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ABSTRACT
I describe a tensor–vector–scalar theory that reconciles the galaxy-scale success of modified
Newtonian dynamics (MOND) with the cosmological scale evidence for cold dark matter
(CDM). The theory provides a cosmological basis for MOND in the sense that the predicted
phenomenology only arises in a cosmological background. The theory contains an evolving
effective potential, and scalar field oscillations in this potential comprise the CDM; the de
Broglie wavelength of these soft bosons, however, is sufficiently large that they cannot accu-
mulate in galaxies. The theory predicts, inevitably, a constant anomalous acceleration in the
outer Solar system, which, depending upon the choice of parameters, can be consistent with
that detected by the Pioneer spacecrafts.

Key words: gravitation – cosmology: theory – dark matter.

1 I N T RO D U C T I O N

The cosmological evidence supporting the existence of a universal
pressureless fluid (cold dark matter or CDM) appears to be com-
pelling. The amplitude of the first two acoustic peaks in the power
spectrum of the cosmic microwave background (CMB) anisotropies
as observed by the Wilkinson Microwave Anisotropy Probe implies
that this fluid comprises, at present, about 30 per cent of the mass
density of the Universe. Given the even more compelling evidence
for an � = 1 universe, most of the remainder must consist of a
negative pressure ‘dark energy’ component that may be identified
with a positive cosmological constant (Page et al. 2003; Spergel
et al. 2003). It is now well known that Type Ia supernovae (SNIa;
Garnavitch et al. 1998; Perlmutter et al. 1999) near z ≈ 0.5 are sys-
tematically dimmer by about 0.2 mag than would be expected in
an empty, ‘coasting’ universe. These observations are often cited as
evidence that the Universe is presently dominated by this vacuum
energy. But, if we can trust that systematic effects are well under-
stood, it is also true that the relative brightening of SNIa beyond z
≈ 1 (Tonry et al. 2003) is equally strong evidence for matter dom-
ination at this relatively recent epoch, again implying that �CDM

≈ 0.3. Several such independent tests have led to the emergence
of a ‘concordance model’ for the Universe (Ostriker & Steinhardt
1995), which is now heralded as a major achievement in observa-
tional cosmology and in which CDM is a vital component.

Although the large-scale evidence for CDM is persuasive, the
hypothesis is not without problems. While there is no shortage of
candidate particles, the nature of this pressureless fluid remains elu-
sive. Particle physics theory beyond the standard model provides no
definitive prediction, and attempts at direct laboratory detection of

�E-mail: sanders@astro.rug.nl

CDM particles (neutralinos, axions, etc.) have, so far, proved unsuc-
cessful. Moreover, the evidence for CDM on the scale of galaxies
is far from compelling, with ‘complicated’, but poorly understood,
astrophysical processes being invoked to explain various observed
phenomena such as the tightness of the luminosity–rotation veloc-
ity relation for disc galaxies – the Tully–Fisher law – and the pres-
ence of an upper limit on the surface brightness of galaxies – the
Freeman law (Dalcanton, Spergel & Summers 1997; van den Bosch
& Dalcanton 2000). The problem of matching the predicted rotation
curves of dark haloes emerging from cosmic N-body simulations
with those actually observed in low surface brightness galaxies has
provoked an ongoing controversy (e.g. de Blok, McGaugh & Rubin
2001).

These same phenomena, on a galactic scale, are well described by
an ad hoc modification of Newtonian dynamics (MOND) suggested
by Milgrom (1983). Here, it is proposed that below a critical accel-
eration, a0, the effective gravitational acceleration, g, approaches√

gna0 where gn is the usual Newtonian acceleration. This critical
acceleration is, within an order of magnitude, comparable to the
velocity of light times the present value of the Hubble parameter,
i.e., a0 ≈ cH0/6. This simple modification accounts for systematic
aspects of galaxy photometry and kinematics, such as the Freeman
law and the Tully–Fisher law, as well as successfully predicting the
detailed form of galaxy rotation curves from the observed distribu-
tion of detectable baryonic matter. These successes have been well
catalogued (Sanders & McGaugh 2002) and suggest that galaxy
phenomenology can be understood without invoking the existence
of dark matter (McGaugh 2004a).

MOND is also not without problems. On a phenomenological
level, the algorithm appears unable to account for the full mass
discrepancy in rich clusters of galaxies; it remains necessary to in-
voke the presence of, as yet, undetected matter in these systems
(Sanders 1999, 2003; Aguirre, Schaye & Quataert 2002). More-
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460 R. H. Sanders

over, the idea has long been criticized as an ad hoc, empirically
based hypothesis without foundation in deeper theory. The absence
of a viable relativistic theory has placed the issues of cosmology,
structure formation and gravitational lensing beyond consideration
in the context of MOND; that is to say, MOND cannot be con-
fronted by this entire body of observed cosmic phenomena. Re-
cently, Bekenstein (2004) has written down a fully covariant theory,
tensor–vector–scalar theory (TeVeS), involving dynamic vector and
scalar fields in addition to the usual tensor field of General Rela-
tivity (GR). This is an important development because the theory is
free of the conspicuous pathologies of earlier attempts (e.g. acausal
wave propagation, no enhanced gravitational lensing). However, in
the theory as it now stands, there is no obvious connection between
MOND phenomenology and cosmology as is suggested by the near
coincidence between a0 and cH0. The free function of the theory
has two discontinuous branches – one for cosmology and one for
mass concentrations – as it would seem difficult to follow the cos-
mic growth of inhomogeneities in the context of a theory in which
cosmology is mathematically disconnected from inhomogeneous
structure. Finally, the theory does not address what is perhaps the
greatest problem for MOND: the large-scale evidence for CDM
cited above.

The construction of a cosmologically effective theory of MOND,
and, in particular, the reconciliation of the cosmological evidence
for CDM with the galaxy-scale success of MOND, is the topic of
the present paper. I will show here that this is a possibility in the
context of a generalization of an earlier theory also due to Bekenstein
(1988a) – phase coupling gravity (PCG) – but a generalization that
requires a vector field as in TeVeS.

The basic idea is this: PCG is a scalar–tensor theory with two
scalar fields, one of which couples to matter, the second determin-
ing the strength of that coupling. In a cosmological context, the
scalar field potential is an evolving effective potential, which can
have a well-defined minimum (Sanders 1989). Initially, the potential
evolves faster than the scalar field can respond, but at some point, the
scalar falls and oscillates about the minimum. If the bare potential
has quadratic form, these oscillations constitute CDM with, possi-
bly, a long Compton wavelength – so long that these soft bosons
cannot accumulate in galaxies. At the present epoch, the matter-
coupling field provides a fifth force that appears below a critical
value of the scalar field gradient as in MOND. Cosmological CDM
exists as long wavelength excitations of the coupling-strength field.
I show that a preferred-frame generalization of PCG reproduces the
galaxy-scale phenomenology of MOND. I give a numerical exam-
ple of cosmological evolution, which illustrates that the theory can
reproduce the basic properties of the concordance model and, in
particular, is consistent with the cosmological evidence for CDM.
I further demonstrate that Solar system phenomenology constrains
the parameters of the theory and the wavelength of the bosons, but,
inevitably, this fifth force must be present in the outer Solar system
– a phenomenon possibly detected as the Pioneer effect (Anderson
et al. 1998).

2 A B R I E F H I S TO RY O F I D E A S

The basis for the suggested scalar–tensor theories of modified dy-
namics is the non-relativistic, but Lagrangian-based, modified Pois-
son equation of Bekenstein & Milgrom (1984):

∇ · [µ(|∇φ|/a0)∇φ] = 4πGρ, (1)

where µ is the function interpolating between the Newtonian regime
[µ(x) = 1] and the MOND regime [µ(x) = x]. In a scalar–tensor

theory, φ would refer only to the scalar field and not to the total
gravitational potential. That is to say, in the weak field limit, such a
theory would be a two-field theory where, in addition to φ, there is
the ‘normal’ Newtonian field satisfying the usual Poisson equation.

PCG is a covariant scalar–tensor generalization for such modified
gravity proposed by Bekenstein (1988a,b). Here, the scalar field is
complex (ξ = qeiφ) and the field Lagrangian is standard:

L s = 1

2

[
q2φ,αφ

,α + q,αq .α + 2V (q)
]
. (2)

The non-standard aspect is that only the phase couples to matter
jointly with the gravitational tensor gµν , i.e.,

L I = L I [exp(−2ηφ)gµν...]. (3)

This leads to the scalar field equation,

(q2φ,α);α = 8πηGT

c4
. (4)

Here, it is obvious that the scalar amplitude squared plays the role
of the MOND interpolating function µ.

PCG looks like a proper field theory, with the Lagrangian pos-
sessing a self-interaction potential V(q) as well as a standard kinetic
term. Bekenstein demonstrated that MOND-like phenomenology
in a static background can result if V (q) ∝ −q6; i.e. galaxy phe-
nomenology requires a ‘negative sextic’ potential. In general, an
attraction falling less rapidly than 1/r 2 requires V ′(q) = dV /dq <

0 over some range of q (Sanders 1988).
The theory is interesting because it can possess a viable cos-

mological limit where a0 is identified with ηcφ̇ (Sanders 1989),
and as such, becomes a candidate for a cosmological effective the-
ory of MOND. In an isotropic, homogeneous universe (Robertson-
Walker), the equations for the cosmic evolution of the scalar phase
and amplitude (Einstein conformal frame) are

φ̇ = 3
η

q2
�ba−3τ (5)

and

q̈ + 3hq̇ = −V ′(q) + qφ̇
2
, (6)

where �b is the density parameter of the baryonic matter, a is the
universal scale factor in terms of the present scale factor, time (τ )
is in units of H 0

−1 and h is the Hubble parameter in units of H0.
Looking at equation (6), we see that the evolution of the scalar
amplitude can be described in terms of a time-dependent ‘time-like’
effective potential,

Vt (q) = V (q) + 1

2

k(τ )2

q2
, (7)

where, from equation (5), we have

k(τ ) = 3η�ba−3τ. (8)

The obvious attraction point of such a potential, q̄, is a local mini-
mum, which implies that the bare potential should be a monotoni-
cally increasing function of q, as in V (q) = Aqn.

In a universe with inhomogeneities, the scalar phase and ampli-
tude are given, in the quasi-static limit by the solutions to

∇ · (q2∇φ) = 8πηGρ

c2
(9)

∇2q − q∇φ · ∇φ = V ′(q) − φ̇2q2, (10)

where φ̇ is the cosmic time derivative of the scalar phase given by
equation (5) with q = q̄, its expectation value. Thus, the solution for
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MOND and CDM 461

q involves a second time-dependent ‘space-like’ effective potential
given by

Vs(q) = V (q) − 1

2

k(τ )2

q̄4
q2. (11)

That is to say, cosmology adds a time-dependent negative mass term
to the bare potential. Here, the attraction point q̄ ′ is at a local max-
imum. If certain very general conditions on the bare potential are
satisfied, the maximum in the space-like potential occurs at the same
value of q as the minimum in the time-like potential, q̄ ′ = q̄; i.e.
the scalar amplitude asymptotically approaches its cosmic value far
from a mass concentration (Sanders 1989). A cosmological theory
can be constructed in which the total force about a mass concen-
tration deviates from pure Newtonian below a critical value of the
total acceleration as in MOND, but there is a return to 1/r 2 attrac-
tion on larger scale with a maximum possible mass discrepancy
of δ = 2η2/q̄2. This predicted maximum discrepancy is not large
(δ � 10) so the theory does not produce extended flat rotation curves
for spiral galaxies as observed; this only seems possible in the con-
text of Bekenstein’s original V (q) ∝ −q6 theory.

Apart from this phenomenological difficulty, a more fundamen-
tal problem with PCG, or any scalar–tensor theory in which the
scalar couples to matter as a conformal factor multiplying the Ein-
stein metric (equation 3), is that the scalar field does not interact
with photons. This is to say, there is no enhanced gravitational lens-
ing due to the scalar field; lensing by large astronomical systems
should reveal no ‘dark matter’ in sharp contrast to the observations
(Bekenstein & Sanders 1994). This led Sanders (1997) to propose a
non-conformal relation between the physical and Einstein metrics
involving an additional non-dynamical vector field Aµ pointing in
the positive time direction in the preferred cosmological frame, as
in the classical stratified theories (Ni 1972). Here the metric of the
physical geometry, g̃µν is related to the gravitational metric gµν as

g̃µν = e−2ηφgµν − 2 sinh (2ηφ)Aµ Aν . (12)

This was combined with an aquadratic Lagrangian theory
(Bekenstein & Milgrom 1984) to produce the phenomenology of
MOND along with enhanced gravitational lensing.

The essential problem with this aquadratic-stratified theory is the
non-dynamic vector field; such a construct violates the principle
of General Covariance making it impossible to define a conserved
energy-momentum tensor (Jacobson & Mattingly 2001). This has
been remedied by Bekenstein (2004) who has endowed the vector
field with its own dynamics and demonstrated that a theory can be
constructed that is causal, that produces MOND phenomenology
about mass concentration, that possesses a sensible cosmological
limit, and in which the relationship between the deflection of photons
by a mass concentration and the total weak-field force (scalar plus
tensor) is the same as in GR. The scalar action of Bekenstein’s TeVeS
is essentially that of PCG in the limit of weak coupling (small η)
where it can be shown that the kinetic term for the scalar amplitude,
q, can be neglected in the Lagrangian; i.e.

L s = 1

2
q2φ,αφ

,α + V (q). (13)

In the weak field limit, this leads to a field equation equivalent
to equation (1) with µ(x) = q2 where q is given by the solu-
tion to qx2 = V ′(q). As a toy model, Bekenstein chooses a form
for V(q), which yields two discontinuous branches for µ(x); one
for negative argument that would be relevant to cosmology; and
other for positive x, relevant to quasi-stationary systems (mass
inhomogeneities).

Here I am going to put back the kinetic term for q. This is vital
because I will identify oscillations in q with CDM, so its dynamics
must be followed fully. The idea that long-wavelength scalar field
oscillations may comprise dark matter is also not new: Press, Ryden
& Spergel (1990) proposed that such ‘soft bosons’ would form after
a late phase transition (after recombination) leading to the develop-
ment of density fluctuations that would be the seeds for structure
formation. The suggested potential provides a Compton wavelength
of 30 kpc corresponding to a supposed current scale of large-scale
structures (30 Mpc). In a unified model of dark energy and dark
matter, Sahni & Wang (2000) also propose scalar field oscillations
as dark matter and suggest that a large Compton wavelength could
solve several of the outstanding observational problems of CDM
haloes, such as the apparent absence of central density cusps and
the low abundance of dwarf galaxies in the Local Group. They re-
ferred to such dark matter as ‘frustrated CDM’ (FCDM). This was
also considered by Hu, Barkana & Gruzinov (2000) who emphasize
that the de Broglie wavelength (the Compton wavelength extended
by c/v) is the relevant clustering scale for such ‘fuzzy’ CDM. In the
present context, the de Broglie wavelength should be sufficiently
long that the bosons do not accumulate in galaxies at all; this could
be termed SFCDM or ‘seriously frustrated CDM’.

For Galactic or Solar system phenomenology, we will see that it
is necessary to take very weak coupling (η � 1), so the scalar sector
of the theory is very close to that of TeVeS. As in the stratified
theory, I will not consider here the separate dynamics of the vector
field; although, a dynamical vector field is a necessary requirement
for General Covariance, and it must be included properly in any
final theory. It does appear, however, that the only consequence of
the dynamical vector field in the weak field limit is a rescaling of
the local gravitational constant, G, with respect to its cosmological
value (Bekenstein 2004; Carroll & Lim 2004; Giannios 2005).

First of all, I describe a preferred-frame generalization of PCG
because PCG, in a cosmological context, cannot produce the phe-
nomenology of MOND.

3 B I - S C A L A R – T E N S O R – V E C TO R ( B S T V )
T H E O RY

3.1 The scalar field equations

The normalized vector field, dynamical or not, takes its simplest
(time-like) form in the cosmological frame. Therefore, a theory in-
volving such a field is inevitably a preferred-frame theory. Moreover,
the unit vector, A, may be used to form a second scalar field invariant

J = Aµ Aνφ,µφ,ν (14)

in addition to the usual invariant

I = gµνφ,µφ,ν (15)

(Sanders 1997). Obviously, J = φ̇2 in the preferred cosmological
frame, and

K = I + J (16)

becomes the square of the spatial gradient of φ in this frame
(K = ∇φ · ∇φ). This means that we can make use of the pre-
ferred frame to separate, and manipulate separately, the spatial and
time derivatives of φ at the level of the field Lagrangian.

Therefore, the theory that I consider will have the general scalar
field Lagrangian,

L s = 1

2

[
q,αq ,α + h(q)K − f (q)J + 2V (q)

]
. (17)
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462 R. H. Sanders

That is to say, separate functions of q multiply the spatial and tem-
poral gradients of φ in the preferred frame. Obviously, the fields
q and φ can no longer be identified with the amplitude and phase
of a complex scalar, but these fields do play the same roles as in
PCG: φ is the matter-coupling field and q determines the strength
of that coupling. The interaction of φ with particles is described by
the action

Sp = −mc

∫ [
− g̃µν

dxµ

dp

dxν

dp

] 1
2

dp, (18)

where the physical metric g̃µν is given by equation (12), and p is a
parameter along the path.

The scalar field dynamics comes from the action

Ss = c4

16πG

∫
L s

√−gd4x (19)

combined with the matter action (equation 18 summed over par-
ticles). Taking δS s = 0 with respect to variations in φ, one
finds(

Pµνφ,µ

)
;ν

= 8πGη

c4
T̃µν[gµν + (1 + e−4ηφ)Aµ Aν] (20)

where T̃µν is the energy–momentum tensor in the physical frame
and

Pµν = h(q)gµν + [h(q) − f (q)]Aµ Aν . (21)

For an ideal fluid, this becomes(
Pµνφ,µ

)
;ν

= 8πGη

c2
(ρ̃ + 3 p̃)e−2ηφ, (22)

where ρ̃ and p̃ are the density and pressure actually measured by
a co-moving observer (see Bekenstein 2004 for a derivation of the
source term). We note that, unlike usual scalar–tensor theory, pho-
tons and other relativistic particles act as a source for φ. We also
note that in the preferred frame Pµν takes a particularly simple form
with the space–space (i, j) and time–time (0,0) components given
by

Pi, j = h(q)gi, j , P0,0 = − f (q). (23)

Setting δS s/δq = 0 yields the field equation for q:

−(
gµνq,µ

)
;ν

+ 1

2
h′(q)φ,αφ

,α

−1

2
[h′(q) − f ′(q)]Aµ Aνφ,µφ,ν + V ′(q) = 0, (24)

which, in the preferred frame, simplifies to

(
gµνq,µ

)
;ν

− 1

2
h′(q)∇φ · ∇φ + 1

2
f ′(q)φ̇

2 − V ′(q) = 0. (25)

The complete theory includes the Einstein–Hilbert action for the
tensor field and, in principle, an action for the vector field, but
here the separate dynamics of the vector is not included. Here-
after, all operations are carried out in the preferred frame be-
cause this is where the equations assume their least complicated
form.

General empirical considerations constrain the form of the free
functions of the theory: h(q), f (q) and V(q). First of all, assuming
homogeneity and that e−2ηφ ≈ 1 (justified below), the cosmic time
derivative of φ in the matter-dominated epoch is found by integrating
equation (22):

φ̇ = −3η�bτa−3

f (q)
. (26)

Thus, in a cosmological setting (∇q = 0, ∇φ = 0), the evolution of
q (equation 25) is determined by a time-like effective potential (as
in PCG)

Vt (q) = V (q) + 1

2

k(τ )2

f (q)
(27)

with k(τ ) again given by equation (8). I wish to identify dark matter
with q oscillations in this effective potential. The fluid represented
by such oscillations has an equation of state p = wρ, and, for a
power-law bare potential, it is straightforward to demonstrate that
w = (n − 2)/(n + 2) (Turner 1983). Identification of the scalar field
oscillations with CDM (w = 0) requires n = 2; therefore, I take

V (q) = 1

2
Aq2 + B. (28)

Although the theory contains an evolving component of dark en-
ergy (quintessence), it will be seen below that inclusion of the bare
cosmological term B is necessary to match the concordance model.

The cosmological expectation value of q (i.e. q̄) is given by the
solution to

dVt

dq
= Aq̄ − 1

2

k(τ )2 f ′(q̄)

f (q̄)2 = 0. (29)

To be an attractor, this extremum in the potential must also be a
minimum which requires that Vt

′′(q̄) > 0. This condition, combined
with equation (29), provides a general condition on f (q); i.e.

d ln( f ′/ f 2)

d ln(q)
< 1 (30)

evaluated at q̄.
One may question the use of such a time-dependent effective

potential with a well-defined minimum because Vt and q are both
functions of time. But the two time-scales are generally very differ-
ent; the expectation value q̄ varies on a cosmic time-scale while the
period of oscillation about q̄ is constant and fixed by the bare poten-
tial (∝ 1/

√
A). As long as the oscillation period is much shorter than

the age of the universe (not true in the early universe) the concept
of a time-like effective potential is meaningful.

In a universe with inhomogeneities, but where q̇ can be neglected,
we may view equation (25) as containing a space-like potential (as
in PCG) that determines the spatial dependence of q:

Vs(τ ) = 1

2
Aq2 + B − 1

2

k(τ )2

f (q̄)2 f (q). (31)

The extremum at q̄ ′, given by the solution to dV s/dq = 0, occurs
at the same value of q as the extremum in Vt; i.e. q̄ = q̄ ′. But
the extremum in this case must be a local maximum in V s (q); i.e.
Vs

′′(q̄) < 0, which implies a second condition on f (q); i.e.

d ln( f ′)
d ln(q)

> 1 (32)

evaluated at q̄. If conditions (30) and (32) are met, then the cos-
mological boundary condition on q is satisfied; i.e. far from a mass
concentration q approaches its cosmological value.

One choice for the free functions that satisfy these conditions
would be h(q) = q2 and f (q) = q6. This is appealing because
it would provide a cosmological realization of Bekenstein’s nega-
tive sextic effective potential in static PCG and hence MOND phe-
nomenology on an extragalactic scale. In fact, such a model leads
to a scalar force rising as 1/r well into a galactic mass distribution;
this fifth force, in addition to the Newtonian gravitational force,
produces not flat but declining rotation curves in the outer parts of
spiral galaxies. Moreover, this theory violates precise constraints on
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1/r 2 attraction in the Solar system. These considerations require a
slight modification of the free functions:

h(q) = ε2
(

1 − e−q2/ε2)
(33)

and

f (q) = q6

ε2(q4 + η4)
. (34)

Here, in addition to the coupling strength parameter η, a second
parameter ε (≈100 η) has been introduced.

It may appear that the presence of three free functions, V (q),
h(q) and f (q), characterized by three free parameters, A, η and ε,
introduces a great deal of arbitrariness into the theory. In fact, given
the structure of the theory (equation 17), the free functions must have
forms similar to equations (28), (33) and (34). The potential must be
quadratic to assure that w = 0 for the dark matter component; in the
extragalactic limit, q <η, it must be the case that h(q)→q2 and f (q)
→ q6 to yield MOND phenomenology in the outskirts of galaxies
(as in PCG); and in the inner Solar system, it is necessary that h(q)
→ ε2 	 η2 to assure negligible scalar field effects and precise
inverse square attraction. This is a theory strongly constrained by
phenomenology.

3.2 BSTV as MOND

The quasi-static BSTV field equation for φ in the presence of mass
inhomogeneities (equation 22 with 23) is

∇ · [h(q)∇φ] = 8πGηρ

c2
; (35)

when q < ε, this becomes equivalent to that of static PCG, equation
(9) (h(q) ≈ q2).

The scalar force in the low-velocity limit is given by

fs = ηc2∇φ. (36)

Then we find, by identification of equation (35) with equation (1),
that the MOND interpolating function µ is equivalent to q2/2η2. In
the limit of weak coupling, where q ,αq ,α may be neglected in the
Lagrangian as in equation (13), and where q̄ < q < η (the outskirts
of galaxies) we may neglect the first and final terms in equation (25).
With equations (33) and (34), this yields

µ = q2

2η2
= ε√

12

√
∇φ · ∇φ

φ̇2
. (37)

That is to say, in this limit the relation between q and ∇φ becomes
algebraic (as in TeVeS). Equation (37) then implies that the MOND
acceleration parameter should be identified as

α = a0

cH0
=

√
12 η|φ̇|

ε
, (38)

where φ̇ is in units of the inverse Hubble time. In this theory, as in
PCG, there is a clear cosmological origin of a0 which is identified
with the cosmic time derivative of the matter-coupling scalar field,
φ̇. The acceleration parameter evolves with cosmic time, and I take
α0 as its current value.

Far beyond a bounded mass distribution of total mass M, the
scalar force (equation 36) approaches

fs = δG M

r 2
, (39)

where

δ = 2η2

q̄2
. (40)

That is to say, the total force, scalar plus Newtonian, becomes 1/r2

with a ratio of the total to Newtonian force of 1 + δ. Because of the
cosmic evolution of q̄, it is evident that δ also evolves; I take q̄0 and
δ0 to be the present values.

The full solution for q and φ about a mass concentration involves
solving equation (35) simultaneously with equation (25) which, in
this limit, may be written as

∇2q − h′(q)∇φ · ∇φ = V ′
s (q) (41)

where the space-like effective potential is

Vs(q) = 1

2
(Aq2 − f (q)φ̇

2
) + B (42)

with h(q) and f (q) given by equations (33) and (34).
The basic parameters of the theory are the scalar mass-squared

A, the coupling constant η and an additional parameter ε which has
no effect on galactic fields so long as ε > 100η > q. The procedure
followed here is to take values of the MOND acceleration parameter
and maximum mass discrepancy, α0 and δ0, that are consistent with
galaxy phenomenology in the context of MOND (i.e. δ0 > 25 and
α0 < 0.2) and then to determine the parameters of the theory that are
required by these phenomenological constraints. In fact, the values
of A and η are not specified by these considerations but are related
through the condition that Vs

′(q̄0) = 0. Given equation (42), this
becomes

A = 1

2
f ′(q̄0)

φ̇0
2

q̄0
= 1

2
φ̇0

2 f (q̄0)

q̄0
2

d ln( f )

d ln(q)
≈

(
α0

δ0η

)2

, (43)

where, in the approximation, I have taken f (q) ≈ q6/(ε2η4) in the
limit where q <η (the extragalactic limit) and made use of equations
(38) and (40). Therefore, it is necessary to assume a value of either
A or η, and here I take η = 3 × 10−8 to be consistent with weak
coupling (more physical constraints follow below). With δ0 = 50,
and a0 = 0.125 cH0, then A = 6.9 × 109 H 2

0 (this would correspond
to a mass of about 10−28 ev).

With these parameters, the solution of equations (35) and (41) in
the presence of a point mass yields the scalar force f s/a0 shown
in Fig. 1 as a function of radius, in units of the MOND radius
rm = √

G M/a0. Also shown are the Newtonian force and the total

Figure 1. The log of the Newtonian force, f n, scalar force, f s, and total
force, f t, in units of a0 plotted against the log of the radial distance from
a point mass in units of the MOND radius

√
G M/a0. This results from

numerical solution of the BSTV field equations with δ0 = 50 and α0 =
0.125.
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464 R. H. Sanders

Figure 2. The rotation curves of spherical galaxies (Plummer spheres)
having total masses of 1011 and 3 × 1010 M
 and a core radius of 2 kpc
in both cases. The solid lines show the rotation curves including the scalar
force, and the dashed lines show the Newtonian rotation curves. As in Fig. 1,
this results from solution of the BSTV field equation for δ0 = 50 and α0 =
0.125.

force. We note that when f tot/a0 < 1, the scalar force exceeds the
Newtonian force, and the total force falls as 1/r rather than 1/r 2.

The resulting rotation curves of spherical galaxies having the
density distribution of a Plummer sphere (Binney & Tremaine 1987)
and total masses of 1011 and 3 × 1010 M
 are shown in Fig. 2.
In both cases, the core radius of the sphere is 2 kpc. It is evident
that such a theory can reproduce those essential properties of MOND
which so nicely embody the overall characteristics of galaxy rotation
curves: no Keplerian decline beyond the visible disc; an extended flat
rotation curve with the characteristic rotational velocity proportional
to the one-fourth power of the galaxy mass (the Tully–Fisher law); a
larger mass discrepancy in systems with lower surface density; and
a different overall form of rotation curves in high- and low-surface
density systems. A difference with MOND in its original form is an
eventual Keplerian decline in rotation velocity and, consequently,
the presence of an upper limit to the mass discrepancy of δ + 1, but
this can be large.

Clearly, this is a cosmologically effective theory of MOND; that
is, the form of rotation curves is determined by the effective potential
equation (42), which depends upon the cosmology via φ̇. But φ̇ is
related to �b and the parameters of the theory as given in equation
(26); with equations (38) and (40) and taking q < η this is

α0 = 3
√

3

4
�bεδ0

3. (44)

Both from considerations of primordial nucleosynthesis and the ob-
served CMB anisotropies, it is known that �b ≈ 0.04–0.05. There-
fore, if α0 < 0.2 and δ0 > 25 as is required for galaxy phenomenol-
ogy, it must be the case that ε is small. In the above example (δ0 =
50, α0 = 0.125) we find that ε ≈ 2 × 10−5 if �b ≈ 0.04.

I now demonstrate that the theory delivering this MOND phe-
nomenology can also be consistent with concordance cosmology
and Solar system phenomenology.

3.3 BSTV as CDM

The full time-like effective potential (equation 27) is given by

Vt (q) = 1

2
Aq2 + B + 1

2
k(τ )2 ε2(q4 + η4)

q6
. (45)

The cosmological expectation value of q, given by the condition
(29), is

q̄4 = k(τ )2ε2

2A

[
1 +

{
1 + 12

Aη4

(k(τ )ε)2

} 1
2
]
. (46)

Given the form of k(τ ) is evident that q̄ decreases as the universe
ages.

The actual value of q will oscillate about this expectation value
and is given by the solution to equation (25); in the cosmological
(homogeneous) limit this becomes

q̈ + 3hq̇ = −Vt
′(q), (47)

where V ′
t is determined from equation (45). The Einstein field equa-

tion for the gravitational metric remains the same but the two scalar
fields contribute to the energy–momentum tensor. Thus, the Fried-
mann equation for the expansion of the universe becomes

h2 = �ra
−4 + �be−2ηφa−3 + 1

6
[q̇2 + f (q)φ̇

2 + 2V (q)], (48)

where �r is the density parameter of radiation, and I have assumed
that �total = 1.

The response time of the scalar field to the effective potential is
comparable to the oscillation period at the bottom of the time-like
potential well; i.e. for small oscillations,

τr = 2π√
V ′′

t (q̄)
, (49)

where

V ′
t (q̄) = A

[
1 + d ln( f 2(q̄)/ f ′(q̄))

d ln(q̄)

]
. (50)

Then, from equation (43) it follows that,

τr ≈ 2.2
δ0η

α0
. (51)

For the parameters yielding the MOND phenomenology, described
above, (η = 3 × 10−8, A = 6.9 × 109 H 0

2) this is ≈2.6 × 10−5

H 0
−1 (about 3.2 × 105 yr if H 0 = 75). While the universe is younger

than τ r, the scalar field cannot respond to the evolving effective
potential. The scalar field q will remain at its initial value until
τ ≈ τ r, will then seek the effective potential minimum and oscillate
about that value. The oscillations would thus constitute dark matter,
in the form of soft bosons, with a Compton wavelength of about
cτ r ≈ 110 kpc.

The evolution of a model universe with these properties has been
followed by numerically integrating equations (26), (47) and (48).
Here, I have set �b = 0.04, which requires ε = 2 × 10−5 to be
consistent with the supposed MOND phenomenology (α0 = 0.125,
δ0 = 50). In integrating equations (47) and (48), it is assumed that
the scalar field oscillations remain coherent down to the present
epoch. The results are shown in Figs 3–5. In Fig. 3, we see the early
evolution of the scalar field q as a function of scale factor a. This
illustrates the point made above: for a � 10−3, corresponding to an
age of roughly 3 × 10−5 H 0

−1, the response time of the scalar field
to the effective potential becomes less than the age of the universe; q
feels the potential and seeks its minimum. But it overshoots the equi-
librium point and runs against the ‘centrifugal’ barrier k(τ )2/ f (q).
The oscillations persist through the present epoch; their contribution
to the present density of the universe depends upon the amplitude,
which depends upon the initial value of the scalar field q. Here, it
was necessary to set this at 1.2 Mpl (Planck mass) to achieve �CDM

≈ 0.3. The time-dependent density parameters of radiation (�r),
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Figure 3. A log–log plot of the scalar field, q, as a function of scale factor, a,
normalized to the present scale factor, for the cosmological model described
in the text. The heavy solid line shows the cosmic evolution of the expectation
value, q̄ (the bottom of the potential well). For a < 10−3 the response time of
the scalar field to the effective potential is longer than the age of the universe.

Figure 4. The running density parameter of the various constituents of the
universe as a function of log a. Shown are �r (radiation), �b (baryons),
�dm (dark matter in the form of scalar field oscillations) and �� (vacuum
energy density). The solid vertical line marks the present epoch where the
composition matches that of concordance cosmology.

baryons (�b), the oscillating component of the scalar field (�dm)
and the smooth component of the scalar field (��) are shown in
Fig. 4.

In this theory, there is an evolving component of the vacuum
energy (quintessence) equal roughly to the bare quadratic potential
V ≈ Aq̄2. With A given by equation (43) and making use of equation
(40), we find that V ≈ α0

2/δ0
3; i.e. the evolving component cannot

comprise a large fraction of the present total energy density and be
consistent with MOND. Therefore, I have set the bare cosmological
term B = 2.1 to force the present composition of the universe to be
that of the concordance model (�� = 0.7).

Over the course of the evolution of the model universe, from
a = 10−5 to a = 2, the quantity 2ηφ changes from its initial as-
sumed value of zero to −1.4 × 10−3. Therefore, the approximation
exp (−2ηφ) ≈ 1 in determination of φ̇ (equation 26) appears to be
justified. This also implies that the effective value of the constant of
gravity G has not varied by more than a 0.5 per cent over the history
of the universe, so there is no contradiction with the standard big
bang nucleosynthesis.

However, because of the cosmic evolution of q̄ and φ̇, those as-
pects of galaxy kinematics related to MOND, the acceleration pa-
rameter, α, and the maximum mass discrepancy, δ, will evolve with

Figure 5. A log–log plot of the cosmic evolution of the MOND acceleration
parameter, α = ao/cH0 (solid line), and the maximum mass discrepancy, δ

(dashed line). The MOND phenomenology would be clearly evident from a
redshift of 2 through the present epoch; although the asymptotically constant
value of a galaxy rotation velocity would increase with cosmic time.

cosmic time. This is shown in Fig. 5 where we see these quanti-
ties as a function of scale factor. The change in the MOND critical
acceleration, α, would be noticeable as an evolution of asymptotic
rotation velocity and consequently of the Tully–Fisher relation for
spiral galaxies. For example, at a redshift of z = 1, the acceleration
parameter is roughly half its present value, which implies that the
asymptotic circular velocity corresponding to an object of a given
mass would be only 85 per cent of its present value.

The Compton wavelength of the bosonic dark matter, in units of
the Hubble length, is given by cτ r (equation 51). Taking h0 = 0.75,
this may be written as

λc = 8.8 × 106 δ0η

α0
kpc. (52)

The observations of the CMB anisotropies place an upper limit
on λc because the scalar dark matter must form well before recom-
bination (τ r < 3 × 10−5). If the soft bosons are to cluster on at least
the scale of the third peak in the CMB power spectrum, then λc <

40 kpc.
The condition that the bosons do not collect in galaxies places a

lower limit on λc. The minimum clustering scale is the de Broglie
wavelength given by lc = λc (c/v), where v is the velocity dispersion
of a bound object (v ≈ 300 km s−1 for a massive galaxy). If, for
example, lc > 50 kpc, it must be the case that λc > 0.05 kpc.

These two conditions taken together restrict the range of η; from
equation (52) we find

7 × 10−12 � η(0.125/α0)(δ0/100) � 6 × 10−9. (53)

If η lies within these limits, then the bosons could collect in
clusters of galaxies (lc � 1 Mpc) while avoiding galaxies. This is a
possible solution to the problem of the remaining mass discrepancy
in clusters in the context of MOND (Sanders 2003).

Below, we see that Solar system phenomenology places an even
more stringent upper limit on η and hence, via inequality (53), a
lower limit on the maximum mass discrepancy δ0.

4 S O L A R S Y S T E M C O N S T R A I N T S

The solution of the BSTV field equations about a galaxy-scale
(1011 M
), albeit spherical, mass distribution, as shown in Fig. 1,
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466 R. H. Sanders

implies that q ≈ 2.2 η at the approximate position of the Sun (r =
8 kpc), corresponding to a local discrepancy of δ ≈ 0.4. In other
words, in the outer Solar system there is a scalar field acceleration
that is comparable to the Newtonian acceleration.

In the inner Solar system, the avoidance of locally detectable
preferred frame effects limits the contribution of a scalar field to the
total force (Sanders, in preparation); specifically, the acceleration
due to the scalar field gradient must be substantially smaller than
the Newtonian acceleration, i.e. f s < 10−4 f n. Moreover, within
the orbit of Neptune, planetary motion restricts the total weak field
force, Newtonian plus scalar, to be quite precisely inverse-square,
such that any spatial variation of Kepler’s constant, GM
, is less
than several parts in about 105 (Anderson et al. 1995). Therefore,
the substantial scalar field acceleration present in the Galaxy at the
radius where a test particle would begin to feel the acceleration of
the Sun (about 1 pc) must become significantly smaller than the
Newtonian force within the orbit of Neptune. This provides, from
the following argument, an upper limit on the scalar field coupling
η.

In the limit where q < ε, the quasi-static field equation for q about
a point mass (equation 41) may be written as

∇2q = q
(2ηG M

c2q2r 2

)2 − 1

2
f ′(q)φ̇

2
. (54)

Defining y = q/q̄0 and x = r/rm where rm = √
G M/a0 =√

rHrs/α0 (rs is the Schwarzschild radius and rH is the Hubble
radius) and making use of equations (38) and (40), this may be
rewritten as

2η2

α0δ0

rH

rs
∇x

2 y = 1

2

δ0

y3x4
− 1

6δ0
y. (55)

Here for the final term I have assumed that q > η[ f ′(q) ≈ 2q/ε2]
which is generally the case within the Galaxy.

Equation (55) may be used to estimate the radius at which a
massive object begins to affect the variation of q. Setting ∇2 y ≈
1/x2 (i.e. �y = 1) we find a critical radius given by

rc ≈ 1

2

δ0

η
rs. (56)

This means that the anomalous force about the Sun would increase
as 1/r 2 into rc within which the mass of the Sun would affect the
radial dependence of q, leading to a non-inverse square force. The
requirement that this deviation from 1/r 2 be unnoticeable in the
inner Solar system places a lower limit on rc (e.g. 1000 au) and
therefore a revised upper limit on η; i.e.

η < 10−11δ0

(
M

M


)0.5(
1000 au

rc

)
. (57)

Fig. 6 illustrates the numerical solution to the BSTV field equa-
tions (equations 35 and 41) about a 1-M
 object with q̄0 = 2η(δ0 =
0.4) at infinite radius (the star is embedded in the Galaxy). I have
taken three different values of η (2, 3 and 5 × 10−12). In all cases,
ε = 141η. The dashed line on the log–log plot is the Newtonian force
and the long dashed, dotted and solid curves show, respectively, the
anomalous scalar force for these three different assumed values of
η. We see that in all cases, the anomalous force increases as 1/r 2

into about 1000 au, and then becomes constant at a value between 4
and 100 × 10−8 cm s−2 depending upon the assumed value of η. The
scalar force remains constant until q → ε at which point the scalar
force is given by f s = (2η2/ε2) f n; i.e. at smaller radii the force is
again 1/r 2 but a factor of 2η2/ε2 below the Newtonian force. This,

Figure 6. A log–log plot of the Newtonian and scalar accelerations (in units
of 10−8 cm s−2) about a 1 M
 point mass as a function of distance. The
dashed line is the Newtonian acceleration and the dotted, solid and long-
dashed curves are the scalar accelerations corresponding, respectively, to
η = 5 × 10−12, 3 × 10−12 and 2 × 10−12. In all cases ε = 141η.

in fact, is an additional motivation for the parameter ε as given in
equation (33).

It would appear that a constant force in the outer Solar system is
unavoidable in the context of this theory. This is interesting in view
of the anomalous acceleration detected in the outer Solar system
by the Pioneer spacecrafts – the ‘Pioneer anomaly’ – which is on
the order of 10−7 cm s−2 (Anderson et al. 1998). If the predicted
anomalous force is to be less than the Pioneer anomaly, then η < 3
× 10−12. This upper limit, combined with the lower limit given by
the condition that the soft bosons should not accumulate in galaxies,
inequality 53, places a limit upon the maximum discrepancy in the
present universe; i.e. δ0 � 2000 if η � 3 × 10−12. Thus the predicted
galaxy phenomenology approaches that of pure MOND with a very
large maximum discrepancy.

In this limiting case, corresponding to λc ≈ 50 pc, the response
time of the scalar field would be about 160 yr; i.e. scalar field oscil-
lations would appear when the universe approximately 200-yr old
or at a = 5 × 10−6, well before decoupling. This would seem to
guarantee that the soft bosons could cluster down to the scale of the
third or fourth peak in the CMB angular power spectrum, although
detailed calculations would be required to confirm consistency with
the observed power spectrum. This limit would also assure that the
bosons could penetrate to the cores of rich clusters of galaxies.

As in all scalar–tensor theories, there is a predicted time varia-
tion of the baryonic mass unit or, equivalently, of the gravitational
constant. In this case, it arises because the source term for the gravi-
tational metric, gµν , contains the expression exp (−2ηφ). Therefore,
the cosmological variation of G would be given by

Ġ/G = −ηφ̇ = 2εαo H0 .

Given that the MOND acceleration parameter αo � 0.2 and that
ε ≈ 200 η, then with the above limit on η this would imply that
Ġ/G ≈ 10−11 H0, well below the current limit imposed by lunar
laser ranging; i.e. Ġ/G < 0.1H0 (Williams et al. 2004).

5 C O N C L U S I O N S

The near numerical coincidence between the MOND acceleration
parameter and cH0 suggests that the proper theory of MOND should
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be an effective theory – that MOND phenomenology results only in
a cosmological background. If so, then the goal is not to derive a rel-
ativistic theory that predicts, on the one hand, MOND phenomenol-
ogy about mass concentrations, and on the other hand, leads to a
viable cosmology in a homogeneous universe. Rather, the correct
theory may well be one in which MOND reflects the influence of cos-
mology on local particle dynamics and arises only in a cosmological
setting.

It goes without saying that this theory is not GR, because in the
context of GR local particle dynamics is immune to the influence of
cosmology. This may be demonstrated via the Birkoff theorem (Will
& Nordtvedt 1972), but ultimately comes down to the strict applica-
tion of the Equivalence Principle (the Strong Equivalence Principle)
in GR, which permits no environmental influence on local particle
dynamics (apart from tides). But, as was first fully appreciated by
Dicke (1962), this does not apply to scalar–tensor theory where the
cosmology-encoded scalar field, determined by the universal mass
distribution and its time evolution, pervades every corner of the uni-
verse. This suggests that a cosmological basis for MOND may be
provided by scalar–tensor theory.

However, as was also appreciated by Dicke, if scalar–tensor the-
ory is to satisfy the precise experimental constraints on the univer-
sality of free fall (the Weak Equivalence Principle), then it must
couple to matter jointly with the Einstein metric. The simplest such
coupling, via a conformal transformation of the Einstein metric,
leads to the serious problem of gravitational lensing in the context
of MOND – no enhanced deflection of photons due to the scalar
field. This problem may be solved by postulating a non-conformal
relation between the Einstein and the physical metrics involving a
normalized dynamical vector field (as in TeVeS), but such a field
may also produce unobserved effects of the preferred cosmological
frame on local particle dynamics.

The PCG field equation, or its weak coupling limit, provides a
mechanism by which unwanted local dynamical effects of the scalar
or vector fields may be suppressed in the limit of high field gradients
(e.g. in the Solar system) where the proper theory of gravity is very
nearly GR. In this context, the outskirts of galaxies would be the
transition region between a preferred-frame tensor–vector–scalar
cosmology and a GR-dominated local dynamics that is protected
from cosmological influence. This transition would be observable
as an acceleration-dependent deviation from Newtonian dynamics,
or MOND.

I have shown here that a preferred-frame generalization of PCG,
i.e. a BSTV theory, can be an effective theory of MOND in the
sense that it provides a cosmological realization of Bekenstein’s
negative sextic potential in the context of static PCG. Moreover,
it is a cosmologically evolving effective potential, and the MOND
phenomenology can only result in the context of an Friedmann–
Robertson–Walker cosmology. The theory is characterized by three
parameters: in addition to the mass-squared of the bare potential, A,
and the coupling strength parameter,η, it was necessary to add a third
parameter, ε, which permits a sensible value of �b in the presence
of MOND phenomenology (equation 44), provides a return to 1/r 2

attraction in the inner Solar system (Fig. 6) and tames the rapid
evolution of G (equation 58).

The evolving potential also provides a mechanism which, with the
quadratic bare potential, inevitably produces cosmological CDM in
the form of scalar field oscillations. This unavoidable appearance
of cosmological dark matter is a primary motivation for the theory.
Such dark matter appears to be required by a variety of consid-
erations ranging from CMB anisotropies to the observed relative
dimming and re-brightening of SNIa.

However, if the dark matter is not to accumulate in galaxies,
then it must be seriously frustrated; i.e. the Compton wavelength,
extended by c/v rot should be larger than the scale of galaxies. I
have demonstrated that this implies a lower limit to the strength
of the scalar field coupling to baryons (equation 53) – a limit that
also depends upon the maximum ratio of the scalar-to-Newtonian
forces (the maximum discrepancy). There is also an upper limit on
the coupling parameter required by the suppression of a non-inverse
square anomalous force in the outer Solar system – that is to say,
any non-inverse square force must be smaller than that implied by
the Pioneer anomaly or by planetary motion. However, in view of
the Pioneer anomaly, it is of interest that the theory requires, at some
level, a constant anomalous acceleration in the outer Solar system.

I emphasize that the present theory is not an alternative to Beken-
stein’s TeVeS; it is an example of TeVeS, but one which explicitly
involves two scalar fields; in Bekenstein’s theory, the second field is
implicit (or not explicitly dynamical). However, this BSTV theory
is incomplete. The complete covariant theory requires considera-
tion of the full dynamics of the vector field, and, then, following
Bekenstein, an examination of the properties of wave propagation.
There remains the danger of acausal propagation or instability of the
background solution. I leave this for later consideration because, as
is evident, the procedure followed in constructing this theory, and
that of Bekenstein, is different from what is usually done in rela-
tivity and cosmology. Here, a theory is built up from the bottom
by adding bits and pieces as required by phenomenology. This may
seem unfamiliar or cumbersome because the usual methodology in
this field is more deductive; here the approach to the final theory is
incremental.

It may be that the basis of MOND lies in another direction entirely
– as a modified non-local particle action (Milgrom 1994). It may
also be that the observational case for CDM has been overstated,
as argued by McGaugh (2004b). But the weight of present obser-
vational evidence implies that the final theory of MOND should
reproduce, or at least simulate, the effects of CDM upon cosmic
expansion and upon CMB anisotropies.
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