
 

 

 University of Groningen

The limits of bound structures in the accelerating Universe
Dunner, R.; Araya, P. A.; Meza, A.; Reisenegger, A.

Published in:
Monthly Notices of the Royal Astronomical Society

DOI:
10.1111/j.1365-2966.2005.09955.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Dunner, R., Araya, P. A., Meza, A., & Reisenegger, A. (2006). The limits of bound structures in the
accelerating Universe. Monthly Notices of the Royal Astronomical Society, 366(3), 803-811.
https://doi.org/10.1111/j.1365-2966.2005.09955.x

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-05-2019

https://doi.org/10.1111/j.1365-2966.2005.09955.x
https://www.rug.nl/research/portal/en/publications/the-limits-of-bound-structures-in-the-accelerating-universe(ce0be1f4-a751-4f17-8d37-d82ac0b9c214).html


Mon. Not. R. Astron. Soc. 366, 803–811 (2006) doi:10.1111/j.1365-2966.2005.09955.x

The limits of bound structures in the accelerating Universe

Rolando Dünner,1� Pablo A. Araya,2 Andrés Meza3† and Andreas Reisenegger1

1Departamento de Astronomı́a y Astrofı́sica, Facultad de Fı́sica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
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ABSTRACT
According to the latest evidence, the Universe is entering an era of exponential expansion, where

gravitationally bound structures will get disconnected from each other, forming isolated ‘island

universes’. In this scenario, we present a theoretical criterion to determine the boundaries of

gravitationally bound structures and a physically motivated definition of superclusters as the

largest bound structures in the Universe. We use the spherical collapse model self-consistently

to obtain an analytical condition for the mean density enclosed by the last bound shell of

the structure (2.36 times the critical density in the present Universe, assumed to be flat, with

30 per cent matter and 70 per cent cosmological constant, in agreement with the previous,

numerical result of Chiueh & He). N-body simulations extended to the future show that this

criterion, applied at the present cosmological epoch, defines a sphere that encloses ≈99.7 per

cent of the particles that will remain bound to the structure at least until the scale parameter

of the Universe is 100 times its present value. On the other hand, (28 ± 13) per cent of the

enclosed particles are in fact not bound, so the enclosed mass overestimates the bound mass, in

contrast with the previous, less rigorous criterion of, e.g. Busha and collaborators, which gave

a more precise mass estimate. We also verify that the spherical collapse model estimate for the

radial infall velocity of a shell enclosing a given mean density gives an accurate prediction for

the velocity profile of infalling particles, down to very near the centre of the virialized core.

Key words: galaxies: clusters: general – cosmology: theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

The evidence for an accelerated expansion of the Universe, ini-

tially based on the observations of distant supernovae (Garnavich

et al. 1998; Perlmutter et al. 1999) and later strengthened by pre-

cise measurements of cosmic microwave background fluctuations

(Spergel et al. 2003), has established a new cosmological paradigm

based on the presence of a ‘dark energy’ component. In the new

scenario, the Universe has recently made a (smooth) transition from

a matter-dominated, decelerating stage to a dark-energy dominated,

accelerating stage.

In the simplest models, consistent with the observations so far,

the dark energy behaves like Einstein’s cosmological constant, pro-

viding an always present, constant, positive energy density (and

a negative pressure of the same magnitude). As long as the mat-

ter density was substantially larger than the dark energy density, it

dominated the evolution of the Universe, decelerating the expansion

and driving the formation of structures by gravitational instability.

When the average matter density fell below that of the dark energy,

�E-mail: rdunnerp@puc.cl

†Researcher of the Academia Chilena de Ciencias 2004–2006.

the latter started accelerating the expansion, and the formation of

structure slowed down, as the gravitational forces between matter

elements decreased due to their increasing separation. In this stage,

structures much denser than the dark energy are not affected by the

latter and remain bound, while they separate from each other at an

accelerating rate, which does not allow them to join in larger struc-

tures. Thus, at the present cosmological time, when the acceleration

of the expansion has recently started, the largest bound structures

are just forming. In the future evolution of the Universe, their indi-

vidual, internal properties (such as physical size and density) will

not change substantially, but they will grow increasingly isolated,

forming ‘island universes’ (e.g. Adams & Laughlin 1997; Chiueh

& He 2002; Busha et al. 2003; Nagamine & Loeb 2003).

In the present Universe, these structures have not yet fully formed,

virialized and clearly separated from each other, making it difficult

to identify them unambiguously. Superclusters, the largest struc-

tures identifiable in the present Universe, have generally been de-

fined by more or less arbitrary criteria (e.g. Quintana, Carrasco &

Reisenegger 2000; Einasto et al. 2001, 2003a,b; Proust et al. 2005).

Here, we address the question of how to decide whether such a

structure will remain gravitationally bound in the future evolution

of the Universe, forming an island universe, and propose to use this

criterion as a physical definition of superclusters.
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We study the well-known spherical collapse model in the pres-

ence of a cosmological constant, with the aim of obtaining a useful

method to study structure behaviour in our Universe. The spherical

collapse model considers a spherically symmetric mass distribu-

tion, where spherical shells expand or collapse into the centre of

the structure in a purely radial motion and without crossing each

other. Specifically, we study the density that needs to be enclosed

by a spherical shell at a given cosmological epoch in order to stay

gravitationally attached to the overdense region within in a distant

future, dominated by a cosmological constant.

Previously, Lokas & Hoffman (2002) gave an approximate cri-

terion for this density, assuming that the shell in question initially

expands with the Hubble flow (without retardation from the enclosed

overdensity) and present density evolution curves considering differ-

ent cosmologies. Chiueh & He (2002), on the other hand, solved the

spherical collapse equations numerically, both with a cosmological

constant and with a more general form of dark energy (with a con-

stant ‘equation-of-state parameter’ wq), obtaining a self-consistent,

theoretical criterion for the mean density enclosed in the last gravi-

tationally bound or ‘critical’ shell. Both Nagamine & Loeb (2003)

and Busha et al. (2003) studied the future evolution of structures nu-

merically, contrasting the extension of bound structures in a distant

future (at scale parameter a = 166 and a = 100, respectively) with

the criterion of Lokas & Hoffman (2002) applied at the present time

(a = 1). While Nagamine & Loeb (2003) focused on the evolution

of specific structures in our local Universe (the Local Group, the

Virgo cluster and other nearby structures), Busha et al. (2003) fol-

lowed the internal density and velocity structures of generic, bound

objects as they evolve, a subject taken up again by the same authors

more recently (Busha et al. 2005).

We stress that, among the previous work cited above, only Chiueh

& He (2002) used the spherical collapse model self-consistently in

order to obtain the density criterion for the last bound shell, whereas

all the other papers rely on the incorrect assumption that the shell

expands with the Hubble flow at the initial epoch (taken to be the

present time, both by Nagamine & Loeb 2003 and Busha et al. 2003).

On the other hand, Chiueh & He (2002) did not perform numerical

simulations of the future evolution of structure in order to test the

accuracy of their result in a non-ideal situation and in order to study

the details of the evolution of bound objects, as the other authors did.

In this work, we attempt to bring together and extend the best parts of

the previous work, by a self-consistent application of the spherical

collapse model (supplemented by a new, analytic equation for the

mean density of a marginally bound sphere) and a comparison of its

predictions to N-body simulations of the future Universe.

In Section 2, we review the spherical collapse model, deriving an

analytical solution for the spherical collapse equations. Our solu-

tion, which agrees with the numerical result of Chiueh & He (2002),

relates the critical shell overdensity with the value of the dimension-

less parameter ��(t) = �/[3H (t)2] (where � is the cosmological

constant and H(t) is the Hubble parameter), so we are able to eval-

uate the criterion at any time t of the evolution of the Universe.

We also obtain numerical solutions for the velocities of non-critical

shells in the present Universe (�� = 0.7).

In Sections 3 through 5, we compare the theoretical results with

simulated data, studying the quality of the criterion and its applica-

bility to real-world observations. As in Nagamine & Loeb (2003)

and Busha et al. (2003), N-body simulations were run until the very

late future (a = 100), in order to reproduce the final configura-

tion of bound structures. We find that the rigorous density criterion

proposed by us (in agreement with Chiueh & He 2002) gives a

good upper bound to the size of the bound structure, as it encloses

≈99.7 per cent of the bound particles. On the other hand, it also

encloses a substantial number of unbound particles, and therefore

does not perform as well as the criterion of Lokas & Hoffman (2002)

(used by Nagamine & Loeb 2003 and Busha et al. 2003) for the pur-

pose of estimating the bound mass. We also show that the spherical

collapse model is quite accurate in predicting (as a function of the

enclosed mean density) the radial velocity of the stream of particles

falling into a bound structure for the first time, down to the very

centre of the structure.

2 S P H E R I C A L C O L L A P S E M O D E L

A straightforward approach to the evolution of structure is obtained

by considering a spherical distribution where all layers expand or

contract with only radial motions and without crossing each other.

The latter ensures that the enclosed mass in every shell stays constant

throughout its whole evolution, being the only parameter other than

initial conditions to determine its behaviour. The model is more

accurate during the expansion phase, but becomes unrealistic after

contraction begins, because the instability in angular momentum

during this phase causes non-radial motions and finally virialization.

In our analysis, we are going to leave aside this warning and check

the accuracy of the model in the contraction phase using comparison

with simulations.

Our analysis will be based on Newtonian Mechanics, which, ac-

cording to Lemaı̂tre (1931), is a limiting approximation to gen-

eral relativity, valid no matter what is happening in distant parts of

the Universe. The Newtonian approximation is accurate in a region

small compared to the Hubble length c/H and large compared to

the Schwarzschild radii of any collapsed objects. For more details,

see Peebles (1980).

Under the assumption that the total energy will be conserved

during the shell expansion and later contraction, the evolution of a

spherical shell enclosing a spherically symmetric mass distribution

is given by the energy equation (Peebles 1980)

E = 1

2

(
dr

dt

)2

− G M

r
− �

6
r 2, (1)

where r is the shell radius, M is the total mass enclosed by it, � is

the cosmological constant and E is the total energy per unit mass of

the shell.

This equation can be simplified by introducing the following di-

mensionless variables:

r̃ =
(

�

3G M

)1/3

r , (2)

t̃ =
(

�

3

)1/2

t . (3)

Therefore, the equation may be written as

Ẽ = 1

2

(
dr̃

d̃t

)2

− 1

r̃
− r̃ 2

2
, (4)

where

Ẽ = E

(
G2 M2�

3

)−1/3

. (5)

Fixing M and considering that there is no shell crossing, this

equation describes the time evolution of a single shell. Ẽ is the

dimensionless energy that describes every shell of the distribution,

merging with the background’s mean density when Ẽ = 0, shell

that will expand with the Hubble flow.
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2.1 The critical shell and turn-around radius

We are looking for a critical shell that will stay at the limit between

expanding forever or re-collapsing into the structure. To find the

critical energy for such a shell, we define a potential energy to be

maximized as

Ṽ = −1

r̃
− r̃ 2

2
. (6)

The maximum of this potential occurs at r̃∗ = 1, so Ẽ∗ ≡ Ṽ
(
r̃∗) =

− 3
2

is the maximum possible energy for a shell to remain attached

to the structure. The maximum radius for a critical shell is

rmax ≡
(

3G M

�

)1/3

, (7)

so we can reinterpret the normalized radius r̃ as

r̃ ≡ r

rmax

. (8)

2.2 Connection with the background model

Assuming a flat universe with cosmological constant, the age of

the Universe (time since the big bang, written in our dimensionless

variables) may be related to the vacuum energy density parameter

(Peebles 1980),

�� ≡ �

3H 2
= tanh2(3̃t/2), (9)

showing that �� increases monotonically in time, and can there-

fore be used as a surrogate time variable, in terms of which we

will describe the evolution of bound or critical (marginally bound)

spherical shells.

Integrating equation (4) from the beginning of time (r̃ = 0) till

the current radius of a given shell (r̃ = r̃0), we get

t̃0 =
∫ r̃0

0

√
r̃dr̃√

r̃ 3 + 2Ẽr̃ + 2
. (10)

In the particular case of a critical shell (Ẽ = Ẽ∗ = − 3
2
), the de-

nominator of equation (10) can be factorized, yielding

t̃0 =
∫ r̃0

0

√
r̃dr̃(

1 − r̃
)√

r̃ + 2
. (11)

The integral can be done analytically, with the result

t̃0 = 1

2
√

3
ln

[
1 + 2r̃0 +

√
3r̃0(r̃0 + 2)

1 + 2r̃0 −
√

3r̃0(r̃0 + 2)

]
− ln

[
1 + r̃0 +

√
r̃0(r̃0 + 2)

]
. (12)

Note that r̃0 can be chosen at any ‘current’ time, so equation (12)

can be generalized to any time by simply dropping subscript 0. From

now on, we will use the subscript ‘cs’ to indicate that we are referring

to a critical shell.

Substituting equation (12) in equation (9), and introducing a new

variable

χ (r̃cs) ≡
[

1 + 2r̃cs +
√

3r̃cs(r̃cs + 2)

1 + 2r̃cs −
√

3r̃cs(r̃cs + 2)

]√
3

2

×
(

1 + r̃cs +
√

r̃cs(r̃cs + 2)

)−3

, (13)

Figure 1. The normalized radius r̃cs of a critical shell as a function of ��.

The dotted lines highlight the present universe, in which �� = 0.7 and

r̃cs = 0.84.

we can write the relation between �� (and therefore cosmological

time) and r̃cs as

��(r̃cs) =
[

χ (r̃cs) − 1

χ (r̃cs) + 1

]2

. (14)

As expected (see Fig. 1), r̃cs grows with �� as �� grows with time,

and will converge to its maximum radius when t → ∞.

Inversely, evaluating equation (14) at our preferred cosmology

(�m = 0.3, �� = 0.7), we obtain that current critical shells should

have r̃cs = 0.84, which means that their present radius is 84 per cent

of the maximum radius they will reach as t → ∞.

2.3 Conditions for a critical shell

For practical applications, it is convenient to express the critical con-

dition as the minimum enclosed mean density needed by a shell to

stay bound to the central gravitational attractor. The critical density

of the Universe (in the flat model, also the average total density,

including matter and vacuum energy) is

ρc = 3H 2

8πG
, (15)

and the average mass density enclosed by a given shell is

ρ̄s
m = 3M

4πr 3
. (16)

Defining the mass density parameter for the shell,

�s ≡ ρ̄s
m

ρc

= 2��

r̃ 3
, (17)

the condition for the shell to be bound is

�s � �cs = 2��

r̃ 3
cs

= 2.36, (18)

where we have evaluated equation (14) at the present value of �� =
0.7. This represents the present density contrast inside the last shell

that will eventually stop its growth at the end of times. This result

was first obtained by Chiueh & He (2002), using numerical methods,

but now we confirm this result with an analytical solution. In the

same way, evaluating at �� = 1 (t → ∞) we obtain the asymptotic

critical density contrast condition �cs,∞ = 2.

Fig. 2 shows the density parameter �cs as a function of �� and r̃cs

using equation (14) or its inverse. It is curious that the curve shows
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Figure 2. Density parameter for a critical shell, �s (see equation 17), as

a function of �� and dimensionless radius r̃cs. Its maximum value, �cs =
2.37, occurs at �� = 0.72 (r̃cs = 0.85).

a single maximum at �� = 0.72, very close to the measured value

of �� today. Considering that �� can be taken as a function of

time, this means that we are living in the era when the ratio between

the mass density inside a critical shell and the critical density of the

Universe is very nearly at its maximum.

For observational purposes, it is more interesting to know the

ratio between the mass density enclosed by the critical shell, ρ̄s
m,

and that of the background, ρb
m. Using equation (17), we obtain that

ρ̄s
m

ρb
m

= ρ̄s
m

ρc (1 − ��)
= �cs

1 − ��

, (19)

which, evaluated for �� = 0.7, yields

ρ̄s
m

ρb
m

= 7.88.

In the notation of Busha et al. (2003), considering only the excess

density with respect to the background (Mobj = M − M b, where

Mb is the amount of mass contained in an equivalent sphere with

background density) and writing the present value of the Hubble

parameter as H 0 = 70 h70 km s−1 Mpc−1, we rewrite the criterion

as

Mobj

1012 M	
� 1.18 h2

70

(
r0

1 Mpc

)3

. (20)

This is a less restrictive condition than the one proposed by Busha

et al. (2003), which is

Mobj

1012 M	
� 3 h2

70

(
r0

1 Mpc

)3

, (21)

or, equivalently, �s � 5.56 (also equivalent to the overdensity cri-

terion given by Nagamine & Loeb 2003, based on the formalism

of Lokas & Hoffman 2002). This result was expected since the cri-

terion of Busha et al. (2003) was obtained under the assumption

that the test particles, placed on the critical shell today, move with

the Hubble flow. As this is not really true, they free that parameter

(velocity of particles on the critical shell today) and do an empirical

test to observe the real behaviour of particles evolved till a = 100.

They obtain a corrected result which is closer to their initial result

than to ours, always setting a higher constraint to the critical shell

density. A probable reason for this difference is that our result is

a completely theoretical approach based on the spherical collapse

model (only radial motions), but in real life objects usually obtain

angular momentum caused by tidal forces, which will tend to de-

tach objects from the structure, strengthening the binding condition.

This discussion will be resumed later, in relation to the results of

our simulations.

2.4 Velocities of shells

In order to work with shell velocities, it is convenient to refer the

radial velocities to the Hubble flow, so we introduce the parameter

A, defined as in Busha et al. (2003),

A (��) ≡
(

1

H0r

dr

dt

)2

. (22)

For a critical shell, we can use equation (4) to write this in terms of

�� as

Acs (��) = ��

[
1 − 3

r̃ 2 (��)
+ 2

r̃ 3 (��)

]
. (23)

Evaluating at �� = 0.7, we obtain that the present velocity param-

eter for a critical shell is Acs = 8.63 × 10−2, showing that the shell

has been slowed down substantially with respect to the Hubble flow.

To study the velocity profile of a mass over density, it is conve-

nient to relate the energy of an arbitrary shell to its normalized radius,

characterized by the present value of ��. Unfortunately, the energy

integral has no analytical solution for Ẽ 
= Ẽ∗, so this relation can

only be obtained numerically. Fixing the value of �� to 0.7, in order

to represent the present universe, we obtain the current normalized

time t̃0 = 0.81. Then, we numerically integrate equation (10) for

every possible value of Ẽ from zero till some value of r̃ that satis-

fies the time constraint. Now using equation (17), we arrive at the

more useful numerical function Ẽ(�s; ��), which is best shown in

Fig. 3.

Expressing the velocity parameter A in terms of an arbitrary nor-

malized energy Ẽ(�s; ��), for a fixed value ��, we obtain

A = �� + �s + Ẽ(�s; ��)
(

2���2
s

)1/3
. (24)

Figure 3. The dimensionless radius r̃ of a shell as a function of its dimen-

sionless energy Ẽ at a cosmological time characterized by �� = 0.7. A shell

with Ẽ = −2.1 corresponds to r̃ = 0, so it is now collapsing. Highlighted by

dotted vertical and horizontal lines are the critical shell, with Ẽc = −1.5 and

r̃c = 0.84, and the shell at turn-around, with Ẽta = −1.64 and r̃ta = 0.73.
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The limits of bound structures 807

Figure 4. Radial velocity parameter A (see equation 24) for a shell as a

function of the enclosed density �s (equation 17) in a universe with �� =
0.7. For a critical shell, �cs = 2.36 and A(��) = 0.086. For a shell at its

turn-around point, A = 0 and �s = 3.66.

In Fig. 4, we observe that A(�s) is zero when �s = �s,ta, the

density parameter corresponding to the turn-around radius. When

solving for the radial velocity, it is important to note that shells with

�s > �s,ta contract, while shells with �s < �s,ta expand. For a

universe with �� = 0.7, �s,ta = 3.66.

3 N U M E R I C A L S I M U L AT I O N S

We simulate one cosmological model, assuming a standard flat

Lambda cold dark matter (�CDM) universe. The current cosmo-

logical parameters in the simulation are �m,0 = 0.3, ��,0 = 0.7 and

h = 0.7, where the Hubble parameter H 0 = 100 h km s−1 Mpc−1.

The normalization of the power spectrum is σ 8 = 1. The box has

a side length 100 h−1 Mpc and contains 1283 dark matter particles

of mass mDM = 3.97 × 1010 h−1 M	. The simulation was evolved

from a = 0.02 (redshift z = 49) to a = 100. The Plummer-equivalent

gravitational softening was set to εPl = 15 h−1 kpc (physical units)

from a = 1/3 to a = 100, while it was taken to be fixed in comoving

units at higher redshift.

The run was performed with the massive parallel tree

N-body/SPH (smoothed particle hydrodynamics) code GADGET

(Springel, Yoshida & White 2001). This is a TREESPH code where

the dark matter particles are evolved using a tree code, while the

collisional gas is followed using the SPH approach.1 Here, we used

the new improved GADGET2, kindly provided by Volker Springel

(Springel 2005), which is more memory efficient, offers better time-

stepping for collisionless dynamics, and is substantially faster than

the original version. The initial conditions were established by the

code of van de Weygaert & Bertschinger (1996).

We took snapshots at the present time (a = 1) and in the far

future (a = 100), assuming that in late epochs the structure evolu-

tion will decrease significantly, so no major changes will be seen

from then on. The identification of structures was done using a

friend-of-friends code to identify the initial candidates and later

extracting the structures to produce a reduced catalogue for our

study.

1 The gas particles were not considered in our simulations.

Figure 5. Enclosed mass as a function of critical radius for 11 bound

objects identified in the simulation at a = 1. The dotted line represents the

constraint of 2.36 times the critical density, used to define the bound region.

4 A P P L I C AT I O N O F B I N D I N G C R I T E R I A
TO S I M U L AT I O N DATA

We identified 22 mass concentrations with masses greater than

1014 h−1
70 M	, from which we selected 11 that were away from the

box boundaries in order to do our analysis.2 The same identification

was done in the future frame (a = 100), obtaining the final state

for the structures identified at a = 1. We were able to follow parti-

cles from the present till the late future frame, so we could exactly

determine the fate of every particle.

In order to apply the density criterion for gravitational binding,

we first identified the densest core of the structure. For this, we

chose a centre and found the radius where the mean inner density

was 300 times the critical density of the Universe (chosen to identify

a dense, virialized core that would be clearly detectable in obser-

vations). We then re-centred the sphere to its centre of mass. We

repeated this procedure until the centre of mass matched the geo-

metric centre of the sphere. Once the centre was fixed, we calculated

the density parameter �s of concentric spheres with increasing ra-

dius until the condition �s < �cs = 2.36 stopped being satisfied.

We called the identified radius rc. (The radii and masses of these

structures are plotted in Fig. 5). The same identification was done

at a = 100, with the critical condition �s < �cs,∞ = 2. In order to

contrast our results, we applied the criterion of Busha et al. (2003) at

a = 1, which is given by �s < �cs,B = 5.56. We called the identified

radius rB.

A critical part of the analysis is to have an acceptable criterion to

determine whether a particle is bound to the overdense structure or

not. As illustrated in Fig. 6, the theoretical criterion at a = 100 gives

a very intuitive result, placed at the end of the virialized region,

almost exactly where the lower envelope of the radial velocities

crosses zero. In other words, �cs,∞ coincides with the last radius

where objects with negative radial velocity can be found. At that

point, only a few particles will be able to escape, so we can say that

the criterion at a = 100 is adequate to determine the limits of bound

structures in the distant future universe. A very similar figure, as well

as a detailed discussion of how the velocity distribution evolves to

this state, was recently given by Busha et al. (2005).

2 We could have used the other 11 objects as well, because the box had

periodic boundary conditions, but we did not, just to simplify the analysis.
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Figure 6. Radial velocities as a function of radius (in physical units) for

a mass overdensity at a = 100. The vertical dashed line shows the radius

where �s = �cs,∞ = 2.

Finally, we classified particles in four categories: particles that

fall inside the theoretical critical shell at a = 1 and a = 100; parti-

cles that fall inside the critical shell at a = 1 but do not at a = 100;

particles that fall outside the critical shell at a = 1 but inside at a =
100 and particles that fall outside in both cases. This categorization

lets us visualize the quality of our estimation, clearly separating

particles according to their real fate, and permitting us to calculate

statistical indicators useful to produce the desired error estimations.

As expected, not every object presented a very ‘spherical’ distri-

bution at a = 1, and this affected how well data were fitted by the

spherical model.3 For this reason, we based our qualitative analysis

on the ‘best’ objects, but we kept all of them when doing statistics.

5 C O M PA R I S O N B E T W E E N T H E O RY
A N D S I M U L AT E D DATA

The spherical model predicts a purely radial motion of particles

towards the centre. This is clearly not the case in the real world,

where objects are affected by multiple and complicated tidal forces

produced by other objects in their surroundings all along their evo-

lution. In fact, objects present a velocity dispersion that is greatest

in the virialized cores of galaxy clusters. The presence of other over-

densities surrounding the main attractor alters the motion, pushing

particles away from their radial trajectories. For this reason, we

expect the spherical model to give a lower bound on the radial ve-

locities at a given radius (with outward-pointing velocities taken as

positive) and an upper limit for the radius of critical shells.

To test the performance of the criterion, we first selected all the

particles that were bound at a = 100 and ‘marked’ them, so they

could be recognized at a = 1, as shown for the most massive structure

in Fig. 7. Later, we selected all the particles that satisfied the criterion

at a = 1 and produced four statistical indicators:4 A, the fraction of

all particles selected by the criterion as bound at a = 1 that were

not selected at a = 100; B, the fraction of all particles selected at

a = 1 that were also selected at a = 100; C, the fraction of particles

not selected at a = 1 but selected at a = 100, to the total number of

3 We even found some objects that were currently undergoing mergers, so

they showed strong evolution between a = 1 and a = 100.
4 Only two of these are independent, as A + B = 1 (or 100 per cent) and

B + C = D.

selected particles at a = 1 and D, the ratio of the mass still bound at

a = 100 to the mass selected at a = 1. Results were averaged over

all objects to obtain a single indicator. Results for our criterion are

shown in Table 1 and for that of Busha et al. (2003) in Table 2.

We observe that the purely theoretical criterion is good to deter-

mine the exterior limit of the object since only very few particles

(0.26 per cent of the particles that satisfied the criterion at a = 1) that

are outside the criterion today will fall inside in the late future. In

contrast, a significant number of particles (28 per cent of the particles

under the criterion) were predicted to belong, but finally escaped.

Finally, a large number of particles (72 per cent of the particles

under the criterion) were correctly predicted to belong to the over-

density.5 Based on this result, we can assert that the theoretical cri-

terion is adequate to give an upper bound to the structure extension,

but overestimates its mass, which turns out to be about 72 per cent

of the predicted mass.

With the criterion of Busha et al. (2003), a greater number of

particles (13 per cent of the particles under the criterion at a = 1)

fell outside the criterion today, but ended up inside the object. In

contrast, a smaller number of particles (10 per cent of the particles

that satisfied the criterion) were incorrectly predicted to belong,

while a very large number of particles (90 per cent of the particles

under the criterion) were correctly recognized. Thus, although it

is based on an inconsistent application of the spherical collapse

model, it happens to give a better estimate for the final object mass,

underestimating it by only ≈3 per cent.

It is also important to add that objects 6 and 7 had very complex

cores, being separated into two main concentrations. Of these, we

selected the most massive as the centre of the spherical analysis.

We kept our selection criterion for the centre, under the assumption

that it should be easier to detect the centre of the most massive

concentration when dealing with real observations.

5.1 Radial velocity predictions

An important prediction of the spherical collapse model is the radial

velocity of shells falling towards the gravitational attractor. The

velocity information is contained in the velocity parameter A, which

depends only on the mass energy density inside the shell, �s. This

can be calculated numerically for every shell of the studied objects,

yielding the desired radial velocity.

In Fig. 8, we plot the radial velocity against radius, together with

the theoretical approximation using the spherical collapse model

with and without cosmological constant (see Reisenegger et al.

2000, for details about the approximation using the spherical col-

lapse model without a cosmological constant). For this analysis, we

chose object no. 9 because it presented a clear stream of infalling

particles flowing at high speed to the object’s core, cleanly separated

from the virialized particles and from particles currently outflow-

ing after a first pass through the centre, forming an empty space

reaching as close as 2 Mpc from the core. Other objects presented

similar overall characteristics, but they did not show such a clear

separation between infalling particles and virialized ones, probably

as a result of earlier virialization or the presence of substructure.

We observe that the spherical model with cosmological constant is

accurate to determine the mean radial velocity of the infalling part

of the cluster particles, correcting the underestimate of radial veloci-

ties at large radius seen in the spherical model without cosmological

constant.

5 Mean values from the 11 objects studied.
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The limits of bound structures 809

Figure 7. Spatial distribution of particles in object no. 1 (see Table 1) with colours depending on our criterion (left-hand panel), or on that of Busha et al.

(2003) (right-hand panel). Blue: they satisfy the criterion at a = 1, but not at a = 100. Green: they satisfy the criterion at a = 1 and a = 100. Red: they do not

satisfy the criterion at a = 1, but they do at a = 100. Particles that do not satisfy the criterion at either a = 1 or a = 100 are not shown.

Table 1. Quantitative results after application of our theoretical criterion to 11 objects from the simulation. Columns: (1) index

of the object; (2) A, particles selected by the criterion as bound at a = 1 but not at a = 100, as fraction of all particles selected at

a = 1; (3) B, particles selected at a = 1 and a = 100, as fraction of all particles selected at a = 1 (note that A + B = 100 per cent);

(4) C, ratio of the number of particles not selected at a = 1 but selected at a = 100 to the total number of selected particles at a = 1;

(5) M (a = 1), total mass selected inside the critical radius at a = 1; (6) M (a = 100) total mass selected inside the critical radius at a = 100

and (7) D = M (a = 100)/M (a = 1).

Object A B C M (a = 1) M (a = 100) D
no. (per cent) (per cent) (per cent) (1014 h−1

70 M	) (1014 h−1
70 M	) (per cent)

1 16.8 83.2 0.20 7.63 6.36 83.4

2 18.3 81.7 0.22 6.46 5.29 81.9

3 18.7 81.3 0.50 5.76 4.71 81.8

4 37.9 62.1 0.04 6.66 4.14 62.1

5 25.4 74.6 0.62 5.41 4.07 75.2

6 51.6 48.4 0.21 6.64 3.23 48.6

7 50.5 49.5 0.06 5.96 2.96 49.6

8 26.7 73.3 0.07 3.34 2.45 73.3

9 17.2 82.8 0.67 2.88 2.40 83.4

10 17.6 82.4 0.09 2.45 2.02 82.4

11 29.6 70.4 0.22 2.07 1.46 70.6

Mean 28.2 71.8 0.26 72.0

std dev. 13.0 13.0 0.23 13.1

An important observation is that the theoretical velocity profile

follows the infalling particles deep into the core of the structure,

where virialization effects are very important. This result, which

was confirmed on every object we studied, tells us that the spherical

collapse model produces robust predictions of the negative velocity

envelope profile even in highly virialized cores. The decrease in the

predicted velocity very near to the centre is probably due to the poor

resolution of the simulation and to extreme virialization effects.

5.2 Perturbations from spherical collapse

In the previous analyses, we observe that there are a considerable

number of particles that escape from the structure, contradicting the

theoretical prediction. There are two main candidates to be respon-

sible for this: one is the appearance of tangential velocities during

the contraction, which is also responsible for virialization, and the

other is the influence of external structures which can act as gravita-

tional attractor on external shells. A simple test is to plot tangential

velocities as a function of radius. We would expect that if there

is a clear relation between angular momentum and failure of the

criterion, we would find that particles that contradict the criterion

would have greater tangential velocities than particles that verify

the criterion. This was done for object no. 9 and results are shown in

Fig. 9.

As seen in Fig. 9, and as we observed in all other objects, there

is no clear relation between tangential velocity and probability of
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Table 2. Quantitative results after application of the criterion of Busha et al. (2003) to 11 objects from the simulation. The variables

are defined as in Table 1.

Object A B C M (a = 1) M (a = 100) D
no. (per cent) (per cent) (per cent) (1014 h−1

70 M	) (1014 h−1
70 M	) (per cent)

1 7.4 92.6 9.3 6.24 6.36 101.9

2 8.7 91.3 6.0 5.44 5.29 97.2

3 7.1 92.9 27.7 3.91 4.71 120.5

4 10.8 89.2 2.7 4.51 4.14 91.8

5 8.4 91.6 17.2 3.74 4.07 108.8

6 10.2 89.8 42.8 2.43 3.23 132.6

7 15.8 84.2 5.9 3.28 2.96 90.1

8 16.3 83.7 7.2 2.69 2.45 90.8

9 3.7 96.3 18.8 2.09 2.40 115.2

10 5.9 94.1 4.8 2.04 2.02 98.9

11 14.9 85.1 4.3 1.64 1.46 89.4

Mean 9.9 90.1 13.3 103.4

std dev. 4.2 4.2 12.4 14.3
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Figure 8. Radial velocities as a function of radius for a mass overdensity at a = 1 for object no. 9. Left-hand panel: colours as a function of tangential

velocities. Red dots indicate more tangential velocity and blue ones less tangential velocity. Right-hand panel: colours depending on final fate of particles:

green particles remain bound to the structure and blue particles do not. The vertical dashed line shows the radius where �s < �cs = 2.36, while the vertical

dotted line indicates the critical radius according to Busha et al. (2003). The solid curve is the theoretical approximation considering a flat universe with a

cosmological constant. The dashed curve is the theoretical approximation considering a universe without cosmological constant and �M = 0.3.
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Figure 9. Tangential velocities as a function of radius for object no. 9 at

a = 1. Colours depend on the final fate of particles, as given in Fig. 7.

escaping. This result is solid enough to say that angular momen-

tum is not the main reason for the failure of the criterion, so the

hypothesis of external attractors seems more acceptable. Just as a

follow-up observation, we can see in Fig. 7 that the particles in-

correctly identified as bound by our criterion (blue) are commonly

related to denser regions outside and close to the critical shell, while

the particles incorrectly identified as unbound (red) are close to mass

concentrations inside the critical shell that finally fall to the centre.

We conclude that the failure of the method is mainly caused by ex-

ternal overdensities or perturbations from the spherical distribution

of the studied object.

6 C O N C L U S I O N S

We have presented a complete discussion of the model of spher-

ical, gravitational collapse in a flat Universe with a cosmological

constant, applied to estimate the size and mass of bound structures

in the Universe. Within this model, we derive an exact, analyti-

cal equation for the minimum enclosed mass density required for
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a shell to remain bound until a very distant future. For the present

cosmological parameters (�m = 0.3, �� = 0.7), this minimum

density is 2.36 times the critical density of the Universe, as found

numerically by Chiueh & He (2002). This suggests a both physi-

cal and practical criterion for the limits of a bound structure, such

as the previously fairly ill-defined superclusters of galaxies, as the

shell enclosing precisely this density.

The application of the model to simulated data gave encouraging

results, demonstrating first its great ability to find the limits of struc-

ture in the late future, and, second, giving reasonably good results in

determining the limits of bound structures at the present epoch. On

average, 72 per cent of the mass enclosed by the estimated radius is

really bound to the structure, while the mass that, although bound to

the structure, is not enclosed by the radius is only a 0.3 per cent. For

the less rigorous criterion of Busha et al. (2003) and other authors,

these numbers are 90 and 13 per cent, giving a substantially better

estimate for the object’s final mass. Thus, the sphere defined by our

criterion is an outer envelope enclosing all the particles bound to the

structure (and quite a few more), while that of Busha et al. (2003)

encloses as much mass as will remain bound to the distant future

(leaving about as many bound particles outside as unbound ones

inside).

The spherical collapse model also defines a radial velocity profile

that we will use in our next paper (Dünner et al. in preparation)

to find the shape of these structures in redshift space, in order to

make them identifiable in redshift surveys. This profile was found

in the simulations to fit the observed velocity profile of infalling

particles well down to deep inside the virialized radius. Thus, even

though the spherical collapse model is intrinsically unstable for

contracting shells, it still gives a reliable performance in a broad set

of radii. Moreover, we observed that the greatest perturbations from

the theoretical model were produced by gravitational perturbations

by external structures or by substructures falling into the external

shells of the structure.
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