� = ∅ and that, consistent with the individual-variations argument used to de-
rive (41), w̃i = 0 on �Gi�u (i = 1, . . . , NG). With the above simplifications at hand, the weak
form of the governing equations can be finally stated as∫

�
�̂ : C : � dv =

∫
���

ŵ · t0 ds (44a)

∫
Gi

�̃i : C : � dv + ∑
j

∫
�Gij

w̃i · Tij (ũi − ũj ) ds =
∫

�Gi��

w̃i · t0 ds (i=1, . . . , NG) (44b)

When there are no extra degrees of freedom ũ activated in an element, u = û and (44a) is the
only valid variational statement: the standard equilibrium equations are recovered.

5.4. Finite element discretization

We define the discretized kinematics and specialize the discretized equilibrium equations to a
simple case. We use a Bubnov–Galerkin approach in which variations of the displacement field
are interpolated as the displacement field.

The discretized displacement field (9) can be written using standard matrix notation as

uh = N û +
NG∑
i=1

HiN ũi (45)

where N is a matrix containing the usual finite element shape functions, and the vectors û
and ũi , containing nodal quantities, are defined as û = {û�}N�= 1 and ũi = {ũ�i}N�=1 (see (9)).
Accordingly, the strain field (32) is discretized as

� = B û +
NG∑
i=1

HiB ũi (46)

where B is a matrix containing spatial derivatives of the shape functions. Finally, the displace-
ment jump (33) across the boundary between grains i and j is discretized as

�u�ij = N(ũi − ũj ) (47)

As noted in Section 2, the arrays N multiplying ûi and ũj are normally not the same since
only part of the extra degrees of freedom in the array ũ might be activated (a similar argument
holds for B). However, since the resulting element stiffness matrices are assembled only for
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(b)(a)

Figure 7. Two-grain polycrystal: (a) nodal enrichment and choice of extra degrees of
freedom; and (b) elementwise enrichment.

active extra degrees of freedom, it is still possible, and convenient from an implementation
point of view, to use the standard N and B arrays. The added computational cost is negligible,
since only relatively few elements are usually enriched.

These discretized kinematic quantities are substituted into the weak form (44) and yield
a discretized set of equilibrium equations. The derivations are a trivial algebraic exercise.
However, it is illuminating to report the stiffness matrix related to the governing equations
for the two-grain polycrystal depicted in Figure 7 in which the grain boundary lies between
element (i.e. grain) G1 and G2

KG =
⎡
⎢⎣

K K1 K2

K1 K1 + K12 −K12

K2 −K21 K2 + K21

⎤
⎥⎦ (48)

where the submatrices are

K =
∫

�
BTCB dv (49a)

K1 =
∫
G1

BTC B dv (49b)

K2 =
∫
G2

BTC B dv (49c)

K12 =
∫

�G12

NTT N ds (49d)

K21 =
∫

�G21

NTT N ds (49e)

with T12 = T21 = T. Here, C and T are the matrix equivalent of the associated tensors C and
T, respectively. In the general case, the symmetry of the global system of equations derives
from the symmetry of the tensors C and T; by considering symmetric tensors C and T, the
global stiffness matrix is symmetric since K12 and K21 are surface integrals along the same
grain boundary segment with the same integrand.
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The element stiffness matrices for element G1 and G2 are obtained by specializing (48) to
each of the two grains and considering the elementwise enrichment shown in Figure 7(b)

KG1
=

⎡
⎢⎣

K K1 0

K1 K1 + K12 −K12

0 0 0

⎤
⎥⎦ (50)

KG2
=

⎡
⎢⎣

K 0 K2

0 0 0

K2 −K21 K2 + K21

⎤
⎥⎦ (51)

In this particular case, the individual element stiffness matrices are not symmetric, but their
assembly is.

Although the case just presented is very simple, the structure of (48), due to the particular
choice of the nodal enrichment, is very similar to that encountered in the discretization of a
polycrystal with only triple junctions. In that case, only two extra degrees of freedom per node
per junction suffice as will be explained in Section 6.2.

6. FINITE ELEMENT IMPLEMENTATION

In the following, some issues pertinent to the implementation of the proposed method are
outlined.

The numerical integration of element arrays deriving from the weak form (44) for elements
with a grain boundary or a junction requires trivial, although somehow intricate, modifications to
standard element integration schemes [4, 7]. Although there are no restrictions on element type,
we have used four-node bilinear quadrilateral continuum finite elements, and have triangulated
each of the domains resulting from elements with a grain boundary or a junction as depicted
in Figure 8. In each of the triangles we have used a 3-point integration scheme. For integration
along grain boundaries we have used a 2-point Gauss integration scheme. A standard 2 × 2
Gauss integration scheme has been used in the remaining elements. Other procedures are
described in References [24–26].

6.1. Enforcement of essential boundary conditions

When a node on the sample boundary has one or more extra degrees of freedom as a con-
sequence of the GFEM enrichment discussed in Section 3, essential boundary conditions must
be enforced with some precautions. Indeed, standard techniques cannot be used to directly im-
pose boundary conditions on enriched nodes, and, in general, the Kronecker-delta interpolation
properties of the basis are not fulfilled at a generic location along the boundary of an element
crossed by a discontinuity line.

Consider, for simplicity, the linear quadrilateral element shown in Figure 9 in the parent
element space, and suppose that side ab is part of the boundary along which a prescribed value
u0 of u = û + Hũ is prescribed. Enforcement of u0 along side ab results in the following
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Figure 8. Close-up of 15 quadrilateral elements around a triple junction (grain boundaries in
dashed black). Note the triangulated subpolygons used in the element quadrature routines.

H

H

Figure 9. Schematic for constraint equations in parent element space.

constraint equations:

ûa = u0 at vertex a (52a)

ûb + ũb = u0 at vertex b (52b)

Naûa + Nbûb = u0 at point p(H= 0) (52c)

Naûa + Naũa + Nbûb + Nbũb = u0 at point p(H= 1) (52d)

where the shape functions Na and Nb are evaluated at p.
The constraints on essential boundary conditions are enforced by a penalty method [27]. By

using this approach, penalty energy terms enter the variational form. Penalty stiffnesses and
force vectors are derived by making use of the concept of Courant quadratic penalty function
[28, 29]; these terms are assembled like standard element contributions to the global system
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of equations. As other approaches, see e.g. References [30, 31], are equally feasible, we have
preferred not to make the variational form depending on a specific method, and therefore we
have not incorporated penalty terms in the variational form.

6.2. A simple automated procedure for GFEM nodal enrichment

Nodal enrichment is performed in two steps. First, any node whose support is intersected by a
grain boundary is enriched by the corresponding H function, as shown in Figure 10(a). This is
done for each grain following standard techniques [4] (at this stage, nodes that do not pass the
area test, as proposed in Reference [32], are not enriched). Next, a loop is done on all enriched
nodes and the last added enrichment function is removed unless only one enrichment function
would be left (Figure 10(b)). Such a procedure results in an enrichment scheme coherent with
the GFEM enrichment scheme presented in Section 3. As a side remark, a polycrystalline
aggregate with only triple junctions has at most two different enrichment functions per node
(provided that the mesh resolution is fine enough to have neighbouring junctions separated by
more than one element).

Figure 10. Nodal enrichment procedure for polycrystalline aggregates: (a) grain enrichment functions are
added to all grains; and (b) surplus enrichment functions are eliminated.

Figure 11. XFEM enrichment scheme for a grain junction (adapted from Reference [7]).
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As already pointed out in Section 4, our approach results in an easier, and more general,
choice of the enrichment scheme than the one proposed by Daux et al. [7] (compare our
enrichment scheme, reported in Figure 10(b) with the one according to Daux et al. [7] reported
in Figure 11).

7. FREE GRAIN BOUNDARY SLIDING AND ANELASTICITY OF POLYCRYSTALS

Under appropriate loading conditions and temperature, grain boundary sliding is one of the main
mechanisms behind anelastic deformation of polycrystalline aggregates. One of the limiting
cases of grain boundary-driven deformation is when grain boundaries can freely slide against
each other. This so-called ‘relaxed state’ occurs at sufficiently low strain rates when the viscous
resistance of grain boundaries can be neglected. A body in the relaxed state has a lower rigidity
than the unrelaxed one in which shear tractions are transmitted across the grain boundaries.
Many micromechanical studies have attempted to give an analytical estimate of the relaxed
mechanical properties of polycrystalline aggregates. Amongst them we recall: (Z) the self
consistent method by Zener [33], in which grains are considered as sliding circular inclusions
in a matrix with the same stiffness; the self-consistent method by Budiansky and Hill [34, 35]
(SC) and Mori and Tanaka [36] (MT), in which grains are modelled as sliding circular inclusions
(analytical expressions for the effective moduli are reported in Reference [37]); (CB) the self
consistent method by O’Connell and Budiansky [38], in which grain boundaries are described
by randomly oriented flat shear cracks filled with viscous fluid; and (DSC) the microcrack
model by Fotiu and Heuer [39], in which grain boundaries are modelled as a dilute distribution
of shear cracks.

Some numerical analyses have confuted the validity of the above micromechanical studies
by showing that a valid estimate must rely on an accurate representation of the stress field in
the polycrystalline aggregate and, above all, must take into account the kinematic constraints
imposed by grain junctions. To the authors’ knowledge, the first of these numerical studies in
elastic polycrystals is due to Ghahremani [14], who characterized the role of grain boundary
sliding in a periodic arrangement of hexagonal grains. Subsequent studies concentrated on the
effect of grain boundary sliding on the creeping behaviour of polycrystals [13, 40], and on the
effect of microstructural variations on steady state creep and facet stresses in freely sliding
polycrystals [41].

In this section, we study the effect of free grain boundary sliding on anelasticity of poly-
crystals [14] to demonstrate the abilities of our GFEM scheme. The polycrystal is mod-
elled as a periodic arrangement of hexagonal grains. The representative unit cell shown in
Figure 12 has been discretized by means of a structured background mesh of linear quadrilat-
eral elements. The enforcement of the periodic boundary conditions described in the Appendix
is done according to the derivations reported in Section 6.1. We obtained a good compromise
constraint-enforcement versus stability of the system for a penalty weight of 104 times the
largest term in the global stiffness matrix. Each grain is isotropically elastic in a plane strain
configuration. Free sliding along grain boundaries is assumed and, to avoid penetration (and
separation) of adjacent grains, the stiffness in the normal direction across grain boundaries
has been given a high value. With reference to (39), dss = 0, dsn = dns = 0 and dnn = 104E/l,
where E is the Young’s modulus of the grains and l is the length of the grain boundary �G
between two adjacent grains (see Figure 12). The relaxed Young modulus Ē is computed as
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periodic unit cell

s

2 l

Figure 12. Schematic of the periodic unit cell used in the example. s is the local
co-ordinate along GB facets of length l.

Figure 13. The ratio Ē/E vs �: effect of mesh refinement (left) and comparison with results from the
literature (right; Ghahremani [14] (G), Fotiu and Heuer [39] (DSC), O’Connell and Budiansky [38]

(BC), Zener [33] (Z), Mori and Tanaka [36] (MT), Budiansky and Hill [34, 35] (SC)).

the ratio of the relaxed stress �̄ to the applied strain ε. The relaxed stress �̄ (= �̄11) is defined
by the sum of the reaction forces in the horizontal direction along the right-hand side of the
periodic unit cell divided by the vertical cross sectional area (i.e. the length of the right-hand
side of the periodic unit cell times 1); the sum of the vertical reaction forces along the same
side is zero. The applied strain ε is defined as the ratio of the prescribed displacement to the
length of the horizontal side.

The ratio Ē/E of the relaxed to the unrelaxed Young’s modulus as a function of the
Poisson’s ratio reported in Figure 13 for two discretizations (squares and circles) shows an
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Figure 14. Displacement jump in the tangential direction along an inclined grain boundary (� = 0.3):
effect of mesh refinement on global profile (left) and on the value at the centre, s/ l = 0.5 (right).

Figure 15. Close-up of the mesh around a grain boundary for s/ l ≈ 0.5 (grain boundary
in dashed black, quadrilateral element boundaries in solid black, triangular sub-domains
for element quadrature routines in dotted black): undeformed (left) and deformed configuration

(right) for a 40 × 27 element grid mesh.

excellent agreement with the reference numerical results obtained in Reference [14]. Results
from the estimates previously described are also reported. A good agreement with the refer-
ence solution [14] was found even with one of the coarsest discretizations used in this study
(Ghahremani [14] used 1512 constant strain triangular elements in our GFEM unit cell with
mesh refinement along grain boundaries (i.e. 756 elements/grain); we have used 28 × 19 = 532
linear quadrilateral elements (◦) in the GFEM unit cell with a uniform grid). The profile of the
displacement jump in the tangential direction depicted in Figure 14 shows a rapid convergence,
thus indicating that a dense discretization (like, e.g. the 147 × 49 element grid) might not be
necessary for practical purposes.
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Figure 16. Contour plot of the ratio of the von Mises stress �e to the overall applied equivalent stress
�̄e = �̄11 (147 × 49 element grid; � = 0.3). The effect of full relaxation of the shear stresses along the
grain boundaries is a strong redistribution of the internal stress state, leading to enhanced strains and

hence a reduced modulus. A detail of the mesh around the triple junction is shown in Figure 8.

A close-up of the zone around a grain boundary, for s/ l ≈ 0.5 is shown in Figure 15. Recall
that the domain is discretized by means of quadrilateral elements; the triangular sub-domains
shown are used only in element quadrature routines (cf Section 6). Finally, the distribution of
the ratio of the von Mises stress �e to the overall applied equivalent stress �̄e = �̄11 is shown
in Figure 16.

8. SUMMARY AND CONCLUDING REMARKS

In this work we have proposed a Generalized Finite Element Method for polycrystals in which
the finite element mesh does not need to conform to the polycrystal microstructure. We have
customized the discontinuous enrichment proposed in Reference [4] and made it apt to describe
grain boundaries and junctions. The enrichment scheme proposed in Section 3 represents the
main improvement over the approach by Daux’s et al. [7]. Indeed, our approach to junction
enrichments generalizes their approach in two dimensions, extends it to three dimensions and
makes the implementation more straightforward since we are free to choose among several
enrichment possibilities at a given node. Although the focus in deriving the enrichment scheme
was on the description of grain junctions, problems involving crack propagation, interaction
and coalescence [42, 43] can benefit from our approach.

The application to grain boundary sliding in Section 7 showed that, as in standard finite
element methods, the quality of the GFEM approximation depends on the level of refine-
ment of the background mesh. Alternatively, the GFEM approximation can also be improved
through p-type enrichment of the approximation spaces defined on a coarse background
mesh [18, 19].
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Finally, it is worth noting that in recent years there has been a proliferation of methods
[30] based on the partition of unity approach which was proposed independently by Babuška
and colleagues [6, 21, 22] (under the names ‘special finite element methods’, ‘generalized finite
element method’ and ‘partition of unity finite element method’) and by Duarte and Oden
[5, 17, 18, 23] (under the names ‘hp clouds’ and ‘cloud-based hp finite element method’). The
only distinctive characteristic is the choice of the basis functions. Additional methods based
on the partition of unity approach are reported, for example, in References [4, 44–46]. Indeed,
the distinction between the XFEM [4, 7] and the proposed GFEM for polycrystals is somehow
immaterial in the sense that both approaches relies on the definition of a partition of unity
and on the use of the approximation (5) with a discontinuous enrichment. Only the choice
of the enrichment scheme differentiates the XFEM formulation proposed by Daux et al. [7]
from the proposed GFEM for polycrystals. What sets our approach apart is the simplicity with
which we can deal with any number of branches, the selection of enrichment functions, and
the extension to three dimensions and to higher order approximations.

APPENDIX A

With reference to the periodic unit cell depicted in Figure A1, uniaxial tensile loading conditions
are specified by letting u0

v2
= (u0, 0)T, with u0 the prescribed displacement in the horizontal

direction. Further, vertex v1 is constrained in both directions to prevent rigid body motion,
vertex v3 is tied to the other nodes by the vertex constraint equations, and vertex v4 is free
(uvi

is the displacement for vertex vi). Displacement boundary conditions specialized for tensile
loading along the x1 direction, read as follows:

u12 − u11 = uv4 (top-bottom constraint) (A1a)

u21 − u22 = u0
v2

(left-right constraint) (A1b)

uv3 − uv4 = u0
v2

(vertex constraint) (A1c)

where uij is the displacement for any point, vertices excluded, on the corresponding
boundary �ij .

Figure A1. Schematic of a periodic unit cell with nomenclature for periodic boundary conditions.
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