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Abstract

The mechanical response to nanoindentation near grain boundaries has been investigated in an Fe–14%Si bicrystal with a general
grain boundary and two Mo bicrystals with symmetric tilt boundaries. In particular, the indentations performed on the Fe–14%Si
show that as the grain boundary is approached, in addition to the occurrence of a first plateau in the load versus depth nanoinden-
tation curve, which indicates grain interior yielding, a second plateau is observed, which is believed to indicate dislocation transfer
across the boundary. It is noted that the hardness at the onset of these yield excursions increases as the distance of the tip to the
boundary decreases, providing thus a new type of size effects, which can be obtained through nanoindentation. The energy released
during an excursion compares well to the calculated interaction energy of the piled-up dislocations. Hall–Petch slope values calcu-
lated from the excursions are consistent with macroscopically determined properties, suggesting that the Hall–Petch slope may be
used to predict whether slip transmission occurs during indentation. No slip transmission was observed in the Mo bicrystals; how-
ever, the staircase yielding commonly found during initial loading was suppressed in the proximity of a grain boundary due to pref-
erential dislocation nucleation at the boundary. An estimate for the nucleation shear stress at the boundary was obtained from the
measured interaction range.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Subgranular microhardness testing has been used for
a long time to probe grain boundary hardening effects
due to solute segregation in polycrystalline materials
[1,2]. Hardening in these experiments is typically found
up to tens of micrometers from the grain boundary. In
the absence of solute or vacancy gradients near the
boundary, no hardening is observed at this scale. The
possibility to measure an intrinsic hardening contribu-
tion of the grain boundary, as a result of the difficulty

in slip transmission across the boundary, has recently
come under investigation with the widespread availabil-
ity of the nanoindentation technique. Low-load indenta-
tion experiments [3,4] have shown significant hardening
effects within a distance of the order of 1 lm from the
boundary. Such experiments could potentially offer de-
tailed information about the intrinsic mechanical prop-
erties of individual grain boundaries. So far however,
a thorough understanding of the mechanical response
is lacking.

Recent studies [4,5] have shown that nanoindentation
measurements in the direct proximity of grain bound-
aries in body-centered cubic (bcc) metals show typical
yield excursions under certain conditions. Based on the
indentation load and depth at which these excursions
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are observed, it was proposed that they are strain bursts
due to dislocation pile-up and subsequent transmission
across the boundary. This paper presents new results
supporting this perception and providing predictive cri-
teria for strain bursts to occur.

Nanoindentation is frequently employed to investi-
gate the mechanical behavior of materials that have sub-
micrometer scale features or constraints [6]. Significant
size effects on the initial elasto-plastic behavior have
been observed during indentation of structures that are
constrained to such a scale [7]. In the present experi-
ments, the deformed volume is limited to a submicron
length scale by the indenter on the one side and the grain
boundary on the other side, resulting in a significant size
effect on the observed strain bursts. In this new type of
size effect, the hardness at which the excursion occurs in-
creases as the indenter tip to boundary distance de-
creases. Furthermore, it is shown that also in the
absence of strain bursts, the indentation experiments
provide valuable information on the incipient plastic
behavior of the boundary and on the nature of the inter-
action between the boundary and the indentation-in-
duced dislocations.

2. Experimental procedure

The measured indentation behavior of a grain bound-
ary in general may be affected by many microstructural
and geometrical parameters, such as the presence of sec-
ond phases, gradients in solute or defect concentrations,
the inclination of the boundary plane, the curvature of
the boundary, the presence of triple junctions and the sur-
face topology at the boundary. Therefore, in order to iso-
late the intrinsic indentation response of an individual
grain boundary, bicrystalline or at least coarse-grained
single-phase specimens are required. In this study, one
Fe–14%Si alloy bicrystal with a general grain boundary
and two pure Mo bicrystals with symmetric coincident
site lattice (CSL) Æ1 1 0æ tilt boundaries were used, all of
which were prepared by floating-zone melting. The geo-
metrical parameters are summarized in Table 1. The
Fe–Si specimen contained traces of phosphorus and car-
bon [8]. Auger spectroscopy showed no detectable impu-
rities on the grain boundaries in the Mo bicrystals [9,10].

The specimen surfaces were polished using a final pol-
ishing colloidal silica suspension. For the Mo bicrystals,
96 ml of the suspension was mixed with 2 ml ammonia

solution (25%) and 2 ml hydrogen peroxide solution
(30%). By atomic force microscopy it was confirmed
that no severe preferential grain boundary attack re-
sulted from these additives. Over a lateral distance of
30 lm across the boundary, a smooth height profile with
a maximum slope of less than 0.2� was found, which is
not expected to influence the local indentation response.
Electron backscatter diffraction (EBSD) was employed
to locate the grain boundaries with respect to a grid of
marker indents.

Nanoindentation measurements were carried out
employing an MTS Nano Indenter XP (MTS Nano
Instruments, Oak Ridge, TN) with a pyramidal Berko-
vich tip using the continuous stiffness measurement
(CSM) technique [11]. Load-controlled indentations
were made to a maximum depth of 200 nm with a tar-
geted strain rate of 0.05 s�1, which corresponds to a
maximum loading rate of the order of 0.1 mN/s. The
azimuthal orientation of the indenter was chosen to
have one side of the triangular impression of the Berko-
vich tip parallel to the grain boundary under investiga-
tion. In order to vary the distance to the boundary
with the smallest possible increments, lines of indenta-
tions were drawn across the grain boundary at angles
smaller than 3� with a spacing of 3 lm between the in-
dents. Although the plastically deformed zones of con-
secutive indents are likely to overlap at such close
spacing, no significant effect of any crosstalk interaction
on the measured response was found in a test comparing
lines of indents of 200 nm depth with spacings ranging
from 3 to 10 lm in the Fe–Si matrix. This is possibly
due to a slight work hardening introduced by mechani-
cal polishing of the surfaces, compared to which the
additional hardening effect from adjacent indentations
is very small.

3. Results

3.1. Load–displacement response

Results for the Fe–Si bicrystal were obtained from
four lines of 60 indentations crossing the grain bound-
ary. Initial yielding was evidenced in all indentations
by a displacement excursion at a constant load of
around 50 lN. In each of the lines, two or three consec-
utive indentations which were crossing the boundary, as
shown in Fig. 1, exhibited a characteristic yield excur-

Table 1
Grain boundary parameters and indentation direction in crystal coordinates

Specimen Material Misorientation Boundary plane Indentation direction

1 Fe–14%Si [�0.29 0.12 0.03] Rodrigues vector (�0.75 0.56 0.35)A//(�0.89 0.44–0.14)B [0.34–0.13 0.93]A//[0.05 0.40 0.91]B
2 Mo R3 ð�1 2 1ÞA==ð1 2 �1ÞB [1 0 1]A//[1 0 1]B
3 Mo R11 ð�3 2 3ÞA==ð3 2 �3ÞB [1 0 1]A//[1 0 1]B
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sion well beyond the initial yield plateau. The excursions
were observed for a total of nine measurements located
within 0.74 lm of the boundary and only when one side
of the indenter was facing the boundary. Although most
of these indents crossed over the boundary at maximum
indentation depth, it is readily concluded from the load–
displacement data that the indenter was still well away
from the boundary at the instant of the excursion, at dis-
tances ranging from 0.11 to 0.34 lm. It should be
emphasized that this behavior was not found for any
of the indentations in the matrix, but also not all indents
crossing the boundary displayed such a burst. Two types

Fig. 1. EBSD scans of two lines of indentations crossing the grain
boundary in the Fe–Si bicrystal. The gray scale values represent the
quality of the Kikuchi pattern. The circled indentations showed one or
two yield excursions as illustrated in Fig. 2.
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Fig. 2. Indentation response near the Fe–Si grain boundary showing (a) one yield excursion, and (b) two yield excursions (marked with arrows). The
dashed line represents the bulk response, which was calculated by averaging six load–displacement curves of indentations in the grain interior.
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of yield behavior can be distinguished. In six of the nine
indentations, the material yielded in one displacement
burst at constant load, as shown in Fig. 2(a); the other
three curves show two distinct bursts, which are sepa-
rated by a loading portion, as in Fig. 2(b). A summary
of the indentation parameters at the yield excursions is
given in Table 2.

On both Mo bicrystals, results were obtained from
three lines of 60 indents across the boundary. The initial
yield behavior of the Mo grain interior showed multiple
yield excursions up to a load of around 1.5 mN, rather
than a single yield point as observed in the Fe–Si grain
interior. In these excursions, the indentation depth sud-
denly increased by typically tens of nanometers at con-

stant load. A significant effect of the boundaries on
this so-called staircase yielding was found, as shown in
Fig. 3. Indentations made within 0.2 lm of the R3
boundary showed only very small excursions of less than
10 nm, and in some cases, the deformation appeared to
be plastic at the onset of contact and no excursions were
found altogether. For indentations further from the
boundary, the excursions rapidly become more pro-
nounced, as illustrated by the initial loading response
of four subsequent indentations plotted in Fig. 4. Be-
yond 0.3 lm from the boundary, the load at which the
excursions occur seems to be arbitrary and shows no
correlation with the distance to the boundary. A similar
but less pronounced effect was observed at the R11

Table 2
Indentation data for observed yield excursions (bursts) at the boundary in the Fe–Si bicrystal; ‘‘1st’’ and ‘‘2nd’’ entries denote indentations that
showed two separate bursts

Line Indent Initial distance
to boundary

Distance to boundary
at onset of burst

Load at onset
of burst

Depth at onset
of burst

Length of burst CSM hardness
before burst

dcenter (nm) dburst (Nm) P (mN) h (nm) Dh (nm) H (GPa)

1 1 493 210 1.24 130 11 3.20
2 370 131 1.02 110 16 3.70

2 1 665 335 1.67 152 10 3.17
2 517 1st 223 1.39 135 4 3.33

2nd 189 1.79 151 20

3 1 597 169 2.83 197 19 3.20
2 463 1st 146 1.52 146 4 3.17

2nd 109 1.88 163 13
3 330 1st 106 1.01 103 6 4.25

2nd 78 1.16 116 13

4 1 740 310 2.58 198 9 2.68
2 555 196 1.91 165 12 2.88
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Fig. 3. Load vs. displacement curves recorded in the Mo grain interior and close to the coherent R3 boundary. The yield excursions in the grain
interior are marked with arrows. In the indentation near the boundary, the yield excursions are suppressed.
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boundary. In this case, excursions were present in all
indentations at the interface, including the ones that
showed immediate plastic contact. Besides initial yield-
ing, neither of the two Mo bicrystals showed character-
istic displacement bursts near the boundary at higher
loads as observed in the Fe–Si specimen.

3.2. Grain boundary hardening

Hardness profiles across the grain boundaries were
calculated using hardness values from the continuous
stiffness measurement averaged from 80 to 200 nm
indentation depth. The values thus represent the hard-
ness experienced by the indenter over this entire range,
rather than at the maximum indentation depth [11]. This
allows the contribution from the observed non-linearities
in the indentation response to be included in our harden-
ing analysis. Due to the commonly observed indentation
size effect [12], the CSM hardness decreases continuously
with increasing indentation depth. An additional depth
dependence of the hardness may be presented by the
work hardening introduced by mechanical polishing.
Since neither of these depth dependences is expected to
be correlated to the presence of a grain boundary, we
can use the hardness values of indentations with the same
indentation depth to construct a hardness profile. For
both Fe–Si and Mo, we found that at 80 nm indentation
depth, the hardness had come within approx. 15% of the
hardness measured at 200 nm.

Fig. 5 shows the hardness profiles of the investigated
boundaries. All three bicrystals showed a significant
hardness peak within 1 lm of the boundary. The maxi-

mum hardness in Fe–Si was attained around 0.3 lm from
the boundary and only to the side where the yield excur-
sions were observed. In both Mo bicrystals, however, the
peak hardness coincides with the boundary. Immediately
following the peak, a local minimum of the hardness was
observed on both sides of the Fe–Si and Mo R3 bound-
aries and on one side of theMo R11 boundary. The hard-
ness on the other side of the Mo R11 boundary decreased
more gradually to the grain interior value.

4. Discussion

4.1. Dislocation–boundary interaction during slip

transmission

As illustrated in Fig. 2, all indentations in the Fe–Si
bicrystal exhibited an initial yield excursion at around
10 nm indentation depth, including those at the grain
boundary. This yield phenomenon has been attributed
to the nucleation or multiplication of dislocations
[13,14], and in other cases to the escape of piled-up dislo-
cations to the free surface upon the fracture of the native
oxide [15]. While the present results cannot rule out any
particularmechanism, it is clear that the observed yielding
at higher loads is strongly related to the presence of the
grain boundary and can therefore not be explained by
these concepts; the purpose of the following analysis is
to justify the assumption that this second plateau indi-
cates dislocation transfer across the boundary.

Comparing the curve showing a yield excursion to the
bulk response in Fig. 2(a), it is readily found that there is
quite an amount of extra elastic energy stored near the
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Fig. 4. Initial loading response of four consecutive indentations close to the Mo R3 boundary. At 0.03 lm from the boundary, loading appears to be
plastic from the onset of contact and no yield excursions are found. With increasing distance, the initial loading approaches elastic behavior and the
subsequent yield excursions rapidly become more pronounced.
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boundary prior to the excursion. The excess of stored
energy WGB is given by the area between both curves
up to the onset of the excursion and is computed from

the graphs to be 8 · 10�12 J. It is of interest to investi-
gate whether this amount of energy can be accounted
for by a dislocation-based mechanism, in particular by
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Fig. 5. CSM hardness profiles across (a) Fe–Si, (b) Mo R3 and (c) Mo R11 boundaries. The data points represent a moving average over five
measurements of both hardness and distance. A positive distance to the boundary corresponds to an orientation where one side of the indenter
impression faces the grain boundary; for negative distances, an apex of the impression points towards the boundary.
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dislocation pile-up and transmission at the boundary as
proposed earlier [4].

Let us assume that a dislocation pile-up experiences
an applied shear stress of sa = 600 MPa as given by
the experiments; the applied shear stress at the excursion
is approximately one-sixth of the recorded hardness.
The length of a dislocation pile-up under an applied
shear stress is formulated as:

lpile-up ¼
lbn
psa

ð1Þ

where n is the number of dislocation loops in the pile-up,
ignoring the difference between edge and screw parts.
From Table 2, the distance from the indenter to the
grain boundary at the onset of the burst is estimated
to be of the order of 300 nm, and therefore Eq. (1) gives
that n is approximately equal to 25. The stress fields of a
stressed dislocation pile-up of 25 dislocations have been
calculated based on linear elasticity. Under an applied
shear stress of sa, the positions of the edge dislocations
in the pile-up with the first dislocation locked at x = 0
are given by

XN�1

i;i6¼j

lb
2pð1� mÞ

1

xj � xi
þ sa ¼ 0. ð2Þ

It can be shown that the position xi of the dislocations
are given by the zeros of the polynomial

gðxÞ ¼
YN�1

i¼1

ðx� xiÞ; ð3Þ

where g(x) is the first derivative of the Nth Laguerre
polynomial [16,17]:

gðxÞ ¼ L0
N

4pð1� mÞsx
lb

� �
. ð4Þ

The calculations provide the position of each of the 25
dislocations with respect to each other, which can be
used to compute the total energy of the dislocation
burst, i.e., the excursion in Fig. 2(a). The theoretical pre-
diction of the length of the burst is equal to n times the
Burgers vector b, which is of the same order of magni-
tude as experimentally observed (see Table 2).

Because the positions of the dislocations in the
stressed pile-up are known, the elastic energy stored in
the 25 dislocation loops near the spearhead of the pile-
up can be predicted from

Et ¼
X
i

Eself
i þ

X
p

X
q

EIðrpqÞ ð5Þ

It turns out that the self energy of the leading 25 disloca-
tion loops of radius 300 nm is far less than the interaction
energy among the dislocation loops, i.e., 5.8 · 10�14 and
5.1 · 10�12 J, respectively. This was also found in [18]
for indentation of thin films. Comparison with the exper-
imentally determined value for WGB of 8 · 10�12 J leads

to the conclusion that there is a fair agreement with Et

and that the plateau observed in the load–displacement
curves can be attributed to the release of dislocations in
the pile-up in front of the boundary.

In the release of the pile-up into the adjacent grain,
several mechanisms may be active, including direct
transmission across the boundary (for screw compo-
nents if the slip planes in both grains intersect the
boundary in a common line), absorption by dissociation
in the boundary, and dislocation absorption and subse-
quent re-emission [19]. In the light of our observation of
two separate excursions (Fig. 2(b)), the latter mechanism
is believed to be predominant. Indeed other mechanism
are possible, e.g., subsequent slip on two different slip
planes or slip systems but considering Schmid factors
as a first approach in previous experiments [4] we did
not find clear indications for multiple slip. At the first
excursion, dislocations are absorbed into the grain
boundary and pile-up at a boundary step. With increas-
ing load, this pile-up produces a stress high enough to
nucleate dislocations in the adjacent grain, thereby caus-
ing a second yield excursion. This mechanism is illus-
trated in Fig. 6. Since the extent of dislocation
absorption by the boundary depends on the local den-
sity of grain boundary dislocations and steps, the corre-
sponding burst may vary in size or be absent altogether,
as for the indentations showing only one excursion. The
possible presence of segregated impurities may provide
additional obstacles to grain boundary dislocations or
easy sites for nucleation in the adjacent grain. However,
this is not expected to change the observed behavior in a
qualitative sense.

The proposed mechanism of dislocation absorption
and re-emission is supported by in situ transmission
electron microscopy studies of slip propagation across
boundaries in bcc metals [20–22]. In some cases, disloca-
tions were found to stop at a short distance from the
grain boundary and cross-slip into a plane nearly paral-
lel to the boundary [23]. Because of the non-planar core
structure of screw dislocations [24,25], non-Schmid
behavior is observed [26] and dislocation pile-ups rarely
occur during macroscopic deformation. In the present
case, however, the movement of dislocations is confined
to a small volume and it can therefore be assumed that
some extent of pile-up exists. It is furthermore likely that
dislocations pile-up on multiple parallel slip systems.
The existence of multiple pile-ups and their interaction
are not included in our energy calculation as it serves
only to compare the energies to a first approximation.

4.2. Dislocation–boundary interaction in the absence of

slip transmission

The initial yielding of the Mo grain interior markedly
differs from the behavior observed in Fe–Si in two as-
pects. Firstly, rather than a single yield excursion, the
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loading curve shows multiple yield excursions separated
by purely elastic loading portions [27]. This type of
behavior may be explained in terms of a (super)disloca-
tion model driven by the change in shear stress from elas-
tic loading to fully plastic indentation [14]. Staircase
yielding occurs if the shear stress prior to yield is only
slightly higher than the flow stress, so that upon yielding,
the shear stress drops below the nucleation shear stress
and further elastic loading is needed to reactivate dislo-
cation sources. This process repeats until fully plastic
loading is established. Secondly, the loads at which the
excursions occur vary considerably throughout the grain
interior. This is thought to be mainly due to variations in
dislocation density and surface stresses introduced by
mechanical polishing of the surface. Oxide films are not
expected to play a significant role as molybdenum does
not oxidize appreciably at room temperature.

The loading response prior to the initial yield point is
well described by purely elastic loading [28]. The maxi-
mum elastic shear stress smax under a rounded Berko-
vich indenter can be approximated by the relation for
a spherical indenter with the same tip radius R [29]

smax ¼ 0.31
6PE�2

p3R2

� �1=3

; ð6Þ

where P is the indentation load and E* is the reduced
modulus of the indenter and the specimen. In our exper-
iments, the first yield point occurred at loads ranging
from 0.1 up to 0.6 mN. With an estimated tip radius
of 200 nm, the maximum shear stress under the indenter
at a load of 0.6 mN is found to be of the same order
as the theoretical shear strength of molybdenum
sth � l/2p = 20 GPa. Evidently, the absence of an exist-
ing dislocation field is not a prerequisite to attain values
close to this shear stress, as was observed earlier for
indentation of tungsten single crystals [14]; the investi-
gated surfaces were mechanically polished and hence
contained many dislocations. The perception that dislo-
cations may exist or be nucleated prior to the first yield

excursion is supported by atomistic simulations of
indentation of Mo (1 0 0) and (1 1 1) surfaces [30].

The absence of observable grain boundary yielding in
the Mo bicrystals can either be due to the boundary
yield stress being too low, in which case no dislocation
pile-up can be sustained at the boundary, or too high,
so that the pile-up cannot be transmitted across the
boundary. The fact that significant hardening is ob-
served suggests that dislocations do pile-up at the
boundary, but the shear stress at the spearhead is not
sufficient to initiate emission into the adjacent grain.
Following the hardening regime, significant softening
with respect to the grain interior is found between
roughly 0.5 and 1.0 lm from the boundary. This may
be explained by the elastic interaction between induced
lattice dislocations and the grain boundary [31,32],
which may be either attractive or repulsive; an attractive
force on the outer dislocation loops around the indenter
may lead to apparent softening in the indentation
response.

The observed attenuation of grain interior yield
excursions for indentations near the grain boundaries
is presumably caused by preferential nucleation of dislo-
cations at the boundary. This phenomenon has been
considered by Lilleodden et al. [33], who performed
atomistic simulations of grain boundary proximity
effects on the indentation behavior of gold thin films.
It was found that indentation by a 40 Å radius indenter
within 25 Å of a R79 tilt boundary leads to a significant
reduction of the critical load for initial yielding. In the
present experiments, the indenter radius is two orders
of magnitude larger, and a boundary proximity effect
was therefore measured at accordingly larger distances.
Up to 0.3 lm from the Mo R3 boundary, initial yielding
occurs at significantly lower loads than away from the
boundary as shown in Fig. 7. Beyond this distance, dis-
locations nucleate in the grain interior at varying loads
depending on the local density of statistically stored
dislocations.

From the interaction range of 0.3 lm, an estimate for
the nucleation shear stress of dislocations at the bound-
ary can be obtained. In order for dislocations to nucle-
ate from the boundary, the nucleation shear stress
must be attained at the boundary before grain interior
yielding occurs according to Eq. (6) . Using the two-
dimensional analytical solution for the elastic stress
fields under cylindrical contact [29] for an indenter ra-
dius of 200 nm and a load of 0.6 mN, we find that the
maximum shear stress at a lateral distance of 300 nm
from the indenter is approximately 2 GPa. As expected,
this value for the nucleation shear stress is considerably
lower than the theoretical shear stress. The transition
from nucleation at the boundary to nucleation in the
grain interior was less clear for the R11 boundary; there-
fore, the nucleation stress has not been calculated for
this case. It should be noted that the ease of dislocation

1 2 

3 

grain A grain B 

Fig. 6. Schematic of proposed mechanism for slip transmission,
showing pile-up of lattice dislocations at the boundary (1), absorption
by the boundary and pile-up of grain boundary dislocations at an
obstacle (2), and emission into the adjacent grain (3).
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nucleation can be greatly affected by the presence of
grain boundary steps. The present results can thus only
provide a rough estimate of the extent of dislocation
nucleation at grain boundaries.

A physical explanation of preferential nucleation at
the boundary may be given by the grain boundary dis-
location having a shear stress component on the slip
plane, which assists the applied shear stress in generat-
ing a lattice dislocation loop. The maximum shear
stress is attained at a distance of the width of the grain
boundary dislocation, n. Assuming that nucleation of a
dislocation loop occurs in the vicinity of the grain
boundary when the total shear stress reaches a value
of l/2p as suggested by the experiments far away from
the boundary, the applied shear stress necessary for
nucleation becomes

sa �
l
2p

� lb
pð1� mÞ

1

n
. ð7Þ

For the experimental value of sa = 2 GPa, the width of
the grain boundary dislocation is found to be n = 0.9
nm, which compares well to other estimates [34,35].
From Eq. (7), it follows that when the grain boundary
dislocation core becomes more delocalized, the neces-
sary nucleation shear stress at the grain boundary in-
creases. As a consequence, localized cores at lower
temperatures will act as stress concentrators, while at
higher temperatures, the grain boundary dislocation
cores become more spread and homogeneous nucleation
near grain boundaries becomes less likely [35,36]. Of
course it should be emphasized that the present results
can only provide a rough estimate of the extent of dislo-
cation nucleation at grain boundaries but evidently the

mechanical response is completely different between
these two bcc materials.

4.3. Predictive criteria for grain boundary yielding

When indentation-induced grain boundary yielding
occurs, the boundary resistance to slip transfer can be
quantitatively related to the strain bursts in a Hall–
Petch type approach. This calculation and the relevant
geometrical considerations have been addressed in more
detail in a previous paper by the present authors [4]. In
short, the dislocation pile-up is confined to a small dis-
tance d by the grain boundary on the one side and the
indenter on the other side. Slip transfer occurs when
the shear stress at the boundary reaches a critical value
s* given by [37–39]

s� ¼ mðsa � s0Þ
ffiffiffiffiffi
d
4r

r
; ð8Þ

where sa is the applied shear stress, s0 is the intrinsic fric-
tional shear stress and r is the distance to the dislocation
source in the adjacent grain. The factor m represents the
misorientation between the slip systems on either side of
the boundary. Rewriting Eq. (8) and setting
ky ¼ 2m�1s�

ffiffi
r

p
gives the Hall–Petch equation

sa ¼ s0 þ
kyffiffiffi
d

p . ð9Þ

A further analysis of the Hall–Petch slope ky has re-
cently been presented in [40]. With sa given by the
CSM data, s0 = 200 MPa and d = dburst as listed in
Table 2, the Hall–Petch slope for the Fe–Si boundary
is found to be ky = 0.63 MNm�3/2 with a standard
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Fig. 7. Correlation between initial yielding and distance to the boundary in the Mo R3 bicrystal. The initial yield point is defined as the first excursion
from elastic loading of at least 5 nm indentation depth. Close to the boundary, the yield load is reduced due to preferential nucleation at the grain
boundary.
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deviation of 0.09 MNm�3/2. Following Eq. (9), Fig. 8
shows a plot of the applied shear stress versus the in-
verse square root of the distance to the boundary for
the observed yield events. Although the distances at
which boundary yielding was observed do not span such
a large range as to conclusively validate the d�1/2 depen-
dence of the shear stress, the results appear to be in gen-
eral agreement with the proposed Hall–Petch type
relation. Moreover, the resulting Hall–Petch slope
ky = 0.63 MNm�3/2 compares well to the macroscopic
value for a-Fe, ky = 0.583 MNm�3/2 [41,42]. Similar
agreement was found by Wang and Ngan [5] for inden-
tations at grain boundaries in niobium.

Indentation at submicrometer length scales may lead
to appreciable strain gradients and produce size effects,
which cannot be justified by classical theories of plas-
ticity [12,43]. In our experiments, we found that the
stress at which the boundary yields increases signifi-
cantly when the indenter to boundary distance becomes
smaller than 150 nm (see Table 2; the interfacial yield
stress is roughly equal to one-third of the measured
hardness). In other words, the boundary appears to
be stronger when the probed volume becomes dimen-
sionally constrained. In forthcoming papers, it is
shown that this type of size effect can be accounted
for by incorporating an interfacial energy term into
gradient plasticity theory [44,45]. The experimentally
observed dislocation transference phenomenon is simi-
lar to grain boundary yielding in a strain-gradient plas-
ticity framework which allows interfaces to follow their
own yield behavior. The analytical expressions derived
in [46] predict that the interfacial yield stress increases
as the specimen size decreases. In the present experi-

mental observations, considering the specimen size to
be the distance bounded between the indenter tip and
grain boundary allows new type of size effects to be ob-
tained through nanoindentation. It should be empha-
sized that a similar size dependence is not noted for
the grain interior yielding, which was constantly ob-
served at a load of approximately 50 lN. Any gradient
plasticity approach is based on averaging dislocation
densities in a certain volume. This approach becomes
questionable when the volume is small and discrete dis-
locations govern the material behavior. In the mathe-
matical treatment [44–46], an interfacial energy c term
connected to interfacial yielding and a length scale ‘
appear. By making a comparison with a dislocation
description, it was found that c can be viewed as an
effective modulus of the interface depending on the
number of geometrically stored dislocations, which
are distributed over a certain length scale, ‘, in front
of the interface. In the present case, 80% of the dislo-
cations are positioned over the length scale ‘ near the
boundary and therefore a good relationship between
discrete dislocations and gradient plasticity theory
could be made at these volume sizes [44,45].

Beyond 150 nm from the boundary, the size effect is
not appreciable and we can use the dislocation-based
approach described above to predict grain boundary
yielding. Table 3 lists the relevant properties of the grain
boundaries investigated in this study and by Wang et al.
The macroscopic Hall–Petch slope values ky are consis-
tent with the observations of slip transfer. In molybde-
num, having the highest ky value and thus the highest
resistance to slip transfer, dislocations piled-up at the
grain boundary but did not cross over to the adjacent
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Fig. 8. Representation of the Fe–Si boundary yield events in a Hall–Petch type plot, i.e., with the applied shear stress plotted vs. the inverse square
root of the distance to the boundary. The dashed line shows the fit to Eq. (9) assuming a frictional shear stress of s0 = 200 MPa.
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grain. The Hall–Petch slope for Fe–Si is lower; in this
case, the boundary only yielded when faced by one side
of the indenter. In the experiments by Wang et al. on
niobium, having the lowest ky value, grain boundary
yielding was observed irrespective of the azimuthal
orientation of the indenter, which they did not take into
account. The effect of the indenter orientation on the
boundary yielding can be understood by approximating
the stress field by uniaxial pressure components perpen-
dicular to the faces of the indenter, and recognizing that
the resolved shear stress at the grain boundary is a max-
imum when one side is facing the boundary.

Besides the intrinsic resistance to slip transfer as
quantified by the macroscopic value of the Hall–Petch
slope, the ease of slip transmission is largely determined
by the geometry of the experiment and the relative ori-
entation of the slip systems. Wang et al. found that in
niobium, strain bursts are observed for boundaries with
m 0 > 0.9, where m 0 is given by

m0 ¼ cos hA cos hB ð10Þ
and hA and hB are, respectively, the angles between the
closest slip planes on opposite sides of the boundary
and the closest slip directions on these planes. However,
this approach does not take the orientation of the grain
boundary plane into account. Moreover, the closest
available slip systems are not necessarily those activated
during deformation, since slip proceeds mainly on sys-
tems for which the resolved shear stress is highest. A bet-
ter description of the misorientation is therefore
obtained by comparing only the maximum resolved
shear stress (MRSS) slip systems in the indented grain
with the available slip systems in the adjacent grain.
To find the MRSS slip systems we assume a uniaxial
compressive stress perpendicular to the surface of the in-
denter as mentioned before, and use Schmid behavior as
a first approximation. The favored slip system in the
adjacent grain can subsequently be found by maximiz-
ing the orientation factor m [48] given by

m ¼ ð�L1 � �L2Þ � ð�g1 � �g2Þ; ð11Þ
where �L1 and �L2 are the normalized intersection lines
common to the slip planes and the boundary plane,
and �g1 and �g2 are the normalized slip directions in the
pile-up and emission grains, so that m = 1 for identical
slip systems as in Eq. (10). Although the Mo R3 bound-
ary has two perfectly aligned slip systems on either side

(m 0 = 1), slip transmission from the MRSS slip system is
relatively difficult (m = 0.78) as shown in Table 3. This
difficulty in slip propagation was confirmed by in situ
straining of R3 symmetric tilt boundaries [20,21], which
showed that the dislocation–grain boundary interaction
strongly depends on the orientation of the tensile axis
with respect to the boundary plane.

5. Conclusions

We have characterized the mechanical response to
nanoindentation of three bcc bicrystals as a function
of the distance to the boundary. Hardening was found
within 1 lm of all three boundaries due to pile-up of dis-
locations. Indentations close to the boundary in the Fe–Si
bicrystal showed a characteristic yield excursion, which
is attributed to slip transmission. This is supported by
a comparison between the energy released during the
excursion and the calculated interaction energy of the
piled-up dislocations. Furthermore, new types of nano-
indentation size effects are obtained by relating the hard-
ness at the onset of this excursion to the distance of the
indenter tip to the grain boundary [13,48].

The boundary resistance to slip transfer can be quan-
titatively related to the yield excursions by a Hall–Petch
type calculation. By regarding the distance between the
indenter and the boundary at the onset of slip transmis-
sion as representative for the slip pile-up, we obtain a
Hall–Petch slope ky that corresponds well to macroscop-
ically determined values. Accordingly, it is shown that
materials with higher ky values exhibit increasing diffi-
culty in slip transmission across boundaries. The Hall–
Petch slope is therefore considered the most important
parameter predicting the occurrence of the observed
yield excursions. For materials with ky > 0.7 MNm�3/2,
slip transmission is not expected under Berkovich
indentation.

Incipient plasticity during indentation of single crys-
tals is often characterized by one or more yield excur-
sions, which are attributed to the nucleation and
multiplication of dislocations under the indenter. In this
study, we found that these yield excursions are signifi-
cantly suppressed for indentations close to a grain
boundary, presumably due to easy dislocation nucle-
ation at the boundary. The maximum distance at which
grain boundary proximity affects the initial plasticity

Table 3
Relevant parameters for the occurrence of grain boundary yielding during indentation

Material H–P slope ky
(MNm�3/2)

Closest slip system
orientation m 0

Activated slip system
orientation m

Grain boundary
yielding observed

Mo 0.78 [47] 1.00 (R3) 0.78 (R3) No
0.99 (R11) 0.25 (R11)

Fe–Si 0.58 [42] 0.93 0.82 Yes, depending on indenter orientation
Nb [5] 0.19 0.90–0.99 – Yes, regardless of indenter orientation
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was found to be of the order of the tip radius of the
indenter.
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