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ABSTRACT

We have compiled a new sample of 240 halo objects with accurate distance and
radial velocity measurements, including globular clusters, satellite galaxies, field blue
horizontal branch stars and red giant stars from the Spaghetti survey. The new data
lead to a significant increase in the number of known objects for Galactocentric radii
beyond 50 kpc, which allows a reliable determination of the radial velocity dispersion
profile out to very large distances. The radial velocity dispersion shows an almost
constant value of 120 km s−1 out to 30 kpc and then continuously declines down to
50 km s−1 at about 120 kpc. This fall-off puts important constraints on the density
profile and total mass of the dark matter halo of the Milky Way. For a constant
velocity anisotropy, the isothermal profile is ruled out, while both a dark halo fol-
lowing a truncated flat model of mass 1.2+1.8

−0.5 × 1012
M⊙ and an NFW profile of mass

0.8+1.2

−0.2 × 1012
M⊙ and c =18 are consistent with the data. The significant increase in

the number of tracers combined with the large extent of the region probed by these
has allowed a more precise determination of the Milky Way mass in comparison to
previous works. We also show how different assumptions for the velocity anisotropy
affect the performance of the mass models.

Key words: dark-matter – Galaxy: halo, dynamics, structure

1 INTRODUCTION

The determination of the total mass of the Galaxy has been
a subject of considerable interest since the work of Kapteyn
in the early 1920s (see Fich & Tremaine 1991 for a nice
introductory review on the subject). Since then, the mass of
the Milky Way has seen its estimates grow by factors of ten
to a hundred, with some dependence on the type of mass
tracer used: H I kinematics, satellite galaxies and globular
clusters, or the Local Group infall pattern. The most recent

⋆ Corresponding author. E-mail: gbattagl@astro.rug.nl

determinations yield fairly consistent values for the mass
within 50 kpc, with an uncertainty of the order of 20% for a
given mass model (Kochanek 1996; Wilkinson & Evans 1999,
hereafter W&E99; Sakamoto, Chiba & Beers 2003, hereafter
SCB03). However, even today, the total mass of the Galaxy
is not known better than within a factor of two.

Whatever method is used, be it the H I kinematics, glob-
ular clusters, satellite galaxies, or halo giants, it is only pos-
sible to determine the mass enclosed in the region probed by
these tracers (Binney & Tremaine 1987). This implies that
the rotation curve derived from H I will only constrain the
mass within roughly 18 kpc from the Galactic centre (Rohlfs
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& Kreitschmann 1988; Honma & Sofue 1997), a region which
is baryon dominated. Globular clusters and satellite galaxies
are, in principle, better probes of the large scale mass distri-
bution of the Galaxy, since they are found out to distances
beyond 100 kpc. However, there are only 15 such objects
beyond 50 kpc (Zaritsky et al. 1989; Kochanek 1996). Only
6 of these have proper motion measurements, which despite
the large errors, can further constrain the shape of the veloc-
ity ellipsoid. Using this dataset, W&E99 favour isotropic to
slightly tangentially anisotropic models, although 1σ con-
tours for the velocity anisotropy β give −0.4 . β . 0.7.
SCB03 have added to the sample used by W&E, field blue
horizontal branch stars with proper motions and radial ve-
locities. While this is clearly an improvement, these stars
are located within 10 kpc of the Sun, which strongly limits
their constraining power at larger radii. In their models, the
velocity ellipsoid is tangentially anisotropic, with β ∼ −1.25
as the most likely value.

It is clearly important to measure the total mass of the
Galaxy in order to constrain its dark-matter content. How-
ever, it is also critical to determine its distribution: density
profile, flattening, velocity ellipsoid, etc. One of the most
fundamental predictions of cold-dark matter models is that
the density should follow an NFW profile throughout most
of the halo (Navarro, Frenk & White 1997).

The density profiles derived from the gas rotation curves
of large samples of external galaxies do not always follow the
NFW shape (de Blok et al. 2001). Tracers at larger distances
are rare, but objects such as planetary nebulae or globular
clusters could yield powerful constrains on the mass distri-
bution at those radii, for example for elliptical galaxies as
shown by Romanowsky et al. (2003).

In the case of the Milky Way, the situation is not dissim-
ilar. The distribution of mass inside the Solar circle has been
studied extensively (see e.g. Dehnen & Binney 1998; Evans
& Binney 2001; Bissantz, Debattista & Gerhard 2004). A
common conclusion is that there is little room for dark-
matter in this region of the Galaxy.

But does the dark-matter beyond the edge of the Galac-
tic disk follow an NFW profile? How does the most often
assumed isothermal profile perform in this region of the
Galaxy (e.g. Sommer-Larsen et al. 1997; Bellazzini 2004)?
Is the velocity ellipsoid close to isotropic as found in CDM
simulations (Ghigna et al. 1998)? Modeling of the kinemat-
ics of halo stars by Sommer-Larsen et al. (1997) favoured an
ellipsoid that became more tangentially anisotropic towards
larger distances, while Ratnatunga & Freeman (1989) found
a constant line-of-sight velocity dispersion out to 25 kpc.

These fundamental issues can only be addressed when
a sufficiently large number of probes of the outer halo of
the Galaxy are available. Ideal tracers are red giant stars or
blue horizontal branch stars, which can be identified photo-
metrically also at large galactocentric distances (Morrison et
al. 2000; Clewley et al. 2002; Sirko et al. 2004a,b). Spectro-
scopic follow-up allows both the confirmation of the lumi-
nosity class as well as the determination of radial velocities
with relatively small errors (Morrison et al. 2003). With the
advent of wide field surveys, such as the Sloan Digital Sky
Survey, or the Spaghetti survey, the numbers of such outer
halo probes have increased by large amounts, making this
an ideal time to address the mass distribution of our Galaxy
in greater detail.

Objects number of objects Source

Globular clusters 44 Harris (1997)
FHB stars 130 Wilhelm et al. (1999b),

Clewley et al. (2004)
Red halo giants 57 Spaghetti survey
Satellite galaxies 9 Mateo (1998)

Table 1. Characteristics of the data used in this paper. In all
cases, position in the sky, heliocentric distance and line of sight
velocities are available.

This paper is organized as follows. In the next section
we describe the observational datasets used to determine
the radial velocity dispersion curve. In Sec. 2.2 we introduce
several mass models for the dark halo of our Galaxy and
derive how the line of sight velocity dispersion depends on
the model parameters. In Sec. 2.3 we compare the data to
the models and derive the best fit values of the parameters
using χ2 fitting. Finally we discuss our results and future
prospects in Sec. 3.

2 THE RADIAL VELOCITY DISPERSION

CURVE

2.1 The observational datasets

Our goal is to derive the radial velocity dispersion profile of
the Milky Way stellar halo in the regime where it is domi-
nated by the gravitational potential of its dark-matter halo.
Hence we restrict ourselves to tracers located at Galacto-
centric distances greater than 10 kpc, where the disc’s con-
tribution is less important.

We use a sample of 9 satellite galaxies, 44 globular clus-
ters, 57 halo giants and 130 field blue horizontal branch stars
(FHB). The various data sources of this sample are listed in
Table 1. It is worth noting that there are 24 objects located
beyond 50 kpc in our sample, and that we have enough
statistics to measure radial velocity dispersion out to 120
kpc as shown in the top panel of Figure 1. This covers a
significantly larger radial range than many previous works,
including e.g. Sommer-Larsen et al. (1997), whose outermost
point is at 50 kpc.

The red halo giants are from the “Spaghetti” Survey
(Morrison et al. 2000). This is a pencil beam survey that
has so far covered 20 deg2 in the sky, down to V ∼ 20. It
identifies candidate halo giants using Washington photome-
try, where the 51 filter1 allows for a first luminosity selection.
Spectroscopic observations are then carried out to confirm
the photometric identification and to determine the radial
velocities of the stars.

We have derived the heliocentric distance for the FHB
stars from Wilhelm et al. (1999b) using the relation

MV (HB) = 0.63 + 0.18([Fe/H] + 1.5)

(Carretta et al. 2000).
In all cases, accurate distances and radial velocities are

available: the average error in velocity ranges from a few

1 The 51 filter is centered on the Mgb/MgH feature near 5170 Ȧ
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km s−1 (satellite galaxies and globular clusters) to 10-15
km s−1 (FHB stars and red giants); the typical relative dis-
tance error is approximately 10%.

When transforming the heliocentric l.o.s. velocities,
Vlos, into Galactocentric ones, VGSR, we assume a circular
velocity of VLSR = 220 km s−1 at the solar radius (R⊙ =
8 kpc) and a solar motion of (U ,V ,W ) = (10, 5.25, 7.17)
km s−1 , where U is radially inward, V positive in the di-
rection of the Galactic rotation and W towards the North
Galactic Pole (Dehnen & Binney 1998). Hereafter we refer
to: the radial velocity (dispersion) measured in a heliocen-
tric coordinate system as the l.o.s. velocity, Vlos (dispersion,
σlos); the l.o.s. velocity (and its dispersion) corrected for the
solar motion and the LSR motion as the Galactocentric ra-
dial velocity, VGSR (dispersion, σGSR); the radial velocity
(and its dispersion) in a reference frame centered on the
Galactic Centre as the true radial velocity, Vr (dispersion,
σr). Figure 2 shows VGSR as function of the Galactocentric
distance r for all the objects used in this work.

The bottom panel in Figure 1 shows the Galactocen-
tric radial velocity dispersion as function of distance from
the Galactic centre. This is computed in bins whose width
is approximately twice the average distance error of objects
in the bin. This implies that our bin sizes range from 3 kpc
at r ∼ 10 kpc, to 40 kpc at r ∼ 120 kpc. The error-bar
on the velocity dispersion in each bin is calculated perform-
ing Monte Carlo simulations. We assume the velocity and
distance errors are gaussianly distributed in the heliocentric
reference frame. In practice, this means that we randomly
generate velocities and distances for each one of the stars,
whose mean and dispersion are given by the observed value
and its estimated error, respectively. We then convert the
heliocentric quantities into Galactocentric ones. We repeat
this exercise for 10,000 sets, and for each of these we measure
σGSR in the same bins as the original data. We use the rms
of this velocity dispersion, obtained from the 10,000 simu-
lations, as the error on the velocity dispersion we measured
in the bin.

One may question whether the satellite galaxies can be
considered fair tracers of the gravitational potential of the
dark matter halo of the Milky Way (e.g. Taylor, Babul &
Silk 2004; Gao et al. 2004). To get a handle on this issue,
we compute the velocity dispersion profile both with and
without them (squares and diamonds, respectively in Fig.
1). Since the trend is similar in both cases we may consider
the satellites to be reliable probes of the outer halo potential.

2.2 The models

2.2.1 Jeans equations

If we assume that the Galactic halo is stationary and spheri-
cally symmetric we can derive the (expected) radial velocity
dispersion profile σr,∗ of the stars from the Jeans equation
(Binney & Tremaine 1987):

1

ρ∗

d(ρ∗σ
2
r,∗)

dr
+

2βσ2
r,∗

r
= −

dφ

dr
= −

V 2
c

r
(1)

where ρ∗(r) is the mass density of the stellar halo, φ(r) and
Vc(r) are the potential and circular velocity of the dark mat-
ter halo and β is the velocity anisotropy parameter, defined

Figure 1. The top panel shows the number of objects per bin
in our sample. The bottom panel shows the Galactocentric ra-
dial velocity dispersion of the Milky Way halo. The squares with
error-bars correspond to the dispersion profile for the whole sam-
ple. The diamonds indicate the Galactocentric radial velocity dis-
persion if the satellite galaxies are not included in the sample.

Figure 2. Heliocentric l.o.s. velocities corrected for the Solar Mo-
tion and the LSR motion (VGSR) for the sample used in this work
(triangles: red giants; asterisks: globular clusters; diamonds: field
horizontal branch stars; filled squares: satellite galaxies).
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as β = 1 −
σ2

θ

σ2
r

, and assuming σ2
θ = σ2

φ. Note that β = 0

if the velocity ellipsoid is isotropic, β = 1 if the ellipsoid is
completely aligned with the radial direction, while β < 0 for
tangentially anisotropic ellipsoids.

The Jeans equation allows us to determine a unique
solution for the mass profile if we know σ2

r,∗(r), ρ∗(r) and
β(r), although this solution is not guaranteed to produce
a phase-space distribution function that is positive every-
where. We are, however, faced with two uncertainties: the
velocity anisotropy and the behaviour of the stellar halo den-
sity at very large distances. The latter has been determined
to vary as a power-law ρ∗(r) ∝ r−γ with γ ∼ 3.5 out to ∼ 50
kpc (Morrison et al. 2000; Yanny et al. 2000), and we shall
assume this behaviour can be extrapolated all the way out to
our last measured point. More crucial is the unknown varia-
tion of the velocity anisotropy with radius, which is difficult
to determine because of the lack of tracers with accurate
proper motions beyond the Solar neighbourhood. This im-
plies in principle, that large amounts of kinetic energy can be
hidden to the observer, an effect known as the mass-velocity
anisotropy degeneracy. For sake of simplicity, and given that
the situation is unlikely to change until the advent of new
space astrometric missions such as SIM and Gaia (Perryman
et al. 2001), throughout most of this work we shall make the
assumption that β is constant, i.e. independent of radius r.

To derive Eq. (1) we have assumed that the stellar halo
can be considered as a tracer population of objects moving
in an underlying potential. This is justified by the negligible
amount of mass present in this component, compared to, for
example, that in the disk and the dark halo.

The (expected) radial velocity dispersion for the tracer
population σr,∗ may be thus derived by integrating Eq. (1).
This leads to

σ2
r,∗(r) =

1

ρ∗ e
∫

2βdx

∫

x

∞

ρ∗ V 2
c e

∫

2βdx′′

dx′, x = ln r. (2)

Here, we have used that r2βρ∗σr,∗|∞ = 0. Note that the ra-
dial velocity dispersion of the tracer population depends on
the particular form of the circular velocity of the underlying
(gravitationally dominant) mass distribution.

Since proper motions are not available for the whole
sample and we only have access to heliocentric velocities,
the quantity that we measure is not the true radial veloc-
ity dispersion but σGSR,∗. When comparing this quantity
to model predictions, we must take in account a correction
factor for the lack of information on the tangential compo-
nent of the velocity. Following the procedure described in
Appendix A, we find that the Galactocentric radial veloc-
ity dispersion, σGSR,∗, is related to the true radial velocity
dispersion, σr,∗ as

σGSR,∗(r) = σr,∗(r)
√

1 + 2 (1 − β)H(r), (3)

where

H(r) =
r2 + R2

⊙

4r2
−

(r2 − R2
⊙)

2

8r3R⊙

ln
r + R⊙

r − R⊙

. (4)

The above equation for H(r) is valid at Galactocentric dis-
tances r > R⊙. For a purely radial anisotropic ellipsoid (β =
1) σGSR,∗ and σr,∗ coincide. For a tangentially anisotropic
stellar halo, the correction factor becomes negligible at dis-
tances larger than about 30-40 kpc.

2.2.2 Specifing dark-matter halo models

We adopt three different models for the spherically symmet-
ric dark-matter halo potential:

• Pseudo-Isothermal sphere. This model has been exten-
sively used in the context of extragalactic rotation curve
work. The density profile and circular velocity associated to
a pseudo-isothermal sphere are:

ρ(r) = ρ0
r2
c

(r2
c + r2)

, (5)

and

V 2
c (r) = V 2

c (∞)
(

1 −
rc

r
arctg

r

rc

)

, (6)

where rc is the core radius, and ρ0 =
V 2

c (∞)

4πGr2
c

. We set

Vc(∞) = 220 km s−1 as asymptotic value of the circular
velocity. At large radii the density behaves as ρ ∝ r−2 giv-
ing a mass that increases linearly with radius.

• NFW model. In this case the dark matter density profile
is given by

ρ(r) =
δcρ

0
c

(r/rs)(1 + r/rs)2
(7)

where rs is a scale radius, ρ0
c the present critical density and

δc a characteristic overdensity. The latter is defined by δc =
100 c3g(c)

3
, where c = rv/rs is the concentration parameter

of the halo and g(c) =
1

ln(1 + c) − c/(1 + c)
. The circular

velocity associated with this density distribution is

V 2
c (s) =

V 2
v g(c)

s

[

ln(1 + cs) −
cs

1 + cs

]

(8)

where Vv is the circular velocity at the virial radius rv and
s = r/rv. The concentration c has been found to correlate
with the virial mass of the halo (Navarro, Frenk & White
1997; Bullock et al. 2001; Wechsler et al. 2002). However,
the relation presents a large scatter. For example, for a halo
of mass 1.0×1012h−1M⊙ the predicted concentration ranges
between 10 and 20. Hence, we cannot consider the NFW
density profile as a one-parameter family; we need to de-
scribe it by the concentration c, and by the virial mass or
the circular velocity at the virial radius. At large radii (for
r ≫ rs), the density behaves as ρ ∝ r−3, and therefore, the
total mass diverges logarithmically. However, we can impose
that the particles must be bound at the virial radius, and so
when integrating Eq. (2), we set the upper integration limit
to rv and we use r2βρ∗σr,∗|rv

= 0.

• Truncated Flat model. This density profile was recently
introduced by W&E99 to describe the dark matter halo of
Local Group galaxies. It is a mathematically convenient ex-
tension of the Jaffe (1983) model. The form of the density
profile of the Truncated Flat model (hereafter TF) is

ρ(r) =
M

4π

a2

r2(r2 + a2)3/2
(9)

where a is the scale length and M the total mass of the
system. For r ≫ a, the density falls off as ρ ∝ r−5. The
circular velocity due to this density distribution is
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Figure 3. Left: Contour plot of ∆χ2 corresponding to a probability of the 68.3%, 95.4%, 99.7% (1σ, 2σ, 3σ) for the isothermal sphere
model with constant anisotropy. The asterisk indicates the location of the minimum χ2 (whose value is shown in the upper right corner).
Right: Observed radial velocity dispersion (squares with error-bars) overlaid on the best fit model for the isothermal mass distribution
(solid line).

V 2
c (r) =

V 2
0 a

(r2 + a2)1/2
. (10)

We set V0 = 220 km s−1 (W&E99). The resulting rotation
curve is flat in the inner part, with amplitude V0 =

√

GM/a,
and becomes Keplerian for r ≫ a. Having fixed the ampli-
tude of the circular velocity (V0), this model is reduced to
a one parameter-family characterized by the scale length a,
or the mass M .

2.3 Results

2.3.1 Models with constant velocity anisotropy

The methodology we use consists in comparing the measured
Galactocentric radial velocity dispersion σGSR,∗ for each of
the distance bins with that predicted for the different models
discussed in Sec. 2.2. For the latter, we explore the space of
parameters which define each model and determine the χ2

as:

χ2 =
Nbins
∑

i=1

(

σGSRi,∗ − σGSR,∗(ri; β, p)

ǫr

)2

. (11)

Here, the variable p denotes a characteristic parameter of
each model (e.g. scale length or total mass), while ǫr is the
error in the observed radial velocity dispersion as estimated
through the bootstrap sampling technique described before.
The best-fitting parameters are defined as those for which
χ2 is minimized.

In the case of the isothermal sphere, the free parameters
are the dark matter halo core radius, rc, and the stellar ve-
locity dispersion anisotropy parameter, β. The left panel of
Fig. 3 shows the χ2 contours for this model. The minimum
χ2 value is χ2

min = 23 for rc = 1.6 kpc and β = −0.4, with 1-σ
contours encompassing 0.6 . rc . 2.6 and −0.7 . β . −0.1.
This corresponds to a best-fitting mass M = 1.3 × 1012

M⊙ (note that, since the mass for the pseudo-isothermal
model is not finite, we quote the mass within our last mea-
sured point, at r = 120 kpc). The 1-σ errors on the mass,

calculated from the 1-σ errors for the core radius, lead to a
relative error of the order of 1%. The reason for this small
value is due to the fact that the best-fitting core radius is
very small, and hence variations in its value (even by 100%)
will barely affect the mass enclosed at large radii. On the
right panel of Fig. 3 we plot the Galactocentric radial veloc-
ity dispersion for this best-fitting model. As expected, this
model predicts a velocity dispersion that is roughly constant
with radius. However, the observed σGSR,∗ shows a rather
strong decline at large radii, which is not reproduced by the
pseudo-isothermal halo model.

The top panels of Fig. 4 show the χ2 contours for the
NFW model for 4 different concentrations (c = 10, 14, 16,
and 18). Note that the minimum χ2 value decreases for in-
creasing concentrations. Since the concentration is defined
as c = rv/rs, for a fixed mass (or virial radius rv) a larger
c implies a smaller scale radius. This results in a radial ve-
locity dispersion that starts to decline closer to the centre
in comparison to a halo of lower concentration, reproduc-
ing better the trend observed in the data. Our χ2 fitting
technique yields for c = 10 a best-fitting virial mass of
1.2×1012 M⊙ (χ2

min = 36), while for c = 18, Mv = 0.8×1012

M⊙ (χ2
min = 12). We find that the velocity anisotropy for

the minimum χ2 is almost purely radial in all cases. In the
bottom panel of Fig. 4 we show the observed Galactocentric
radial velocity dispersion overlaid on two of the best-fitting
NFW models. Note that beyond 40 kpc, the model with
c = 10 is clearly inconsistent with the data at the 1σ level
at r ∼ 40 and 50 kpc and at the 2σ level in the last two
bins. On the other hand, the c = 18 model gives a good fit
of the data out to 30 kpc but overpredicts the velocity dis-
persion at large radii at the 1σ level. We thus consider the
NFW model with Mv = 0.8+1.2

−0.2×1012M⊙ and c = 18 as pro-
ducing the best fit. Fig. 4 also shows the favourite model of
Klypin et al. (2002) with Mv = 1.0×1012 and c =12 (dotted
curve). Since no velocity anisotropy was given in the source
we performed a χ2 fit to our data using the parameters from
Klypin et al. (2002) and leaving β as a free parameter. This
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Figure 4. Top: Contour plot of ∆χ2 corresponding to a probability of the 68.3%, 95.4%, 99.7% (1σ, 2σ, 3σ) for the NFW model at
four different concentrations. The value of the concentration and minimum χ2 are shown in the upper right corner of each panel. The
asterisk indicates the location of the minimum χ2 and hence of the best-fitting parameters. The virial mass is given in units of 1012

M⊙ . Bottom: Observed radial velocity dispersion (squares with error-bars) overlaid on two of the best fit models for the NFW mass
distributions (dashed line: c=10; solid line: c=18). The dotted curve corresponds to the Galactocentric radial velocity dispersion profile
obtained using the preferred model (B1) of Klypin et al. (2002).
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Figure 5. Left: Contour plot of ∆χ2 corresponding to a probability of the 68.3%, 95.4%, 99.7% (1σ, 2σ, 3σ) for the TF model. The
asterisk indicates the location of the minimum χ2 (whose value is shown in the upper right corner). Right: Observed radial velocity
dispersion (squares with error-bars) overlaid on the best fit model for the TF mass distribution (solid line). The dashed line shows
the Galactocentric radial velocity dispersion obtained using the best-fitting parameters from previous works (dashed: W&E99; dotted:
SCB03).

favoured once again an almost purely radial anisotropy. The
fit obtained in this case is very similar to that found in our
c = 10 model.

Since our last measured point is at rlast ∼ 120 kpc,
the constraining power of our data is stronger in the re-
gion enclosed by this radius. The value of the virial mass we
just derived is an extrapolation of the model at larger dis-
tances. For completeness, we quote here the mass within
120 kpc for our best fitting NFW model with c = 18,
M(< 120 kpc) = 5.4+2.0

−1.4×1011M⊙ (the errors are calculated
from the 1σ errors in the best-fitting mass).

The left panel of Fig. 5 shows the contour plot for the
TF model. Our best fit has a mass of 1.2+1.8

−0.5 × 1012M⊙ and
β = −0.50± 0.4 (χ2

min = 25). The mass enclosed in 120 kpc
is M(< 120 kpc) = 9.0+6.0

−3.0 × 1011M⊙ . Our results are com-
patible with the work of W&E99: they find a mass of M =
1.9+3.6

−1.7 × 1012M⊙ , even though they favour a slightly radi-
ally anisotropic velocity ellipsoid. The right panel of Fig. 5
shows the data overlaid on our best-fitting model (solid line).
Visual inspection shows that the large value obtained for the
minimum χ2 is driven by the discrepancy between model and
data in the bins at 11.5 and 33 kpc. However, at large radii
our TF model with M = 1.2×1012M⊙ provides a good repre-
sentation of the data. Figure 5 also shows that the favourite
W&E99 model (dashed curve), having a larger mass and a
more radially anisotropic velocity ellipsoid, overpredicts the
Galactocentric radial velocity dispersion. On the other hand,
the TF model of SCB03, for which M = 2.5 × 1012M⊙ and
β = −1.25, i.e. heavier halo whose ellipsoid is much more
tangentially anisotropic, declines too quickly in the inner
part and tends to flatten at large radii (dotted curve), not
following the trend shown by the data.

The comparison of the fits produced by the constant
anisotropy TF and NFW models shows that the latter re-
produces better the trends in the data as a whole, from small
to large radii. However, at very large radii it tends to over-
predict the velocity dispersion. In this regime, the TF model

provides a much better fit. This can be understood as fol-
lows. In the region between 50 and 150 kpc, where σGSR,∗

shows the decline, the slope of the TF model ranges between
−3 and −4 whilst the slope of the NFW density profile is
around −2.5. This means that, in models with a constant
velocity anisotropy, a steep dark matter density profile at
large radii is favoured by the data.

2.3.2 Toy models for the velocity anisotropy

We will now briefly relax the assumption that β is constant
with radius. We shall explore the following models for β(r):

• Model β-rad (Radially anisotropic). Diemand, Moore &
Stadel (2004) have found in N-body ΛCDM simulations that
the anisotropy of subhalos velocities behaves as

β(r) ≃ 0.35
r

rv

, for r ≤ rv. (12)

We will use this cosmologically motivated functional form to
study the effect of an increasingly radially anisotropic veloc-
ity ellipsoid in our modelling of the radial velocity dispersion
curve.

• Model β-tg (Tangentially anisotropic). Proper motion
measurements of the Magellanic Clouds and Sculptor, Ursa
Minor, and Fornax dwarf spheroidals suggest that the tan-
gential velocities of these objects are larger than their radial
motions (Kroupa & Bastian 1997; Schweitzer et al. 1995,
1997; Dinescu et al. 2004). If confirmed, this would have
as consequence that the velocity ellipsoid should be tan-
gentially anisotropic at large radii. To explore the effect on
our dynamical models of a velocity ellipsoid that becomes
increasingly more tangential, we consider the following toy-
model:

β(r) = β0 −
r2

h2
, (13)

where we set the scale factor h = 120 kpc. We choose two
values for β0: in the first case we arbitrarily fix it to 1 (model
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Figure 6. Top: The solid and dashed curves correspond to two
toy-models for a velocity ellipsoid that becomes more tangentially
anisotropic with radius. The dashed-dotted line shows a model
for an increasingly radially anisotropic ellipsoid from Diemand,
Moore & Stadel (2004). Bottom: best-fitting models for an NFW
halo of concentration c = 18 corresponding to the β profiles shown
in the top panel.

β-tgtoy); in the second model (β-tgSN) we use a a sample of
91 nearby halo stars from Beers et al. (2000) – within 0.5
kpc from the Sun and with [Fe/H]< −1.5 – to normalize our
model. In this case, we find that β(R⊙) = 0.33 and therefore,
β0 = 0.33 + R2

⊙/h2.

Using the models for β(r) described above, we per-
form again the χ2 best-fitting procedure for an NFW model
of c = 18. There is, therefore, in all cases, only one free
parameter: the virial mass. The results of this new anal-
ysis are shown in the bottom panel of Fig. 6. The β-rad
model, for which the velocity ellipsoid becomes more radi-
ally anisotropic with radius, has χ2

min = 15. Even though
the predicted radial velocity dispersion of this model does
decrease with radius, this decline is of insufficient ampli-
tude to reproduce the trend shown by the data. Note that
this model, motivated by dark-matter simulations, provides
a poorer fit than the constant β model. Models where the ve-
locity ellipsoid becomes more tangentially anisotropic with
radius, β-tgtoy and β-tgSN, follow very well the data, and
have χ2

min = 6 and 7, respectively. We find that, for model
β-tgtoy, the best-fitting virial mass is Mv = 8.8 (± 0.7, ±
1.2)×1011M⊙ (at the 1σ, 2σ level), and Mv =1.5 (± 0.1,
± 0.2)×1012M⊙ (at the 1σ, 2σ level) for β-tgSN. For the

β-tgtoy model, we find that mass enclosed in 120 kpc is
M(< 120 kpc) = 5.9± 0.5× 1011M⊙ ; for the β-tgSN model,
M(< 120 kpc) = 9.0 ± 0.6 × 1011M⊙ . Table 2 summarizes
the best-fitting parameters for our favourite models.

This analysis highlights the mass-anisotropy degener-
acy, since it shows that, even for the same functional form of
β, the best-fitting value of the virial mass can differ by a fac-
tor of two. Note that the best-fitting values of the virial mass
for the β-tgtoy model and the β = cst are very comparable,
but this is a reflection of the fact that the two anisotropy
parameters are not too similar throughout a fair range of the
distances probed by the sample. However, since the value of
β in the Solar neighbourhood is in the range 0.5±0.1 (Chiba
& Yoshii 1998), this would tend to suggest that, given that
the ellipsoid needs to be tangentially anisotropic at large
radii to give a good fit to the data, a higher value of the
total mass is more likely.

If we apply the same kind of analysis to the pseudo-
isothermal sphere mass model, it is clear that β has to de-
crease more strongly with radius than the above β-tg model
used in combination with the NFW profile in order to give
a reasonable fit to the data. This is in line with the results
of Sommer-Larsen et al. (1997). By assuming a logarithmic
potential for the dark matter halo, they found a velocity
ellipsoid radially anisotropic at the Solar circle (β ∼ 0.5)
and tangentially anisotropic for r & 20 kpc. At r ∼ 50 kpc
the expected value of β ∼ −1. The Sommer-Larsen et al.
(1997) model is consistent with our findings out to ∼ 50
kpc; however, if we extrapolate the predicted trend for β to
larger Galactocentric distances, we notice that β does not
decrease sufficiently rapidly to explain the decline observed
in our data (see also Appendix B).

From the above analysis it is evident that assumptions
on β for a particular mass model, can strongly influence the
performance of the mass model. However, not all functional
forms of β for a given mass model produce a good fit to
the data. More accurate proper motion measurements for a
larger number of halo tracers and covering a larger range in
Galactocentric distances will enable us to understand which
trend in radius β is following and, therefore, to establish
more uniquely which mass model is preferred by the data.

In addition to varying the velocity anisotropy param-
eter β as function of radius, it is also possible to consider
the effect of changing the slope γ of the stellar density pro-
file of the Galactic halo. In this case, however, the data is
much more restrictive in the choice of possible models, since
it is well-known that γ ∼ 3 − 3.5 out to ∼ 50 kpc (Yanny
et al. 2000). Equation (2) shows that possible variations of
the stellar halo power law γ with radius can “conspire” with
variations of β to reproduce the same radial velocity disper-
sion profile. We examine this issue further in Appendix B.

3 DISCUSSION AND CONCLUSIONS

We have derived the radial velocity dispersion profile of
the stellar halo of the Milky Way using a sample of 240
halo objects with accurate distance and radial velocity mea-
surements. The new data from the “Spaghetti” Survey led
to a significant increase in the number of known objects
for Galactocentric radii beyond 50 kpc, which allowed a
more reliable determination of the dispersion profile out to
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χ2
min β Mass [1012M⊙ ] scale length [kpc]

TF model 25 −0.5 1.2+1.8
−0.5 105

NFW model 12 0.94 0.8+1.2
−0.2 255 (c = 18)

NFW model (β-tgSN) 7 β′(r) < 0 1.5±0.1 312 (c = 18)

Table 2. Values of the parameters for our favourite best-fitting models; the scale length corresponds to a for the TF model and rv for
the NFW.

very large distances. Our most distant probes are located
at ∼ 120 kpc, which in comparison to previous works (e.g.
Sommer-Larsen et al. 1997) corresponds to an increase of
70 kpc in probing the outer halo. The Galactocentric ra-
dial velocity dispersion measured is approximately constant
(σGSR,∗ ∼ 120 km s−1 ) out to 30 kpc (consistent with Rat-
natunga & Freeman 1986) and then it shows a continuous
decline out to the last measured point (50 ± 22 km s−1 at 120
kpc). This fall-off has important implications for the density
profile of the dark matter halo of the Milky Way. In partic-
ular, in the hypothesis of a constant velocity anisotropy, an
isothermal sphere can be immediately ruled out as model
for the Galactic dark halo as this predicts a nearly constant
radial velocity dispersion curve.

We have also considered two other possible models for
the dark halo: a truncated flat (TF) and a Navarro, Frenk &
White (NFW) profile. We have compared the radial veloc-
ity dispersion observed with that predicted in these models
for a tracer population (stellar halo) embedded in a poten-
tial provided by the dark halo. By means of a χ2 test, we
were able to derive the characteristic parameters and veloc-
ity anisotropy of these models that are most consistent with
the observed data.

In the case of a TF profile, the favourite model for the
Milky Way dark matter halo has a mass M = 1.2+1.8

−0.5 ×
1012M⊙ , with a corresponding velocity anisotropy β =
−0.50 ± 0.4. The data are also compatible with an NFW
dark halo of Mv = 0.8+1.2

−0.2 ×1012 M⊙ and −0.3. β . 1 for a
concentration c =18. The comparison of the fits produced by
the constant anisotropy TF and NFW models shows that the
latter reproduces better the trends in the data as a whole,
from small to large radii. However, at very large radii it
tends to overpredict the velocity dispersion. In this regime
the TF model –having a steeper density profile– provides a
much better fit.

Our determination of the dark halo mass of the Milky
Way is consistent with previous works: the preferred TF
model of W&E99 gives a mass M = 1.9 × 1012M⊙ , with a
1-σ range of 0.2 < M [1012M⊙ ] < 5.5 and −0.4 < β < 0.7;
the favourite model from Klypin et al. 2002 gives M = 1.0×
1012 M⊙ with c =12. However, the radial velocity dispersion
predicted by these two models is larger than the observed
one. The discrepancy between the observed low values of the
radial velocity dispersion at large radii and that predicted for
heavy dark halos raises the question of whether the velocity
dispersion in the two most distant bins may be affected by
systematics, such as the presence of streams, which could
lower their values.

The two bins in question are centered at ∼ 90 kpc and
∼ 120 kpc, and contain 6 and 3 objects respectively: 4 satel-

lite galaxies and 5 globular clusters. The minimum angular
separation of any two objects in these bins is 40◦, for the
satellites, and 49◦, for the GCs. When considering the sam-
ple with 9 objects only two of these objects appear to be
close on the sky: one globular cluster and one satellite galaxy
that are located at (l, b) ∼ (241◦,42◦). Although these are
at similar distances of 96 kpc and 89 kpc, respectively, their
line of sight radial velocities differ by more than 140 km s−1 ,
thus making any physical association extremely unlikely.

We have also investigated the effect of a velocity
anisotropy that varies with radius on the velocity disper-
sion σGSR,∗ in the case of an NFW halo of concentration
c =18. We find that the velocity anisotropy, which is radial
at the Solar neighborhood, needs to become more tangen-
tially anisotropic with radius in order to fit the observed
rapid decline in σGSR,∗. In the case of an isothermal dark
matter halo, the β profile needs to decline even more steeply
than in the NFW case in order to fit the data.

We conclude that the behaviour of the observed velocity
dispersion can be explained either by a dark matter halo
following a steep density profile at large radii and constant
velocity anisotropy, or by a halo with a less steep profile
whose velocity ellipsoid becomes tangentially anisotropic at
large radii. In order to distinguish between an NFW profile
and a TF model, proper motions are fundamental since they
enable the direct determination of the velocity anisotropy
profile. Proper motions of GCs and satellites are becoming
available (Dinescu et al. 1999; Piatek et al. 2003; Dinescu et
al. 2004) albeit with large errors because of the very distant
location of these objects. We may have to wait until Gaia
is launched to determine the density profile of the Galactic
dark-matter halo.
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APPENDIX A

The Galactocentric radial velocity vGSR (i.e. the l.o.s. helio-
centric velocity Vlos corrected for the solar motion and LSR
motion) is related to the true Galactocentric radial, vr, and
tangential, vt, velocity by

vGSR = vr ǫ̂r · ǫ̂R + vt ǫ̂t · ǫ̂R (14)

where ǫ̂r is the unit vector in the radial direction towards the
object as seen from the Galactic centre, ǫ̂t is the unit vector
in tangential direction in the same reference frame, and ǫ̂R
is the unit vector in the radial direction from the Sun to the
object. The two scalar products depend on the heliocentric
and galactocentric distances (d and r) and position on the
sky of the object (φ, θ). For a given distribution function
f(r̄, v̄), the velocity dispersion profile (seen from the Sun) is
given by

√

〈v2
GSR〉, and can be found by squaring Eq. (15)

and integrating over all the velocities and averaging over the
solid angle:

〈v2
GSR〉|Ω−av =

1
∫

d2Ω

[
∫

d2Ω k(r, θ, φ)

∫

d3v v2
r f(r̄, v̄) +

∫

d2Ωh(r, θ, φ)

∫

d3v v2
t f(r̄, v̄)

]

,

or

〈v2
GSR〉|Ω−av =

1

4π

(
∫

d2Ω k(r, θ, φ) 〈v2
r 〉 +

+

∫

d2Ωh(r, θ, φ) 〈v2
t 〉

)

, (15)

where we have defined

ǫ̂R =
r̄ − R̄⊙

d
,

k(r, θ, φ) = (ǫ̂r · ǫ̂R)2 =

(

r + R⊙ cos φ sin θ

d

)2

,

and

h(r, θ, φ) = (ǫ̂t · ǫ̂R)2 =
R⊙

2

d2
(cos2 θ cos2 φ + sin2 φ).

Eq. (15) can thus be expressed as

〈v2
GSR〉|Ω−av = 〈v2

r 〉K(r) + 〈v2
t 〉H(r).

If we assume that 〈v2
θ〉 = 〈v2

φ〉, and from the definition of
the velocity anisotropy β we find 〈v2

t 〉 = 2〈v2
r 〉(1 − β), then

it follows that

〈v2
GSR〉|Ω−av = 〈vr

2〉 [K(r) + 2(1 − β)H(r)]. (16)

By assuming 〈vr〉 = 0 and 〈vt〉 = 0, it follows that 〈vGSR〉 =
0; by performing the above integrals for r > R⊙, we find
that the Galactocentric radial velocity dispersion is related
to the true radial velocity dispersion by

σGSR(r) = σr(r)
√

1 + 2 (1 − β)H(r), (17)

where

H(r) =
r2 + R2

⊙

4r2
−

(r2 − R2
⊙)

2

8r3R⊙

ln
r + R⊙

r − R⊙

. (18)



The radial velocity dispersion of profile 11

Figure 7. Left panel: Observed Galactocentric radial velocity dispersion (squares with errorbars); the dotted line is a straight line fit
for r > 40 kpc. Second panel: relation β and γ should satisfy to result in the same σGSR,∗. Third panel: variation of β with radius fixing
γ =3.5. Right panel: variation of γ with radius fixing β to the β-tgSN model.

APPENDIX B

Equation (2) shows that the radial velocity dispersion pro-
file depends on the circular velocity given by the dominant
mass component (i.e. the dark matter halo), the velocity
anisotropy parameter β and the power γ of the density pro-
file of the tracer population. For constant β and γ, we can
rewrite Eq.(2) as

σ2
r,∗(r) =

1

r2β−γ

∫

r

∞

V 2
c (r′) r′

2β−γ−1
dr′. (19)

In our work we assumed γ = 3.5 at all Galactocentric dis-
tances, but the above equation shows also that for a fixed
mass distribution (i.e. fixed circular velocity), models with
the same value for 2β − γ give rise to the same radial ve-
locity dispersion profile. In this Section we explore how β or
γ have to vary together in order to reproduce the observed
Galactocentric radial velocity dispersion.

In this analysis we restrict ourselves to Galactocentric
distances larger than 40 kpc, where: the value of γ starts
to become more uncertain, the observed Galactocentric ra-
dial velocity dispersion declines and the correction factor
between the Galactocentric and the true radial velocity dis-
persions is negligible.

At these distances the Galactocentric radial velocity
dispersion profile is well represented by a straight line,
σGSR,fit = a r + b, with a = −0.6 and b = 132 (Fig. 7, left).
We assume that the circular velocity for the dark matter
halo is constant and we fix it to Vc(r) = Vc = 220 km s−1 .
By solving the Eq.(2) we obtain

σ2
r,∗ =

V 2
c

γ − 2β
(20)

For all the values of β and γ that satify this relation (at every
r) the predicted radial velocity dispersion curve will be the
same. By imposing σ2

r,∗ = σ2
GSR,fit in Eq.(19), it follows

γ − 2β =
Vc

2

σ2
GSR,fit

(21)

Figure 7 (second panel) shows the above relation for the
assumed model. The third panel in Fig. 7 shows how β has
to vary with the Galactocentric distance for this model if we
fix γ =3.5, whilst the panel on the right shows how γ has
to change if we use the β-tgSN model for β. Clearly for this
model the values the γ should assume in order to reproduce
the data are unrealistic.

The same kind of relation between β and γ can be de-
rived for different circular velocities in the regime where they
can be approximated by power-laws.


