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ABSTRACT
We introduce a simple linear equation relating the line-of-sight peculiar-velocity and density
contrast correlation functions. The relation, which we call the Gaussian cell two-point ‘energy-
like’ equation, is valid at the distant-observer limit and requires Gaussian smoothed fields. In
the variance case, i.e. at zero lag, the equation is similar in its mathematical form to the
Irvine–Layzer cosmic energy equation. β estimation with this equation from the Point Source
Catalogue Redshift (PSC) survey and the SEcat catalogue of peculiar velocities is carried out,
returning a value of β = 0.44 ± 0.08. The applicability of the method for the 6dF galaxy redshift
and peculiar motions survey is demonstrated with mock data where it is shown that β could
be determined with ≈10 per cent accuracy. The prospects for constraining the dark energy
equation of state with this method from the kinematic and thermal Sunyaev–Zel’dovich cluster
surveys are discussed. The equation is also used to construct a non-parametric mass-density
power-spectrum estimator from peculiar-velocity data.

Key words: galaxies: clusters: general – galaxies: distances and redshifts – cosmological
parameters – cosmology: theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

In the linear regime of the gravitational instability scenario, the un-
derlying mass distribution is directly traced by the galaxy peculiar
velocities. Measurement of the radial component of the galaxy pe-
culiar velocities, the only component that one can easily observe, is
carried out with one of many available techniques, the most common
among which are the Tully–Fisher-like methods (e.g. Tully & Fisher
1977; Faber & Jackson 1976). Normally, these methods exploit a
well-defined intrinsic relation between two or more of the galaxy1

observed properties that facilitates establishing its actual distance
from the observer. The estimated distance is then used together
with the measured galaxy redshift, to determine the galaxy radial
peculiar velocity. Assuming an irrotational flow on large scales and
knowledge of �m (the cosmological mass-density parameter), it is
straightforward to use the measured radial peculiar velocities to re-
cover the full underlying mass overdensity (Bertschinger & Dekel
1989; Dekel, Bertschinger & Faber 1990; Zaroubi 2002; Zaroubi
et al. 2002). In addition, the same mass density could be probed
by galaxy redshift catalogues assuming a simple linear biasing
scheme that connects it to the spatial galaxy distribution (Kaiser

�E-mail: saleem@astro.rug.nl
1 It should be noted that some methods are not based on galaxy properties
and use other ‘extragalactic objects’, e.g. Type Ia supernovae.

1984; Bardeen et al. 1986). To date, galaxy redshift and peculiar
motion surveys are the main tools with which astronomers explore
the distribution of matter in the nearby Universe.

Since the two types of data, galaxy peculiar-velocity catalogues
and galaxy redshift surveys, probe the underlying mass distribu-
tion, comparing the two provides a simple and powerful test of the
paradigm of gravitational instability and gives a model-independent
measurement of β, the ratio between the linear growth factor, f (�m)
(≈ �0.6

m ), and the linear biasing factor of the galaxy population. In
most cases the comparison is either performed by deriving galaxy
peculiar velocities from the galaxy density field and confronting
them with the measured velocities point-by-point, an approach usu-
ally called ‘velocity–velocity’ comparison (e.g. Davis, Nusser &
Willick 1996; Willick & Strauss 1998; Zaroubi 2002; Zaroubi et al.
2002), or by adopting the so-called ‘density–density’ approach in
which the velocity data are used to infer the full mass-density field
(Bertschinger & Dekel 1989; Zaroubi 2002) and comparing it with
the galaxy distribution (e.g. Sigad et al. 1998; Zaroubi et al. 2002).
With the exception of the POTENT algorithm (see, e.g. Sigad et al.
1998), all the comparison methods yield a low value of β consistent
with �m ≈ 0.3 and bias factor of ≈1.

Another approach to the comparison that does not fit into the two
general classes outlined earlier is the one proposed by Juszkiewicz
et al. (2000) who start from the pair conservation equation (Peebles
1980) and evolve it further to the quasi-linear regime of gravita-
tional instability. In the pair conservation approach, which yields
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528 S. Zaroubi and E. Branchini

a value of β that is consistent with the one derived from velocity–
velocity analyses (Ferreira et al. 1999; Feldman et al. 2003), a rela-
tion between the mean pairwise velocity at a certain separation and
the density correlation function is derived. The comparison in this
approach is significantly simplified by avoiding the spatial point-
by-point matching required in previous methods thus reducing the
noise involved. The Juszkiewicz et al. (1999) approach is similar to
the one developed in this paper except that we are interested in the
variance of the peculiar velocity at a given smoothing scale rather
than the pairwise peculiar velocity at a given separation.

In this study, we derive a very simple, model-independent and lin-
ear relation, valid at the distant-observer limit, between the overden-
sity and peculiar-velocity two-point correlation functions assuming
Gaussian smoothing. The method is first used to construct a non-
parametric estimator of the mass-density power spectrum. Then the
paper concentrates on the relation between the variance (two-point
correlation at zero distance) of the two fields. This relation basically
reduces the comparison between the catalogues to two numbers al-
lowing a robust extraction of the parameterβ. The proposed equation
is especially suited to future peculiar-velocity data sets like the 6dF
which will measure the peculiar velocities of 15 000 galaxies with
their Dn–σ relation up to 150 h−1 Mpc distance.

Currently, the main sources of error in the redshift–peculiar-
motion comparison are the large random and systematic uncertain-
ties carried by the peculiar-motion measurements; for example, the
Tully–Fisher-like relations have an inherent uncertainty of ≈15–20
per cent of the distance. Data obtained with more accurate distance
indicators do exist (Tonry 1991; Riess, Press & Kirshner 1995);
unfortunately, however, either they are not at significant distances,
e.g. the surface-brightness fluctuations method, or they reach large
distances but are too sparse, e.g. the Type Ia supernovae data. In
the future, by using the thermal and kinematic Sunyaev–Zel’dovich
(SZ) effect (Sunyaev & Zel’dovich 1972), both the accuracy of the
peculiar-velocity measurement and the spatial coverage of the data
are expected to increase dramatically where the uncertainty is ex-
pected to amount to an absolute error of ≈150 km s −1 (e.g. Diaferio
et al. 2004) and the number of observed objects to reach ≈104 clus-
ters. The main difficulty in this case, assuming a reasonable control
over the systematics, will be posed by the large mean separation
between the galaxy clusters observed with the SZ effect.

The power of the method proposed here is that it reduces the
contribution of the measurement noise and sparseness of the sample
to a bare minimum. The paper is organized as follows. Section 2
presents the main theoretical formulae. In Section 3 the method is
applied to the PSCz redshift galaxy catalogue and the SEcat peculiar-
velocity survey. In Section 4 the applicability of the method to future
surveys, e.g. the 6dF galaxy survey and the kinematic and thermal
SZ cluster survey, is discussed.

2 T H E O R E T I C A L D E R I VAT I O N S

In this section, we first derive the main theoretical relation
(Section 2.1) and show how it could be used to estimate the mat-
ter power spectrum from peculiar-velocity data (Section 2.2). Then
in Section 2.3.1 the variance component of the main relation is
used in order to estimate the value of β from comparison between
galaxy redshift survey data and peculiar-velocity data. The β mea-
surement error for a typical case is derived in Section 2.3.2. The
derivation is performed within the framework of linear gravitational
instability, under the assumption of statistical homogeneity and
isotropy.

2.1 The basic relation

Consider a radial peculiar-velocity field v los(r ) measured in a very
distant patch of the sky smoothed with a Gaussian window function
with scale Rs, WRs (r ) = (2πRs

2)−3/2 exp(−r 2/2R2
s ). In the limit of

R c � R, where Rc is the correlation radius of peculiar velocities
and R is the distance of the patch from the observer, a smoothed
radial field within a given observed volume can be written as,

vS
los(x) = −ıβ H0

(2π)3

∫
r̂ los · k

k2
δk WRs (k) exp(−ik · x) d3k, (1)

where the superscript ‘S’ refers to values smoothed with a Gaussian
kernel of radius Rs, r̂ los is a unit vector along the line of sight, and
WRs (k) is the Fourier transform of the smoothing kernel.

The two-point correlation function of the Gaussian smoothed line-
of-sight galaxy peculiar velocity is:
〈
ξ los
v (r ; Rs)

〉 ≡ 〈
vS

los(x)vS
los(x + r )

〉
(2)

= β2 H 2
0

(2π)3

×
∫

(r̂ los · k)2

k4
Pk W 2

k exp(−ik · r ) d3k, (3)

where Pk is the mass-density power spectrum and r is the radius
vector separating any two points. Since there are two independent
directions that appear in equation (3) one cannot invoke symme-
try arguments in order to proceed. However, since at the distant-
observer limit the line-of-sight direction is approximately constant
across the observed volume and independent of the direction of r,
one can average over all possible directions of r relative to k (arbi-
trary direction) by integrating equation (3) with 1/2

∫ 1

−1
dµ, where

µ is the cosine the angle between the two vectors r and k:

〈
ξ los
v (r ; Rs)

〉
µ

= (β H0)2

(2π)3

∫
(r̂ los · k)2 Pk

k4
W 2

k j0(kr ) d3k, (3)

where 〈 〉µ is an average over the statistical ensemble and over µ,
j 0(kr ) is the zero-order spherical Bessel function and r = | r |.

Assuming statistical isotropy for the velocity field, i.e. symmetry
between the line of sight and the other two orthogonal directions,
one obtains the following equation:

〈
ξ los
v (r ; Rs)

〉
µ

= β2 H 2
0

3(2π)3

∫
Pk

k2
W 2

k (Rs) j0(kr ) d3k, (5)

with the factor 3 coming from a symmetry argument. Now for the
last step in the calculation, for a Gaussian smoothing kernel, i.e.
WRs (k) = exp(−k2 R2

s /2), the derivative of the line-of-sight velocity
two-point correlation function with respect to Rs, yields:

d
〈
ξ los
v (r ; Rs)

〉
µ

dRs
= −2

3
β2 H 2

0 Rs

∫
Pk W 2

k j0(kr )
d3k

(2π)3
(6)

= −2

3
β2 H 2

0 Rsξ (r ; Rs). (7)

Here ξ (r ; R s) is the two-point correlation function of the smoothed
densities. Notice that equation (7) can only be obtained when
dWRs (k)/dRs ∝ k2WRs (k), strictly valid only with a Gaussian
smoothing kernel.2

2 There are other functions that satisfy this relation but they do not satisfy
the requirements of smoothing kernels.
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The Gaussian cell two-point ‘energy-like’ equation 529

Obviously, for a given three-dimensional peculiar-velocity field
the two-point correlation function of the Gaussian smoothed veloc-
ity, vS, is related to its density counterpart through the equation,

d〈ξv(r ; Rs)〉
dRs

≡ 〈vS(x) · vS(x + r )〉 (8)

= −2β2 H 2
0 Rsξ (r ; Rs), (9)

which is similar to equation (7) without the factor of 3 and with no
need for averaging over µ.

It might be easier to interpret equation (7) in its integral form,
where the integral is performed over the smoothing radius. Let R1

and R2 be the two smoothing radii that bound our integral. Then,

1

2

〈
ξ los
v (r ; Rs)

〉
µ

∣∣R2

R1
= −β2

3
H 2

0

∫ R2

R1

ξ (r ; Rs)

Rs

d3 Rs

4π
. (10)

In the limit r = 0, the left-hand side of equation (10) describes the
mean change in the kinetic energy associated with the smoothed
velocity due to the variation of the smoothing radius, whereas the
right-hand side depicts the three-dimensional integral of the den-
sity variance of the smoothed field over the smoothing scale. The
right-hand side term is very similar to the normal potential energy
except that Rs does not represent a proper distance between points.
In other words, the variation in the kinetic-like energy comes from
the ‘potential energy like’ behaviour of the modes corresponding
to the scales between R1 and R2, with exponentially decreasing
contributions from larger and smaller scale modes. If r �= 0 then
the interpretation is not as simple but still the left- and right-hand
sides correspond to a sort of two-point kinetic energy and potential
energy, respectively, with the same scales contributing to the modifi-
cation as before. Therefore, equation (10) is an ‘energy equation’ of
sorts as it describes the two-point ‘potential-like’ and ‘kinetic-like’
energy partition within a Gaussian window function. Dimensional
arguments significantly restrict the mathematical form of the re-
lation between the velocity and the density two-point correlation
functions. Therefore, it is not surprising that the theoretical relation
shown by equation (7) is very similar to the Irvine–Layzer cosmic
energy equation which describes how the energy of the Universe is
partitioned between kinetic and potential energy (Irvine 1961, 1965;
Layzer 1963, 1966; see also Mo, Jing & Börner 1997).

2.2 The mass-density power spectrum

The main approach currently used to measure the mass-density
power spectrum from peculiar-velocity data is the likelihood method
introduced by Zaroubi et al. (1997; see also, Freudling et al. 1999
and Zaroubi et al. 2001) in which a theoretical power spectrum with
few free parameters and a noise model are assumed. Since in this
method the data are forced to fit a specific power-spectrum shape, an
inaccurate description of the noise model could propagate to large
scales and contaminate the measured power spectrum. Indeed the
results obtained with this method have been yielding unrealistically
high amplitudes of the mass-density fluctuation power spectrum
(consistent with �m > 0.6). Therefore, direct non-parametric meth-
ods for power-spectrum estimation from peculiar-velocity data are
needed.

The question we pose here is: can equation (7) be used to estimate
directly the mass power spectrum from peculiar-velocity data? In
the ideal case in which the uncertainties in the measurement are
neglected and the data extends to infinity and samples the Universe
very accurately, the answer is clearly yes.

A good point from which to start the derivation of the power-
spectrum estimator is the relation between the power spectrum and
the smoothed density two-point correlation function,

ξ (r ; Rs) = 1

2π2

∫
Pk′ exp

(−k2 R2
s

)
j0(k ′r )k ′2 dk ′. (11)

Substituting this into equation (7) and integrating over the variable
r from zero to ∞ after multiplying by j 0(kr ) r 2, one obtains the
following relation,

6π

H 2
0 Rs

∫ ∞

0

d
〈
ξ los
v (r ; Rs)

〉
µ

d Rs
j0(kr )r 2 dr

= f 2 Pk exp(−k2 R2
s ), (12)

where the orthonormality of the spherical Bessel function is used
(e.g. Arfken & Weber 2001). The left-hand side of equation (12)
is a quantity that can be directly measured from the velocity data,
whereas the right-hand side shows the estimated quantity. Since we
use smoothed velocity data, the power spectrum is determined up
to a factor of f 2(�m) and with a resolution that cannot exceed the
scale imposed by the Gaussian smoothing.

For a real application, the discrete and noisy nature of the data
should be taken into account, i.e. some of the steps leading to equa-
tion (12) have to be modified. For example, to maintain the orthogo-
nality of the spherical Bessel functions on a finite spherical volume
one has to impose appropriate boundary conditions (see Fisher et al.
1995; Zaroubi et al. 1995, for examples). However, the main hurdle
for this direct approach to power-spectrum estimation is the noise
contribution; this issue is deferred to future work.

2.3 Estimation of β

2.3.1 Estimator

Equation (7) is the most general relation derived in this paper. How-
ever, in order to use it to estimate the value of β, it is simpler to
restrict ourselves to the relation between the density and velocity
variances, namely, apply the equation in the limiting case of r = 0
to yield:

dσ 2
v (Rs)

dRs
= −2

3
β2 H 2

0 Rsσ
2
δ (Rs), (13)

where σ 2
v and σ 2

δ are the peculiar-velocity and density-contrast vari-
ances, respectively.

The numerical calculation of dσ 2
v(R s)/dR s is straightforward.

One has to smooth the measured velocity field with a Gaussian
window, calculate its variance and obtain its derivative by finite
differencing (see Section 2.3.2 for a similar explicit calculation).
The right-hand side of equation (13) is obtained from the galaxy
redshift catalogue by taking the variance of the smoothed real-space
density field.

The proposed estimator requires no heavy data manipulation and
is easy to calculate. As a result of the smoothing involved, the estima-
tor is robust with regard to instabilities caused by the large random
noise. In addition, to avoid the cosmic variance contribution to the
error analysis, the comparison between the two types of data sets is
performed within the same region of space. Both features, simplicity
and stability, render the estimator very appealing to use.

2.3.2 Noise

The contribution of the measurement error to the estimator in equa-
tion (13) is readily calculated with the following discrete approach.
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530 S. Zaroubi and E. Branchini

Let ε(r i ) be the noise associated with particle i. Then the smoothed
noise is,

εS(r i ) =
∑

l

ε(r l )WRs (r i − r l ). (14)

Subsequently, the expectation value of the noise two-point correla-
tion is,〈
εS(r i )ε

S(r j )
〉 =

∑
l

〈ε2(r l )〉WRs (r i − r l )WRs (r j − r l ). (15)

The last equation assumes that the measured errors are statistically
uncorrelated.

We now require that r i = r j and sum over all the data points.
The expectation value of the noise contribution to the variance of
the velocity is

σ 2
N (Rs) = 1

N

∑
i,l

〈
ε2(r l )

〉
W 2

Rs
(r i − r l ). (16)

Therefore, the noise variance that adds to the left-hand side of equa-
tion (13) is readily obtained by finite differencing:

dσ 2
N (Rs)

dRs
≈ σ 2

N (Rs + �Rs) − σ 2
N (Rs)

�Rs
. (17)

The contribution of the noise variance to the right-hand side of
equation (13) is typically small and is neglected here. However, it is
straightforward to account for in the case of unusually noisy data.

3 C O M PA R I S O N B E T W E E N T H E S E cat
A N D T H E P S C z C ATA L O G U E S

In this section equation (13) is employed for comparison be-
tween the PSCz galaxy redshift catalogue (Branchini et al. 2000;
Saunders et al. 2000) and the SEcat galaxy peculiar-velocity cata-
logue (Zaroubi et al. 2002) which is a combination of the two ho-
mogeneous peculiar-velocity catalogues, the SFI catalogue of spiral
galaxies (Giovanelli et al. 1998; Haynes et al. 1999) and the ENEAR
catalogue of early-type galaxies (da Costa et al. 2000). The SEcat
catalogue extends to a distance of about 70 h−1 Mpc and the PSCz
goes to about twice that. Therefore, in order to avoid cosmic vari-
ance contamination of the measurement, the comparison between
the two is restricted to the closer distance.

Prior to applying the method to the actual data, however, one
needs to address the question of whether it is realistic to expect a
reliable estimation of the value of β when using a noisy and local
catalogue such as the SEcat. Hence, the next subsection is dedicated
to testing with mock catalogues how robust our estimator is.

3.1 Testing with mock data

The density and peculiar-velocity mock catalogues used in this sec-
tion are derived from the 3.2 h−1 Mpc resolution reconstruction of
the density field from the PSCz galaxy redshift catalogue (Branchini
et al. 2000), where the peculiar-velocity field is obtained using linear
theory from the galaxy redshift space positions assuming a value of
β = 0.5. The mock SEcat peculiar-velocity catalogue has the same
distances and number of points that the real SEcat has, but with
the velocities of the PSCz reconstructed velocity field. Obviously, it
would have been better to use a full non-linear N-body simulation
with which to test the method. However, since the positions of the
actual measured velocities are controlled by the specific distribution
of the galaxies in the nearby Universe we choose to test the method
with data that have the same spatial distribution as the real Universe,

albeit the lack of full non-linearity. Given the heavy smoothing in-
volved in the analysis this way of assigning velocities to mock data
is satisfactory – for testing the method with full non-linear simula-
tion see Section 4. After assigning the velocities to the noise-free
mock data, we generate 30 mock catalogues with the random errors
added to their distance and velocity values in concordance with the
observational uncertainties.

However, as a first step we wish to test whether the method works
at the distant-observer limit with homogeneous sampling and noise-
free data. In this case we have constructed the mock velocity data by
sampling the PSCz catalogue on every eighth grid point where the
velocity is taken to be equal to the z-component to mimic the distant-
observer limit. Fig. 1 shows β as a function of the smoothing scale
(dotted-dashed line) which agrees quite well, especially at larger
smoothing scales, with the expected value shown with the dotted
horizontal line.

Next, the same mock data are used but the peculiar velocity is
chosen to be the radial velocity, i.e. the distant-observer limit is re-
laxed. The points that were chosen for the comparison are restricted
to the range 30 < r < 60 h−1 Mpc from the centre of the box (re-
laxing this restriction alters the results but marginally). The result
of this test is shown as a dashed line in Fig. 1 indicating that the
recovered β is in agreement with its original value.

The third issue to test is whether the spatial coverage of the data set
is sufficient, namely, whether the number of SEcat galaxies and their
actual sky distribution are good enough for a recovery of the β value.
The answer is given by the solid line in Fig. 1, clearly showing that at
small smoothing scales, β is underestimated, then it increases with
the smoothing radius until the correct value is recovered on scales
larger than 18 h−1 Mpc. Here the positions of the mock velocity

Figure 1. β as deduced from mock velocity data (as taken from PSCz high-
resolution data) designed to test various selection effects. The dotted-dashed
curve shows β as calculated from a homogeneously sampled velocity cata-
logue at the distant-observer limit. The dashed line shows β from a homoge-
neously sampled velocity catalogue but with the actual volume coverage of
SEcat, i.e. the distant-observer limit requirement is relaxed. The solid line
is β as deduced from noise-free mock peculiar-velocity data with the same
selection effects as SEcat. The dotted line shows the correct value of β.
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The Gaussian cell two-point ‘energy-like’ equation 531

Figure 2. β as deduced from mock SEcat data where the underlying β

in this catalogues is 0.5 (dotted line). The solid line shows the mean β as
obtained from 30 SEcat mock catalogues with the error bars reflecting the
1σ uncertainty around the mean. The dashed line shows the recovered value
of β for the noise-free case; clearly, there is an underestimation of β from
the noisy data at small smoothing radii.

data are the same as the galaxy positions in the SEcat catalogue but
their velocities are taken from the PSCz velocity field with no noise
addition.

One might argue that there is no clear convergence of the value
of β at R s = 24 h−1 Mpc in Fig. 1, therefore, one might need to
go to larger scales. However, given the size of the current velocity
data catalogues, larger scale smoothing becomes comparable to the
volume of the data set itself and one has to start to worry about
sampling issues within the Gaussian kernel itself. As will be shown
later the convergence is also an issue, albeit less severe, for the real
data.

The final step in our testing is to apply the method to a ‘full’ mock
SEcat catalogue (with noise and actual sampling). The solid line in
Fig. 2 shows the mean value of β as a function of the smoothing
radius as recovered from 30 mock SEcat catalogues with the error
bars indicating the 1 σ scatter about the mean. β is clearly well
reconstructed with large smoothing radii. There is also some bias in
the mean value of β at the smaller smoothing radii with respect to the
β obtained from the noise-free data (dashed line), which is probably
due to overestimation of the noise variance at smaller scales. This
is not a big worry as on small scales the PSCz catalogue used to
produce the velocity data has limited non-linear evolution due to its
poor resolution (3.2 h−1 Mpc) and its velocities are purely linear.

Please note that the error bars shown here are correlated. The
uncertainty estimates made for this figure, and for the rest of the
figures in the paper, are based on one of the error bars and not their
combination.

3.2 β from the real data

Having tested the method on mock catalogues and demonstrated
that, on large scales, it gives unbiased results for a SEcat–PSCz

Figure 3. β as deduced from comparison of the real SEcat data with PSCz.
The solid line and dashed line reflect results from different assumptions from
the density reconstruction. The error bars reflect the 1σ uncertainty.

comparison, we now apply it to the real data. Fig. 3 shows the
measured β as a function of the smoothing radius where it has a
value of 0.6 at smoothing radius of 10 h−1 Mpc but drops down as
the smoothing radius increases to ≈0.45; the curve becomes almost
flat at R s � 18 h−1 Mpc. The error bars here are taken from the 1σ

uncertainties determined from the 30 mock catalogues.
Branchini et al. (2000) have used two methods to solve for the red-

shift distortion equation (Kaiser 1987) and reconstructed the real-
space density from the PSCz galaxy redshift distribution. One is
based on the Yahil et al. (1991) iterative method and the other on
the Nusser & Davis (1994) spherical harmonic expansion approach.
In the previous analysis we have used data obtained with the former
method. However, to examine the robustness of the measured value
of β we perform the same comparison but with the latter method.
The dashed line in Fig. 3 shows β as a function of smoothing ra-
dius deduced from the second method which is well within the 1σ

uncertainty level, albeit being slightly smaller.
On small smoothing scales the behaviour of the curves shown

in Fig. 3 is systematically different from those obtained from the
analysis of the mock catalogues; the former drops with scale while
the later increases. We attribute this difference to the fact that the
PSCz catalogue has a limited resolution and its velocity field is
purely linear.

4 F U T U R E S U RV E Y S

4.1 Application to the mock 6dF catalogue

In the near future, the 6dF Galaxy Survey (Jones et al. 2004) will
measure the redshifts of around 150 000 galaxies, and the peculiar
velocities of a 15 000-member subsample, over almost the entire
southern sky. When complete, it will be the largest redshift survey
of the nearby Universe, reaching out to about z ≈ 0.15, and more than
an order of magnitude larger than any peculiar-velocity survey to
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date. Since the two data sets will be obtained from the same survey,
the galaxy redshift and peculiar-velocity catalogues will have the
valuable attribute of being subjected to the same selection effects.

Despite the relatively large volume covered by the 6dF galaxy
peculiar-velocity survey the relative nature of the errors in the Dn–σ

distance estimation might still diminish the information content of
the data. To evaluate this effect we apply equation (13) to mock
6dF galaxy redshift and peculiar-velocity catalogues. In this experi-
ment the catalogues are constructed from the full non-linear N-body
numerical simulation described by Cole et al. (1999), specifically,
the simulation labelled L3S in their paper. The simulation assumes
a CDM power spectrum of fluctuations with �m = 0.3, 	 = 0.7,
rms fluctuation of the mass contained in spheres of radius 8 h−1

Mpc, σ 8 = 1.13 and a CDM power-spectrum shape parameter, 
,
of 0.25. The simulation box side is 345.6 h−1 Mpc and has 1923

particles. The mock catalogues were produced by carving out six
hemispheres of radius 150 h−1 Mpc of the simulation box. We obtain
the redshift and peculiar-velocity catalogues with uniform sampling
of the galaxies in the simulated hemisphere in accordance with the
expected sampling of the 6dF survey. The real-space distribution is
presumed to have negligible errors, but the distances in the peculiar-
velocity catalogues carry errors of 20 per cent of their actual values.
The input linear bias factor, b, is 1.

The star symbols in Fig. 4 show the average β value recovered
from the 12 mock catalogues, as a function of smoothing scale. The
error bars show the associated variance. The continuous line shows
the average β value recovered from the same 12 mock catalogues in
which no errors have been added to velocities. Clearly, the recovered
β is close to its input value at all smoothing scales. If the error level
we get is realistic the accuracy with which the 6dF galaxy survey
will recover the β parameter (≈ 0.05) is indeed encouraging.

The recovery of β down to 5 h−1 Mpc scale is very encouraging
too as it indicates that the Gaussian cell ‘energy-like’ equation holds

Figure 4. β as deduced from the mock 6dF catalogue as a function of
smoothing radius. The stars show the mean results from 12 independent
data sets and the error bars show the scatter about it. The solid line shows the
result obtained from the same analysis performed using a set of noise-free
mock data. The dotted line is the input value of β.

also for the quasi-linear regime. Obviously, this point needs to be
explored further with many simulations and over a wide range of
point separations.

4.2 Kinematic and thermal SZ clusters

Inverse Compton scattering of cosmic microwave background
(CMB) photons off thermal electrons within the hot intracluster
medium of galaxy clusters produces two effects: first, distortion of
the CMB blackbody spectrum causing the cluster to appear brighter
or dimmer at different frequencies and, secondly, an achromatic
modification of its surface brightness. These effects are known, re-
spectively, as the thermal and kinematic Sunyaev–Zel’dovich effects
(Sunyaev & Zel’dovich 1972). The two combined with a measure of
the cluster temperature give the radial peculiar-velocity component
of the cluster to a high degree of accuracy. Current estimates of the
measured distance-independent absolute uncertainty are as low as
130 km s −1 (Holder 2004).

The thermal component of the SZ effect is now routinely mea-
sured with interferometers and major efforts are underway to survey
the sky within the thermal SZ relevant spectral range. Since the SZ
effect is redshift independent, this kind of survey will provide an
unbiased catalogue of the massive clusters as far back as their for-
mation redshift (see, e.g. Carlstrom, Holder & Reese 2002 for a
review).

The kinematic SZ is an order of magnitude weaker than the ther-
mal component and therefore has been harder to measure (Holzapfel
et al. 1997; Benson et al. 2003). In the future, however, the kinematic
SZ effect will be measurable and together with the thermal SZ com-
ponent will provide wide-angle surveys of galaxy-cluster peculiar
velocities up to redshifts of about 2. Such data will probe the evolu-
tion of the dark energy and galaxy-cluster bias evolution and clearly
distinguish between various theoretical scenarios of cosmological
evolution.

Like the 6dF galaxy survey, the future SZ surveys will probe the
density and the peculiar velocity of the same region of space with
the same objects and therefore allow a measurement of �m (through
β). The left-hand panel of Fig. 5 shows the evolution of H f (�m)
as a function of redshift for different values of �m for flat 	CDM
universes normalized to the case of �m = 0.3 and �	 = 0.7. This
figure demonstrates the sensitivity of the cluster SZ peculiar motions
to the value of �m.

The right-hand panel of Fig. 5 shows the evolution of H f (�m) as
a function of redshift for various values of the dark-energy equation
of state parameter, w, in a flat universe (Haiman, Mohr & Holder
2001). As pointed out by Lahav et al. (1991) the evolution of f (�m)
partially cancels out with the evolution in the Hubble parameter.
The weak dependence of the evolution on w clearly shows that
the equation of state is very hard to measure with peculiar-velocity
data. On the other hand, however, this insensitivity facilitates a very
accurate measurement of the cluster biasing factor and its evolution
as a function of redshift.

The expected superior quality of the measured peculiar velocity
of individual clusters is hampered by their sparseness. Therefore,
it is essential to analyse the data with methods that are stable with
respect to this feature. The method developed here is a good candi-
date as it is simple, easy to apply, involves no complicated inversion
schemes and the vast majority of the measured clusters will satisfy
the distant-observer limit assumed in the derivation. Initial applica-
tion of the method to realistic mock catalogues shows good success
in the recovery of the β. However, the mock data to which we ap-
plied it were at redshift zero and limited in size. When the cluster
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Figure 5. The left-hand panel shows the evolution of H f (�m) as a function of redshift for flat cosmological 	CDM models with �m = 0.1, 0.1, . . . , 1,
relative to the �m = 0.3 and �	 = 0.7 case. The right-hand panel shows the evolution of the same quantity as a function of redshift for different dark-energy
equations of state assuming a flat 	CDM universe with �m = 0.3 and �	 = 0.7. The lines are for the dark-energy equation of state parameter, w, values of
{−0.6, − 0.7, − 0.8, − 0.9, − 1. − 1.1, − 1.2}, with the thick line showing the evolution in the w = −1 case. Although the magnitude and extremum location
of the ratio vary with w, the F function itself depends very weekly on the value of w.

mass cut-off exceeds 8 × 1013 M� the simulation box is left with
very small number of clusters. In order to test the applicability of the
method properly one should apply it to very large-scale simulations
that span the redshift range of 0–2, a task that will be deferred to
the future.

5 D I S C U S S I O N

In this paper we introduced the Gaussian cell two-point ‘energy-like’
equation connecting the two-point density and peculiar-velocity
correlation functions. The interpretation of this equation is that
the change in the velocity correlation function is caused by den-
sity variation coming from scales larger than the scale set by the
Gaussian smoothing; this analytic cancellation of the small-scale
power is particular to Gaussian kernels. Two practical applications
of the Gaussian cell two-point energy-like equation have been de-
veloped here; the first is a direct matter power-spectrum estimator
from peculiar-velocity data, and the second is β measurement from
comparison of galaxy peculiar-velocity and redshift surveys. The
latter application was restricted to the velocity dispersion, i.e. the
r = 0 case.

In the r = 0 case, the relation derived here is similar in its math-
ematical form to the Irvine–Layzer cosmic energy equation. This
is not surprising as each of the two relations reflect some sort of
energy balance and should, due to dimensionality arguments, be
homologous.

Restricting the main formula to the variance case the relation
could be easily used to estimate the value of β from comparison
between galaxy peculiar-velocity and redshift catalogues. In this
paper we showed that despite their proximity the PSCz galaxy red-
shift survey and the SEcat galaxy peculiar velocity data could be
reliably used to derive the value of β. The result is consistent with

that of previous analyses. The variance case has also been shown to
apply to the 6dF galaxy survey, despite being far from the distant-
observer limit. Using mock 6dF catalogues we have demonstrated
that our method can be successfully used to extract cosmological
parameters from the real sample.

In the future, the eminent detectability of the kinematic Sunyaev–
Zel’dovich effect will provide peculiar-velocity measurements for
a large number of galaxy clusters at redshifts extending back to the
formation epoch of the cluster (z ≈ 2). This type of data is ideal to
explore with the Gaussian cell two-point energy-like equation as it
satisfies all of the required assumptions and has small measurement
errors with large spatial coverage. The redshift coverage of the SZ
data will allow an accurate measurement of the evolution of the
cluster biasing factor with redshift. The main hurdle these data sets
will pose is the limited resolution with which they will sample the
Universe as the comoving rms distance between rich galaxy clusters
is of the order of 30 h−1 Mpc.

We have also shown that the Gaussian cell two-point energy-
like equation could be used to estimate the matter power-spectrum
peculiar-velocity data in a non-parametric fashion. This is a very
important application since the current measurements of the mass
power spectrum from peculiar velocity employ likelihood analy-
sis with specific models that almost certainly do not properly ac-
count for the noise contribution (Zaroubi et al. 1997, 2001). A non-
parametric measurement, on the other hand, will allow a scale-by-
scale dissection of the various components contributing to the mea-
sured power spectrum allowing the isolation of the noise part.

Finally, given the simplicity of equation (7) it is tantalizing to
attempt to extend it to the quasi-linear regime to obtain a non-linear
description of the evolution of the two-point peculiar-velocity corre-
lation function similar to the very successful quasi-linear extension
of its density counterpart (Hamilton et al. 1991). Indeed, Fig. 4
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gives an encouraging indication that the equation might hold for the
quasi-linear regime. This will be further explored in future work.
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