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We construct the most general non-extremal spherically symmetric instanton solution of a gravity-dilaton-
axion system with SL(2, R) symmetry, for arbitrary euclidean spacetime dimension D ≥ 3. A subclass of
these solutions describe completely regular wormhole geometries, whose size is determined by an invariant
combination of the SL(2, R) charges.

Our results can be applied to four-dimensional effective actions of type II strings compactified on a
Calabi-Yau manifold, and in particular to the universal hypermultiplet coupled to gravity. We show that these
models contain regular wormhole solutions, supported by regular dilaton and RR scalar fields of the universal
hypermultiplet.

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 The action

This paper contains a summary of [1]. In addition, we demonstrate the existence of regular wormhole
solutions in the universal hypermultiplet, which is present in the low-energy effective action of type II string
theories compactified on a Calabi-Yau manifold. Wormhole solutions from Calabi-Yau compactifications
were also found in [2]. The main difference with our solution is that in our case we also include RR fields,
and furthermore, our solution is regular in the complete domain of the wormhole geometry.

We start with the action of a gravity-dilaton-axion system in D-spacetime dimensions. In Minkowski
space, the Lagrangian is

LM = 1
2

√
|g| [R− 1

2 (∂φ)2 − 1
2 ebφ(∂χ)2] , (1)

where b is an arbitrary dilaton coupling parameter. This Lagrangian has an SL(2, R) group of symmetries.
They can be realized as modular transformations on the complex field

τ ≡ b

2
χ+ i e−bφ/2 , τ → ατ + β

γτ + δ
, αδ − βγ = 1 , (2)

and is valid for any nonzero value of the dilaton coupling b.
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This theory occurs for example as the scalar section of IIB supergravity in D = 10 Minkowski space-
time with dilaton-coupling parameter b = 2. Other values of b can arise when considering (truncations
of) compactifications of II supergravity. The main example we will discuss here is that of the universal
hypermultiplet, that arises after compactifying type IIA strings on a (rigid) Calabi-Yau threefold down to
D = 4. This hypermultiplet contains four scalars, φ and σ coming from the NS sector, and ψ and ϕ coming
from the RR sector. The four-dimensional Lagrangian can be written as

LM = 1
2

√
|g|

[
R− 1

2 (∂φ)2 − 1
2 eφ

(
(∂ψ)2 + (∂ϕ)2

) − 1
2 e2φ

(
∂σ + ψ∂ϕ

)2
]
. (3)

The scalar symmetry group is now SU(2, 1), but contains various inequivalent SL(2, R) subgroups. For
instance, if we set both σ = ψ = 0, we get (1) whith b = 1 whereby ϕ is identified with χ. If we set
ψ = ϕ = 0, we have b = 2 and σ is identified with χ. By writing down the field equations for (3), it is
easy to see that these truncations are consistent. Extremal instantons in the universal hypermultiplet have
been discussed in detail in [3–5], and correspond to wrapped (euclidean) membranes along three-cycles,
or wrapped NS5-branes along the entire Calabi-Yau. These two cases correspond to b = 1 and b = 2
respectively. Using the results obtained in [1], we will here generalize this to the non-extremal case, and
show that there are interesting and new solutions that have the spacetime geometry of a wormhole.

To discuss instantons, we first have to perform a Wick rotation. This rotation is best understood by
dualizing the axion into a (D − 2)-form potential. One then finds that under a Wick rotation, χ → iχ. The
Euclidean Lagrangian corresponding to (1) is then

LE = 1
2
√
g

[
R− 1

2 (∂φ)2 + 1
2 ebφ(∂χ)2

]
, (4)

with all fields real. Notice that in the scalar formulation, as opposed to the formulation with the (D−1)-form
field strength, the contribution to the action coming from the scalar sector is not positive definite. For b = 2
andD = 10 this is the gravity-scalar part of Euclidean IIB supergravity, in which the D-instanton can easily
be found as a solution of the Euclidean equations of motion [6,7]. The non-extremal solutions were found
in [1], and we repeat them in the next section.

As already explained, compactifications of string theory can give rise to other values of b. The Euclidean
version of the universal hypermultiplet Lagrangian (3) can best be understood in terms of the double-tensor
multiplet formulation, in which ϕ and σ are dualized into two antisymmetric tensors [3]. After a Wick
rotation, ϕ → iϕ, σ → iσ, and the Euclidean Lagrangian for the universal hypermultiplet becomes

LE = 1
2

√
|g|

[
R− 1

2 (∂φ)2 − 1
2 eφ

(
(∂ψ)2 − (∂ϕ)2

)
+ 1

2 e2φ
(
∂σ + ψ∂ϕ

)2
]
. (5)

Notice that the two truncations, ψ = σ = 0 and ψ = ϕ = 0, both fall into the class of (4), in which we
have b = 1 and b = 2 respectively.

There are three conserved currents for the SL(2, R) transformations in the Euclidean model, satisfying
∇µj

µ = 0. The corresponding charges are denoted by q3, q+ and q−, and are normalized as specified in [1].
They transform under SL(2, R) in such a way that the combination

q2 ≡ q23 − q+q− , (6)

is invariant [1,8]. The three conjugacy classes of SL(2, R) then correspond to q2 < 0, q2 = 0 and q2 > 0.
The extremal solutions will have q2 = 0, the non-extremal q2 �= 0. The wormhole solutions will have
q2 < 0. For later convenience, it is useful to define the quantity

c ≡
√

2(D − 1)
D − 2

, (7)

which will appear explicitly in the instanton solutions below.
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2 Instanton solutions

We search for generalised instanton solutions with manifest SO(D) symmetry,

ds2 = e2 B(r)(dr2 + r2dΩ2
D−1) , φ = φ(r) , χ = χ(r) . (8)

The standard D-instanton solution [6] is obtained for the special case thatB(r) is constant. Other references
on generalised instantons and wormholes that are related to our work are [2,9–17]. To obtain an SO(D)
symmetric generalised instanton solution, we allow for a non-constant B(r) and solve the field equations
following from the Euclidean action (4). This was done in detail in [1]. Here we summarise the result.

The solution can be written in a compact form by using a harmonic function H(r) over a conformally
flat space with metric as given in (8),

H(r) =
b c

2
log(f+(r)/f−(r)) , B(r) =

1
D − 2

log(f+f−) , f±(r) = 1 ± q
rD−2 , (9)

The general instanton solution can then be written as

ds2 =
(

1 − q2

r2 (D−2)

)2/(D−2)

(dr2 + r2dΩ2
D−1) ,

eb φ(r) =
(
q−
q

sinh(H(r) + C1)
)2

,

χ(r) =
2
b q−

(q coth(H(r) + C1) − q3) .

(10)

This solution is valid for any value 1 of b �= 0. The integration constant C1 can be traded for the asymptotic
value of the dilaton that we will later identify with the string coupling constant. Notice also the explicit
dependence on the Sl(2, R) charges q3, q− and q+. The solutions (10) are valid both for q2 ≡ q23 − q−q+
positive, negative and zero, corresponding to the three conjugacy classes of SL(2, R). We now discuss these
three cases separately:

• q2 > 0: Black Holes

In this case q is real and the solution is given by (10) with all constants real. However, the metric
becomes imaginary below a critical radius

rD−2 < rD−2
c = q . (11)

One can check that there is a curvature singularity at r = rc, which happens at strong string coupling:
eφ(r) → ∞ as r → rc.

Between r = rc and r = ∞, H varies between ∞ and 0, and with an appropriate choice of C1, i.e. a
positive value of C1, the scalars have no further singularities in this domain. Thus one might hope to
have a modification of this solution by higher-order contributions to the effective action of IIB string
theory [13]. Alternatively, one can consider the possible resolution of this singularity upon uplifting
to one higher dimension. In [1], we showed that this indeed happens for the special case of

b ≥
√

2(D − 2)
D − 1

, (12)

1 The case b = 0 is treated in [18].
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equivalent to bc ≥ 2. Upon uplifting, this becomes a non-extremal dilatonic black hole. The case when
bc = 2 lifts up to a (non-dilatonic) Reissner-Nordström black hole with mass and charge given by

Q = −2 q− , M = 2
√

q2 + q2− ⇒ q2 =
M2 −Q2

4
. (13)

Hence, the q2 > 0 solutions with bc ≥ 2 are spatial sections of a higher-dimensional (Lorentzian)
black hole solution. The case of bc < 2 cannot be uplifted and remain singular instanton solutions
in D-dimensions. In Einstein frame, these geometries are singular wormholes that are pinched at the
selfdual radius rsd = rc [1].

In the case of q2 > 0, there is an interesting limit in which q− → 0. This yields a solution with only
two independent integration constants, q+ and q2. The range of validity of this solution is equal to
that of the above solution with q− �= 0: it is well-defined for r > rc, while at r = rc the metric has a
singularity and the dilaton blows up. The singularity can be resolved upon uplifting for all values of
bc ≥ 2 to Schwarzschild black holes, with mass M = 2q. More details can be found in [1].

• q2 = 0: Extremal instantons

We now consider the limit q2 → 0 of the general solution (10), after rescaling the constant C1 with a
factor q to make the limit well-defined. Taking the limit yields the extremal solution:

ds2 = dr2 + r2 dΩ2
D−1 , eb φ(r)/2 = h χ(r) =

2
b

(h−1 − q3
q−

) , (14)

where h(r) is the harmonic function:

h(r) = gb/2
s +

b c q−
rD−2 , (15)

and gs is the asymptotic value of the dilaton at infinity.

This is the extremal D-instanton solution of [6]. This solution is regular over the range 0 < r < ∞
provided one takes both gs and b c q− positive; at r = 0 however, the harmonic function blows up and
the scalars are singular. Similar to the case of q2 > 0, these singular solutions can be lifted to higher
dimensions where, e.g. for bc = 2, they become extremal Reissner-Nordström black holes.

• q2 < 0: Wormholes

In this case q is imaginary. To obtain a real solution we must take C1 to be imaginary. We therefore
redefine

q → i q̃ C1 → i C̃1 , (16)

such that q̃ and C̃1 are real. One can now rewrite the solution (10) by using the relation

log(f+/f−) = 2 arctanh(q/rD−2) , (17)

and, next, replacing the hyperbolic trigonometric functions by trigonometric ones in such a way that no
imaginary quantities appear. We thus find that, for q2 < 0, the general solution (10) takes the following
form:

ds2 = (1 +
q̃2

r2 (D−2) )2/(D−2) (dr2 + r2 dΩ2
D−1) ,

ebφ(r) =
(
q−
q̃

sin(b c arctan(
q̃

rD−2 ) + C̃1)
)2

,

χ(r) =
2
b q−

(q̃ cot(b c arctan(
q̃

rD−2 ) + C̃1) − q3) .

(18)
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The metric and curvature are well behaved over the range 0 < r < ∞. However, the scalars can only
be non-singular over the same range by an appropriate choice of C̃1 provided that bc < 2. This can
be seen as follows. The arctan varies over a range of π/2 when r goes from 0 to ∞. It is multiplied
by bc and thus the argument of the sine varies over a range of more than π if bc > 2. Therefore, for
bc > 2 there is always a point rc such that χ → ∞ as r → rc. Note that the breakdown of the solution
occurs at weak string coupling: eφ → 0 as r → rc. This singularity is not resolved upon uplifting and
corresponds to a black hole with a naked singularity (in the case of Reissner-Nordström, M2 < Q2.
The same holds for the liming case of bc = 2. Therefore the case q2 < 0 only yields regular instanton
solutions for bc < 2, together with the condition that C̃1 and C̃1 + bcπ/2 are on the same branch of
the cotangent.

The metric in (18) has a Z2 isometry corresponding to the reflection rD−2 → q̃r2−D which inter-
changes the two asymptotically flat regions. This reflection has a fixed point, corresponding to the
selfdual radius

rD−2
sd = q̃ . (19)

Furthermore, the thickness of the neck was in [1] computed to be

ρD−2
sd = 2q̃ . (20)

We have summarised this in the following figure:

r
r=0 r=r r= ∞sd

ρ=ρsd

Fig. 1 The geometry of a wormhole. The two asymp-
totically flat regions at r = 0 and r = ∞ are connected
via a neck with a minimal physical radius ρsd at the self-
dual radius rsd.

3 Instanton action

The value of the action, evaluated on the instanton solution, is a key ingredient in the semiclassical ap-
proximation of the euclidean path integral. In [1] we computed the instanton action for the three cases,
corresponding to q2 > 0, q2 = 0, and q2 < 0. This was done by specifying the additional surface term
added to (4), which solely determines the instanton action. This surface term can be found from the dual
description in terms of the (D − 1)-form field strength formulation. We here summarise the results.

For the case when q2 ≥ 0, the contribution to the action coming from infinity is given by

S∞
inst =

4
b2

(D − 2) Vol(SD−1) b c





√

q2 +
q2−
gb

s



 . (21)

Here we have used the relation betweenC1 and the asymptotic value of the dilaton, gb
s = (q−/q)2 sinh2 C1.

Notice that the instanton action is proportional to the mass of the black hole to which the solution uplifts
in one dimension higher. Furthermore, the result (21) also hols for q2 = 0, which gives the lowest value
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of the action. The resulting instanton action is then inversely proportional to gb/2
s . The D-instanton of ten-

dimensional IIB corresponds to taking b = 2. The extremal instantons for the universal hypermultiplet action
(3) [3,4] also fall into this class: the membrane instantons correspond to b = 1 whereas the NS-fivebrane
instantons correspond 2 to b = 2. We have here given only the contribution from infinitiy. The non-extremal
instantons also contribute to the action at the other boundary, where r = rc. Since the solution is singular
at this point, it is however not clear that the supergravity approximation is still valid in this region.

The case when q2 < 0 is very different. For bc < 2, these are regular wormhole solutions with two
asymptotic boundaries at r = 0 and r = ∞ that are related by a reflection symmetry. The wormhole action
gets contributions from both these boundaries, and the result is

Swormhole =
4
b2

(D − 2)Vol(SD−1) b c q̃
(

cot C̃1 − cot(C̃1 + bc
π

2
)
)
. (22)

Due to the fact that C̃1 and C̃1 + bcπ/2 are on the same branch of the cotangent, the total instanton action
is manifestly positive definite. One can rewrite the above result in terms of the string coupling constant,
using gb/2

s ≡ ebφ∞/2 = (q−/q̃) sin C̃1. In the neighborhood of bc ≈ 2, the instanton action becomes very
large, and the limit to the critical point where bc = 2, it diverges. At that point, the wormhole solution is no
longer regular.

4 Wormholes in string theory

We have seen that the condition for regular wormholes is that there exist models for which bc < 2. In type
IIB in ten dimensions, this is not satisfied. Toroidal compactifications of string theory only lead to values
of b for which bc ≥ 2, so no wormholes exist for these cases. However, we have seen that for the universal
hypermultplet, which descends from a Calabi-Yau compactification of type II strings, one can have the
value b = 1 in D = 4, and so bc =

√
3 < 2. The solution is then characterized by the dilaton and the RR

scalar ϕ that descends from the RR three-form gauge potential in IIA in ten dimensions. Since the extremal
case q2 = 0 corresponds to a wrapped type IIA euclidean membrane over a (supersymmetric) three-cycle,
it is natural to suggest that the wormhole, with q2 < 0, corresponds to a wrapped non-extremal euclidean
D2 brane.
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