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Structural and mechanistic diversity of secondary transporters
Iwona Sobczak and Juke S Lolkema

Recent reports on the three-dimensional structure of

secondary transporters have dramatically increased our

knowledge of the translocation mechanism of ions and solutes.

The structures of five transporters at atomic resolution

have yielded four different folds and as many different

translocation mechanisms. The structure of the glutamate

transporter homologue GltPh confirmed the role of pore-loop

structures as essential parts of the translocation mechanism

in one family of secondary transporters. Biochemical evidence

for pore-loop structures in several other families suggest

that they might be common in secondary transporters, adding

to the structural and mechanistic diversity of secondary

transporters.
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Introduction
Secondary transporters use the free energy stored in ion

and/or solute gradients to drive the transport of a solute

across the cytoplasmic or internal membranes of biologi-

cal cells. Accumulation of the solute at one side of the

membrane is achieved by coupling the translocation of

the solute to the translocation of one or more ions (H+ or

Na+) that move down their own gradients, named the

proton motive force and Na+-ion motive force, respec-

tively (co-transport) [1]. Secondary transporters are

widely spread throughout all kingdoms of life; they are

found in every biological cell and can probably be found

for every low-molecular weight compound in nature.

Their high abundance is reflected in the great diversity

of sequences coding for secondary transporters. The

transporter classification system (TC system) developed

in the Saier laboratory is based on sequence homology

and lists some 84 different gene (super)families coding for

secondary transporters (class TC 2.A) [2]. Many of these

families are likely to be evolutionary related, and the high

number of encoded protein families is likely to represent

a much smaller number of structures and an even smaller

number of translocation mechanisms. We developed the

MemGen classification system that clusters families of

membrane proteins into structural classes on the basis of

hydropathy profile analysis [3]. Hydropathy profiles are

proposed to report a specific fold and, therefore, are able

to detect distant relationships between protein families.

For example, structural class ST[3] (secondary transpor-

ter 3) in the MemGen classification contains secondary

transporters from 29 different families [4].

In recent years, the determination of three-dimensional

structures at atomic resolution has dramatically increased

our knowledge of the structure and molecular mechan-

isms of secondary transporters. Surprisingly, the five

structures obtained to date, AcrB, LacY, GlpT, AmtB

and GltPh, have already revealed four different folds and

as many different translocation mechanisms [5,6��–9��].
The structure of GltPh confirmed biochemical evidence

for the existence of pore-loop structures in secondary

transporters, commonly observed in channel proteins.

The pore-loops or re-entrant loops are loop regions that

fold back between the transmembrane segments. They

play an autonomous role in the translocation mechanism.

In this review, we argue that pore-loop structures are a

common structural motif in secondary transporters, add-

ing to the structural and mechanistic diversity of second-

ary transporters.

Three-dimensional structures of secondary
transporters
The first three-dimensional crystal structure of a second-

ary transporter was reported in 2002 [5]. The Escherichia
coli AcrB transporter, of the resistance-nodulation-cell

division superfamily, forms a complex with the mem-

brane fusion protein AcrA and the outer membrane pore

TolC, which functions as a proton motive force-driven

multidrug exporter. The transmembrane part of AcrB

shows pseudo-twofold symmetry; six N-terminal helices

are symmetrically arranged with six C-terminal helices to

form two structural homologous domains (Figure 1a).

Two long periplasmic loops, one per domain, form a large

extramembranous part of the protein that extends up to

the TolC pore in the outer membrane. AcrB is organized

as a trimeric complex with a threefold symmetry axis

perpendicular to the membrane in which the periplasmic

parts form a central channel ending in a funnel at the side

of TolC. At the opposite side, the channel is connected to

a central cavity, which contains the substrate binding

sites. The cavity is at the level of the outer leaflet of
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the bilayer. Three vestibules at the interfaces of the AcrB

protomers provide the access pathway through which the

substrates diffuse in by way of lateral movement from the

lipid bilayer [5,10–12]. The mechanism of substrate

extrusion and the involvement of conformational changes

in the energy coupling mechanism, if any, remain obscure

(see Figure 2a).

The three-dimensional structures of E. coli LacY and

GlpT both belonging to the major facilitator superfamily

were simultaneously reported in 2003 [6��,7��]. LacY is

the well-studied H+/lactose symporter while GlpT cata-

lyzes glycerol-3-P/Pi exchange. The transporters are

believed to be functional as monomers. Like AcrB, the

proteins consist of two homologous domains each com-

prising six transmembrane segments (TMSs) but with

different tertiary structure, indicating a different genetic

origin (Figure 1b). The structures of LacY and GlpT show

a large hydrophilic cavity inbetween the two domains

that is opened up to the cytoplasm and closed to the
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Topology models representing three different structures of families of secondary transporters with no pore-loop structures. Transmembrane

segments are represented as yellow boxes. Homologous domains are indicated by blue dashed boxes. (a) AcrB of E. coli, a member of the

resistance-nodulation-cell division superfamily (transporter classification [TC] 2.A.6), (b) LacY and GlpT of E. coli, members of the major

facilitator superfamily (TC 2.A.1) and (c) AmtB of E. coli, a member of the ammonia transporter family (TC 2.A.49).
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periplasm. The cleft contains the substrate binding site in

the middle of the membrane. The structure supports the

alternating access model for substrate translocation in

which the two domains move relatively to one another,

thereby opening the hydrophilic cleft that contains the

substrate alternately to the two sides of the membrane

[13,14] (see Figure 2b).

In 2004, the structure of E. coli AmtB was reported at an

astonishing resolution of 1.35 Å [8��]. AmtB belongs to a

family of ammonia transporters to which, also, the Rhesus

proteins of humans belong. The proteins form trimers,

although the functional unit is believed to be the mono-

mer. Again, the structure of a single protomer revealed

two structurally homologous domains, but in this case

each domain contained five TMSs causing the two

domains to have opposite orientations with respect to

the plane of the membrane (inverted topology; Figure 1c)

[8��]. Thus, the N-termini of the N- and C-terminal

domains are in the periplasm and cytoplasm, respectively.

TMS XI is not part of this domain structure. Interestingly,

the crystal structure did not reveal any major conforma-

tional changes upon binding of the substrate, suggesting

that it functions as a channel rather than as a transporter.

The protein binds ammonium ions (NH4
+) and subse-

quently allows passage of ammonia (NH3) while leaving

the proton at the same side of the membrane (see

Figure 2c).

The issue of transporters versus channels bares also some

relevance in relation to the structure of a glutamate

transporter homologue GltPh, from the archeon Pyrococcus
horikoshii, which was reported in 2004 [9��]. Prominent

members of the family of glutamate transporters are

responsible for the re-uptake of the neurotransmitter

glutamate from the synaptic cleft in the central nervous

system. In addition to ion-coupled glutamate transport,

the proteins are known to catalyze the activity of a

glutamate gated chloride channel [15,16]. Like AcrB

and AmtB, GltPh forms a trimeric complex with a three-

fold symmetry axis perpendicular to the membrane [9��],
but has a completely different structure. The transporter

proteins consist of eight TMSs with no internal homol-

ogy. The N-terminal six TMSs of each monomer form a

rim around a ‘bowl’-shaped indentation in the center of

the trimer at the external side of the membrane, the

bottom of which is halfway along the membrane. The

water-filled bowl is the access pathway for the substrate

and co-ions to the translocation sites, with one being

present in each monomer. The binding site is inbetween

two re-entrant loops formed by helical hairpins that enter

the membrane from opposite sides (trans re-entrant

loops). Translocation is achieved by opening and closing

access to the substrate binding site by movement of the

re-entrant loops, possibly in a sluice-type of mechanism

(see Figure 2d).

Transporters and channels
Pore-loops, or re-entrant loops, are commonly observed in

channel proteins that, like secondary transporters, are
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Schematic representation of four different types of translocation

mechanisms deduced from currently available transporter structures

at atomic resolution. The arrows represent the pathway followed

by the transported species (indicated by the black dot). In (a), (b) and

(c), similar shapes represent homologous structures. (a) The elevator

mechanism of the multidrug transporter AcrB. The solute is taken up

from the outer leaflet of the membrane and is, subsequently,

transported out of the cell through a funnel that is formed by protein

components that bridge the periplasm. The solute(s) are delivered

at a pore in the outer membrane. Conformational changes, if any,

during the catalytic cycle are unknown. (b) The alternating access

mechanism of the major facilitator superfamily transporters. The

solute and co-ions bind to the binding sites on the transporter that

are exposed to the outside of the cell (left), after which the binding

site reorients and the solute and co-ions dissociate into the cytoplasm

(right). (c) Facilitated diffusion through a channel, such as that of

AmtB. No major conformational changes are involved. (d) The

sluice-type of mechanism involving pore-loop structures (green), as in

GltPh. The pore-loop at the external face of the membrane opens up

the binding pocket to the solute(s) in the external medium (left), after

which the pore-loop closes the entrance thereby occluding the

solute(s) within the protein (middle). Dissociation into the cytoplasm

follows upon opening of the pore-loop at the inner face of the

membrane (right).
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universal to biological cells. In potassium ion channels,

four pore-loop structures of as many monomers enter the

membrane from the same side (cis re-entrant loops) into

the pore formed by the tetramer. In the family of aqua-

porins, two re-entrant loops in two homologous domains

consisting of three TMSs each, enter the membrane from

opposite sides (trans). The pore-loops situated in the

pores of the rigid channel protein structures act as selec-

tivity filters [17–19].

When pore-loop structures were identified in glutamate

transporters by biochemical experiments [20–22], they

were associated with the accessory chloride ion (Cl�)

channel function observed for the neuronal counterparts

mentioned above [23,24]. However, the structure of GltPh

suggests that in secondary transporters the re-entrant

loops have a different, more dynamic, function. They

form gates that open and close in response to substrate

and co-ion binding [9��]. In addition, the AmtB structure

shows that re-entrant loops are not essential for channel

function [8��] and, recently, it was demonstrated that

a prokaryotic member of the chloride channel family

catalyzes co-transport, an activity typical of transporter

type proteins [25,26]. It follows that in terms of structural

architecture the difference between channels and

transporter proteins is very small and, for both, quite

diverse.

Pore-loops in secondary transporters
The demonstration of pore-loops as an essential part of

the translocation mechanism in the GltPh structure was

preceded by biochemical evidence for the existence and

the functional importance of these structures in members

of the glutamate transporter family. This evidence was

based on the accessibility of loop regions via the protein

structure from the opposite side of the membrane, and

the modulation of this accessibility by substrates and co-

ions. Substantial evidence has also been documented for

transporters from at least two other families of secondary

transporters, the 2-hydroxycarboxylate transporter

(2HCT) family and the cation/calcium ion (Ca2+) exchan-

ger superfamily, suggesting that pore-loops could be a

feature of many secondary transporters.

Glutamate transporter family

Early on, it was recognized that the C-terminal half of the

transporters had an unusual structure. Evidence for the

pore-loop located inbetween TMS VI and TMS VII was

based on independent results obtained for the neuronal

glutamate transporter GLT-1 and the glutamate trans-

porter GltT of Bacillus stearothermophilus (Figure 3a)

[21,22]. Cysteine residues in a serine-rich part of the loop

were accessible from both sides of the membrane while

neighboring residues were only accessible from the cyto-

plasmic side. The water-filled bowl in the GltPh structure

explains how bulky thiol reagents could reach the resi-

dues in the loop. Protection of the cysteine residues

against labeling suggested the involvement of the re-

entrant loop in substrate binding and that it has functional

importance. Cysteine mutagenesis of residues located in

the extracellular loop between TMS VII and TMS VIII of

the neuronal glutamate transporter GLT-1 revealed one

residue, Ala431, which was accessible from the cytoplasm

but was separated at each side, by a stretch of only 8–11

residues, from residues that were accessible from the

external water phase. This observation could only be

explained if the region forming a loop was folded back

into the cytoplasmic membrane [20]. Altered accessibility

of residues in the presence of co-ions and the substrate

showed functional importance of the region [27], and

cross-linking of residues in the loop with certain positions

in TMS VII further confirmed the existence of the re-

entrant loop [28].

2-Hydroxycarboxylate transporters

The 2HCT family is the best-studied family of the

structural class ST[3] in the MemGen classification

and as such is the paradigm for 29 other families [4].

This family contains, exclusively, bacterial members that

transport substrates containing the 2-hydroxycarboxylate

motif (HO–CR2–COO�) such as citrate, malate, lactate,

among others [29]. The topology model of this protein

family mostly on the basis of studies of the Na+-citrate

transporter CitS of Klebsiella pneumoniae [30], shows ele-

ven TMSs (Figure 3b). Further studies demonstrated the

accessibilities of sites in the cytoplasmic loop between

TMS X and TMS XI from both sides of the membrane

[31,32�]. In contrast to what was observed for the gluta-

mate transporters, the cysteine residues could only be

accessed by small thiol reagents from the periplasmic side

of the membrane, suggesting a much more restricted

access pathway. The presence of the co-ion Na+ com-

pletely blocked this access pathway. Cysteine residues at

certain positions in the postulated pore-loop structure

were shown to have different properties when accessed

from the cytoplasmic or periplasmic side of the mem-

brane, in agreement with an alternate access model for

translocation [32�]. Studies of the proton-dependent

citrate/malate transporter CimH of Bacillus subtilis from

the same family provided results that were in line with

these observations [33�]. A hydrophobic region inbetw-

een TMS V and TMS VI that was shown to be not

transmembrane is proposed to form a second re-entrant

loop that enters the membrane from the opposite side.

Cation/Ca2+ exchangers

H+/Ca2+ exchangers and Na+/Ca2+ exchangers have been

investigated predominantly in plant and animal cells.

Topology models of the five proposed families in the

superfamily [34] show a typical two domain structure that

consist of N- and C-terminal parts containing four, five or

six transmembrane segments each and that are connected

by a relatively long cytoplasmic loop (Figure 3c, loop f).

The two domains have opposite orientations in the

164 Cell regulation
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membrane (see the AmtB structure described earlier)

[35]. The sequences of the proteins revealed two internal

repeats of a-1 and a-2, which correspond to two TMSs

and a connecting loop. The two loops, one for each

domain face opposite sides of the membrane [36,37].

Detailed cysteine-scanning-based studies of the con-

necting loops of the mammalian exchanger NCX1 indi-

cated that the loops fold back inbetween the TMSs as

pore-loop structures [38,39]. Several residues in the

postulated re-entrant loops are directly involved in the

binding and the transport of Ca+ [37]. The proximity of

the two re-entrant loops of the a-1 and a-2 regions in the

three-dimensional structure was demonstrated by cross-

linking studies [39].

Conclusions
Recent three-dimensional determination of the crystal

structures of secondary transporters has revealed a sur-

prisingly high diversity of transporter structures and

translocation mechanisms (Figure 2). Also, this has shown

that structural differences between secondary transpor-

ters and channels are less distinct than previously
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Topology models representing three different structures of families of secondary transporters that contain pore-loop structures. Transmembrane

segments are represented as yellow boxes. (Putative) homologous domains are indicated by blue dashed boxes. (a) GltPh of Pyrococcus

horikoshii, a member of the glutamate transporter family (TC 2.A.23) and (b) CitS of Klebsiella pneumoniae, a Na+-citrate transporter of the

2-hydroxycarboxylate transporter family (TC 2.A.24). The two domain structure and pore-loop structure in the N-terminal domain is based on

unpublished results (JS Lolkema, I Sobczak and DJ Slotboom). (c) NCX1 of mammals, a Na+/Ca2+ exchanger of the cation/Ca2+ exchangers family

(TC 2.A.19). a-1 and a-2 represent the two internal repeats in the sequences.

www.sciencedirect.com Current Opinion in Microbiology 2005, 8:161–167



thought, suggesting that subgroups of both types might

have originated from a common ancestor. A recurring

common theme is the presence of two homologous

domains per transporter protein, suggesting ancient gene

duplication events. The only exception appears to be the

glutamate transporter family (Figures 1 and 3).

The GltPh structure has shown that biochemical experi-

ments can correctly identify pore-loop structures in

secondary transporters. The identification of pore-loop

structures in other families indicates that they will be

found as essential parts in other transporter structures in

the future.

The atomic resolution of the five secondary transporters

available to date, all of proteins from prokaryotic origin, is

a major step forward in our understanding of translocation

mechanisms. This emphasizes the importance and power

of the study of prokaryotic homologs of eukaryotic (mem-

brane) proteins involved in important physiological pro-

cesses or their dysfunction in man.
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35. Sääf A, Baars L, von Heijne G: The internal repeats in the
Na+/Ca2+ exchanger-related Escherichia coli protein YrbG
have opposite membrane topologies. J Biol Chem 2001,
276:18905-18907.

36. Kamiya T, Maeshima M: Residues in internal repeats
of the rice cation/H+ exchanger are involved in the
transport and selection of cations. J Biol Chem 2004,
279:812-819.

37. Iwamoto T, Uehara A, Imanaga I, Shigekawa M: The Na+/Ca2+

exchanger NCX1 has oppositely oriented re-entrant loop
domains that contain conserved aspartic acids whose
mutation alters its apparent Ca2+ affinity. J Biol Chem 2000,
275:38571-38580.

38. Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson DK: A new topological
model of the cardiac sarcolemmal Na+-Ca2+ exchanger.
J Biol Chem 1999, 274:910-917.

39. Qiu Z, Nicoll DA, Philipson KD: Helix packing of functionally
important regions of the cardiac Na+-Ca2+ exchanger.
J Biol Chem 2001, 276:194-199.

Structural and mechanistic diversity of secondary transporters Sobczak and Lolkema 167

www.sciencedirect.com Current Opinion in Microbiology 2005, 8:161–167


	Structural and mechanistic diversity of secondary transporters
	Introduction
	Three-dimensional structures of secondary transporters
	Transporters and channels
	Pore-loops in secondary transporters
	Glutamate transporter family
	2-Hydroxycarboxylate transporters
	Cation/Ca2+ exchangers

	Conclusions
	Acknowledgements
	References and recommended reading


